GUIA 1

CUERPOS Y ÁLGEBRAS (PRIMAVERA 2017)

Profesor: Giancarlo Lucchini. Ayudante: Claudio Bravo.

- 1.- Problema 1: Sea $d \in \mathbb{N}$ libre de cuadrados. Demuestre que el cuerpo de cocientes de $\mathbb{Z}[\sqrt{d}]$ es $\mathbb{Q}[\sqrt{d}] = \{a + b\sqrt{d} : a, b \in \mathbb{Q}\}.$
- 2.- Problema 2: Sea p primo impar y $\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$ el cuerpo de p elementos. Pruebe que en \mathbb{F}_p hay $\frac{p+1}{2}$ elementos que son cuadrados. De un ejemplo de un primo p tal que -1 sea un cuadrado en \mathbb{F}_p .
- 3.- Problema 3: Demuestre que todo cuerpo finito K tiene caracteristica p, para cierto p primo. Demustre además, que K es un \mathbb{F}_p -espacio vectorial de dimensión finita.
- 4.- Problema 4: Pruebe que no existen cuerpos de 15 elementos.
- 5.- Problema 5: Considere $p(x) = x^2 + x + 1 \in \mathbb{F}_2[x]$. Pruebe que p(x)es irreducible en $\mathbb{F}_2[x]$ y encuentre la fórmula para la multiplicación en $K = \mathbb{F}_2[x]/(p(x)).$
- 6.- Problema 6: Considere la notación del problema 3 y sea $\theta \in K$ una raiz de p(x). Pruebe directamente que la función $\phi: K \to K$ definida por $\phi(\theta) = \theta + 1$ es un automorfismo de K.
- 7.- **Problema 7:** Muestre que $p(x) = x^3 + 9x + 6$ es irreducible sobre $\mathbb{Q}[x]$. Sea θ una raiz de p(x). Calcule el inverso de $1 + \theta \in \mathbb{Q}[\theta]$ en términos de las potencias de θ .
- 8.- Problema 8: Muestre que $x^3 + x + 1$ es irreducible en $\mathbb{F}_2[x]$. Sea θ una
- raiz de p(x). Calcule las potencias de θ en términos de $1, \theta$ y θ^2 . 9.- **Problema 9:** Sea θ una raiz de $p(x) = x^{2017} + 15x + 3$. Demuestre que $L = \{a_0 + a_2\theta + \cdots + a_{2016}\theta^{2016} : a_i \in \mathbb{Q}\}$ es un cuerpo tal que $\dim_{\mathbb{O}}(L) = 2017.$
- 10.- **Problema 10:** Muestre que $x^6 + 2x^3 + (1+i)$ es irreducible en $\mathbb{Q}[i][x]$. Sea θ una raiz de p(x). Encuentre el inverso de $i\theta$ en términos de $\{1, \theta, \dots, \theta^5\}$.