Curso: Cálculo II

Profesora: Verónica Poblete

Ayudantes: Fabián Hidalgo, Sebastián Rivera

Ayudantía 18 - Series de Funciones

Viernes 10 de Noviembre del 2017

Resumen

■ 1. Definición (Serie de Funciones):

Dada una sucesión de funciones $f_n: X \to \mathbb{R}$, definimos la sucesión de sumas parciales (s_n) de (f_n) como $s_n = \sum_{k=1}^n f_k$. Además, definimos la serie de (f_n) como

$$\sum f_n := \lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{k=1}^n f_n = \sum_{k=1}^\infty f_k.$$

En adelante, adoptaremos el símbolo $\sum f_n$ para referirnos a la serie de las funciones f_n . Además, es importante observar que tanto la sucesión de sumas parciales como la serie tienen dominio X al igual que las f_n .

- Una serie de funciones es, en particular, una sucesión de funciones, por lo que los resultados vistos para sucesiones de funciones se extienden a las series. Lo veremos a continuación.
- 2. Teorema (Continuidad de una serie de funciones):

Si $f_n: X \to \mathbb{R}$ es una sucesión de funciones tal que $\sum f_n$ converge uniformemente a una función $f: X \to \mathbb{R}$. Si todas las f_n son continuas en un punto $a \in X$, entonces f es continua en $a \in X$.

■ 3. Teorema (Dini para series de funciones):

Sea X un conjunto compacto y sea $f_n: X \to \mathbb{R}$ una sucesión de funciones continuas no-negativas tal que la serie $\sum f_n$ converge puntualmente en X a una función continua $f: X \to \mathbb{R}$. Entonces la convergencia de $\sum f_n$ a f es uniforme.

• 4. Teorema (Integral término a término de una serie de funciones):

Sea $f_n:[a,b]\to\mathbb{R}$ una sucesión de funciones que converge uniformemente a una función $f:[a,b]\to\mathbb{R}$. Si todas las f_n son integrables, entonces f es integrable y además se tiene que

$$\int_{a}^{b} \sum f_{n}(x) dx = \sum \int_{a}^{b} f_{n}(x) dx$$

• 5. Teorema (Derivación término a término de una serie de funciones):

Sea $f_n:[a,b]\to\mathbb{R}$ una sucesión de funciones de clase C^1 tal que la sucesión de derivadas (f'_n) converge uniformemente en [a,b]. Si existe $c\in[a,b]$ tal que la serie numérica $\sum f_n(c)$ converge, entonces la serie de funciones $\sum f_n$ converge uniformemente a una función de clase C^1 , y se cumple que

$$(\sum f_n)' = \sum (f_n')$$

• 6. Teorema (Test M de Weierstrass):

Sea (f_n) una sucesión de funciones real-valuadas de dominio común X, y $\sum M_n$ una serie convergente de números reales no-negativos que domina a (f_n) (es decir $|f_n| \leq M_n$ para todo $n \in \mathbb{N}$). Entonces $\sum |f_n|$ y $\sum f_n$ son uniformemente convergentes.

Guía de Problemas 18

- 1. Considere la serie de funciones $\sum_{n=0}^{\infty} \frac{x^2}{(1+x^2)^n}.$
 - (a) Pruebe que la serie converge puntualmente a la función $f(x) = \begin{cases} 1 + x^2 & \text{si} & x \neq 0 \\ 0 & \text{si} & x = 0 \end{cases}$
 - (b) Pruebe que la convergencia no es uniforme.
- 2. Considere la serie de funciones $\sum_{n=1}^{\infty} x^n (1-x^n)$.
 - (a) Pruebe que la serie converge puntualmente en (-1,1].
 - (b) Pruebe que la convergencia es uniforme en todos los intervalos de la forma $[-1 + \delta, 1 \delta]$, donde $0 < \delta < 1/2$.
- 3. Sea $f_n:[1,2]\to\mathbb{R}$ la sucesión de funciones definidas por $f_n(x)=x/(1+x)^n$.
 - (a) Pruebe que $\sum f_n$ converge puntualmente en [1, 2].
 - (b) Pruebe que la convergencia es uniforme.
 - (c) ¿Será cierto que $\int_1^2 \sum_{n=1}^\infty f_n(x) dx = \sum_{n=1}^\infty \int_1^2 f_n(x) dx$?
- 4. Sea $f_n: X \to \mathbb{R}$ una sucesión de funciones tal que $f_1 \geq f_2 \geq ... \geq f_n \geq ...$ y que converge uniformemente a la función nula en X. Pruebe que la serie $\sum_{n=0}^{\infty} (-1)^n f_n$ converge uniformemente en X.
- 5. Sea $f_n: X \to \mathbb{R}$ una sucesión de funciones tal que $\sum |f_n(x)|$ converge uniformemente en X. Pruebe que $\sum f_n(x)$ también converge uniformemente en X.
- 6. Para $x \in (-1,1)$, calcule el valor de la serie

$$\frac{1}{1+x} + \frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \frac{8x^7}{1+x^8} + \dots$$

7. Se define la función de Bessel de orden n, con $n \in \{0, 1, 2, ...\}$, mediante

$$J_n(x) = \sum_{n=0}^{\infty} \frac{(-1)^k x^{2k+n}}{k! \cdot \Gamma(k+n+1) \cdot 2^{2k+n}}$$

- (a) Demuestre que el dominio de J_n es \mathbb{R}
- (b) Derivando la serie $x^n J_n(x)$ y usando una propiedad apropiada de la función Gama, demuestre que

2

$$\frac{d}{dx}(x^n J_n(x)) = x^n J_{n-1}(x)$$

(c) Verifique que $xJ'_n(x) = xJ_{n-1}(x) - nJ_n(x)$