Curso: Cálculo II

Profesora: Verónica Poblete

Ayudantes: Fabián Hidalgo, Sebastián Rivera

Ayudantía 17 - Sucesiones de Funciones II

Viernes 03 de Noviembre del 2017

Resumen

■ 1. Definición (Conjunto Compacto):

Un conjunto $X \subset \mathbb{R}$ es compacto si y sólo si es cerrado y acotado.

• 2. Teorema (de Dini):

Sea $f_n: X \to \mathbb{R}$ una sucesión de funciones que converge monótonamente a una función continua $f: X \to \mathbb{R}$ en un conjunto compacto X. Entonces la convergencia de f_n a f es uniforme.

■ 3. Teorema (Continuidad del límite uniforme de funciones continuas):

Sea $f_n: X \to \mathbb{R}$ una sucesión de funciones que converge uniformemente a la función $f: X \to \mathbb{R}$. Si todas las f_n son continuas en un punto $a \in X$, entonces f es continua en $a \in X$.

• 4. Teorema (Integral del límite uniforme de funciones integrables):

Sea $f_n:[a,b]\to\mathbb{R}$ una sucesión de funciones que converge uniformemente a la función $f:[a,b]\to\mathbb{R}$. Si todas las f_n son integrables, entonces f es integrable, y además se cumple que

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} \lim_{n \to \infty} f_{n}(x)dx = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x)dx$$

■ 5. Teorema

(Derivación término a término de una sucesión de funciones de clase C^1):

Sea $f_n:[a,b]\to\mathbb{R}$ una sucesión de funciones de clase C^1 . Si para un cierto $c\in[a,b]$ la sucesión $(f_n(c))$ converge, y si la sucesión de derivadas (f'_n) converge uniformemente a una función $g:[a,b]\to\mathbb{R}$, entonces (f_n) converge uniformemente a una función f de clase C^1 en [a,b] tal que f'=g, es decir, $\lim_{n\to\infty}(f'_n)=(\lim_{n\to\infty}f_n)'$

Guía de Problemas 17

- 1. Sea $f_n: X \to \mathbb{R}$ una sucesión de funciones tal que solo una cantidad finita de ellas son discontinuas en un punto $a \in X$. Demuestre que el Teorema 3 sigue siendo válido. Enuncie y demuestre el análogo para los Teoremas 4 y 5.
- 2. Sea $p: \mathbb{R} \to \mathbb{R}$ un polinomio no constante. Demuestre que la sucesión de funciones $f_n: \mathbb{R} \to \mathbb{R}$ definida por $f_n(x) = p(x) + 1/n$ converge uniformemente a p en \mathbb{R} , y que (f_n^2) no converge uniformemente a p^2
- 3. Sea $f:[0,1] \to \mathbb{R}$ la función definida por $f_n(x) = \begin{cases} 1-2nx & \text{si } 0 \le x < 1/2n \\ 0 & \text{si } 1/2n \le x \le 1 \end{cases}$
 - (a) Demuestre que f_n es continua para todo $n \in \mathbb{N}$.
 - (b) Demuestre que (f_n) es monótona decreciente.
 - (c) Demuestre que (f_n) converge puntualmente (monótonamente) y determine la función límite.
 - (d) ¿Puede usar el Teorema de Dini? Decida si la continuidad es uniforme.
- 4. Sean (f_n) y (g_n) sucesiones de funciones real-valuadas de dominio común X. Pruebe que si $f_n \to f$ y $g_n \to g$ uniformemente en X, entonces:
 - (a) $(\forall a \in \mathbb{R}) \ af_n \to af$ uniformemente en X.
 - (b) $f_n \pm g_n \to f \pm g$ uniformemente en X.
 - (c) Si f y g son funciones acotadas, entonces $f_n \cdot g_n \to fg$ uniformemente en X.
 - (d) Si f no es acotada, entonces no necesariamente $f_n \cdot g_n \to fg$ uniformemente en X.
 - (e) Si existe c > 0 tal que $|g| \ge c$, entonces $1/g_n \to 1/g$ uniformemente en X.
- 5. Sea $f_n:[0,1]\to\mathbb{R}$ la sucesión de funciones definida por $f_n(x)=nx(1-x)^n$. Pruebe que
 - (a) (f_n) converge puntualmente. Determine la función límite f.
 - (b) La convergencia de (f_n) a f no es uniforme.
 - (c) Aún así, la integral del límite es igual al límite de la integral.
- 6. Sea $f_n:[0,1]\to\mathbb{R}$ la sucesión de funciones definida por $f_n(x)=\mathrm{sen}(nx)/\sqrt{n}$. Pruebe que
 - (a) (f_n) converge puntualmente a una función f. Determine f.
 - (b) La convergencia de (f_n) a f es uniforme.
 - (c) (f'_n) no converge en ningún punto del intervalo [0,1].