AYUDANTÍA XI

GRUPOS Y ANILLOS (PRIMAVERA 2016)

En esta ayudnatía estudiaremos productos de anillos y trabajaremos con el teorema chino de los restos. En lo que sigue usaremos la notación n para $\overline{n} \in \mathbb{Z}/m\mathbb{Z}$.

1.- Problema 1:

Sea $A = \mathbb{Z}/30\mathbb{Z}$.

- i.- Encuentre los elementos idempotentes de A.
- ii.- Descomponga $A \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$.

Desarrollo:

- i.- Observe que $(\mathbb{Z}/30\mathbb{Z})^2 = \{0, 1, 4, 16, 25, 6, 19, 12, 21, 10, 1, 24, 19, 16, 15\}$. Luego los elementos $\{6, 10, 15, 25, 21, 16\}$ son los súnico idempotentes no triviales del anillo A. Observe que A es conmutativo, por lo tanto los elementos anteriores son idempotentes centrales.
- ii.- Observe que 6+15+10=1 y además se tiene que $6.15=0,\ 10.15=0,\ 6.10=0.$ Luego, por el teorema de descomposición de anillos por elementos idempotentes, tenemos que $A\cong 6\mathbb{Z}/30\mathbb{Z}\times 15\mathbb{Z}/30\mathbb{Z}\times 10\mathbb{Z}/15\mathbb{Z}$. Pero por lo mostrado en la ayudantía anterior tenemos que si n,m son relativamente primos entonces $n\mathbb{Z}/nm\mathbb{Z}\cong \mathbb{Z}/m\mathbb{Z}$. Luego $A\cong \mathbb{Z}/2\mathbb{Z}\times \mathbb{Z}/5\mathbb{Z}\times \mathbb{Z}/3\mathbb{Z}$. Esto último pues $2\mathbb{Z}/3\mathbb{Z}=\mathbb{Z}/3\mathbb{Z}$. Observe que $6\in\mathbb{Z}/30\mathbb{Z}$ corresponde en el producto de anillos a (0,1,0). Esto pues el primer isomorfismo corresponde a la multiplicación por los elementos idempotentes centrales de cada clase en $\mathbb{Z}/30\mathbb{Z}$. Por lo mismo $10\in\mathbb{Z}/30\mathbb{Z}$ corresponde en el producto de anillos a (0,0,1) y $15\in\mathbb{Z}/30\mathbb{Z}$ corresponde a (1,0,0).
- 1.- **Ejercicio:** Sea $B = \mathbb{C}[x]/(x^2 + 5x + 4)$. Pruebe que $B \cong \mathbb{C} \times \mathbb{C}$. Usando esto encuentre un par de elementos idempotentes en B.

2.- Problema 2:

Sea $A = \mathbb{Z}/81\mathbb{Z}$. Pruebe que $T = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix} \in \mathbb{M}_2(A)$ es un elemento invertible. Calcule su inverso.

Demostración: Observe que $T = \operatorname{id} + B$, donde $B = \begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix}$. Además $B^2 = 9\operatorname{id}$, luego $B^4 = 0$. Por lo tanto T es suma de un elemento invertible y otro nilpotente. Luego T es invertible. Además $(\operatorname{id} + B)(\operatorname{id} - B + B^2 - B^3) = (\operatorname{id} - B + B^2 - B^3)(\operatorname{id} + B) = \operatorname{id} - B^4 = \operatorname{id}$. De esto se sigue que $T^{-1} = (\operatorname{id} - B + B^2 - B^3) = \begin{pmatrix} 10 & -30 \\ -30 & 10 \end{pmatrix}$.

2.- **Ejercicio:** Sea $A = \mathbb{Z}/81\mathbb{Z}$. Pruebe que $T = \begin{pmatrix} 4 & 3 \\ 3 & 1 \end{pmatrix} \in \mathbb{M}_2(A)$ es un elemento invertible. Calcule su inverso.

2

3.- Problema 3:

Sea $p \in \mathbb{Z}$ primo. Pruebe que en $\mathbb{Z}/p^r\mathbb{Z}$ todo elemento es invertible o nilpotente.

Demostración: Consirede $n \in \mathbb{Z}$ un representante de la clase $\overline{n} \in \mathbb{Z}/p^r\mathbb{Z}$. Observe que si n y p^r son relativamente primos entonces existen $a, b \in \mathbb{Z}$ tales que $an + p^rb = 1$. Luego $\overline{an} = 1$. Es decir, si p no divide a n se tiene que \overline{n} es invertible. Por otro lado, si p divide a n entonces n = ps cumple con $\overline{n}^r = \overline{p^rs^r} = \overline{0}$. Luego \overline{n} es nilpotente. Esto demuestra lo pedido.

3.- **Ejercicio:** Sea A anillo conmutativo con uno. Pruebe $\mathfrak{N}(A) = \{a \in A : a^n = 0, \text{algún } n \in \mathbb{Z}\}$. Pruebe que $\mathfrak{N}(A)$ es un ideal de A. Calcule $\mathfrak{N}(\mathbb{Z}/p^r\mathbb{Z})$, para p primo. Concluya que $(\mathbb{Z}/p^r\mathbb{Z})/\mathfrak{N}(\mathbb{Z}/p^r\mathbb{Z}) \cong \mathbb{Z}/p\mathbb{Z}$.

4.- Problema 4:

Sea $A = \mathbb{M}_2(\mathbb{Z}/6\mathbb{Z})$.

- i.- Demuestre que $A \cong \mathbb{M}_2(\mathbb{Z}/3\mathbb{Z}) \times \mathbb{M}_2(\mathbb{Z}/2\mathbb{Z})$.
- ii.- Sea K cuerpo. Pruebe que $\mathbb{M}_2(K)$ no es isomorfo a un producto de anillos.
- iii.- Concluya que en A hay solamente dos idempotentes centrales.

Desarrollo:

- i.- Observe que en $B=\mathbb{Z}/6\mathbb{Z}$ se tiene que $\{3,4\}$ son un par de elementos idempotentes centrales. Luego dichos elementos descomponene B como $B\cong 3\mathbb{Z}/6\mathbb{Z}\times 4\mathbb{Z}/6\mathbb{Z}\cong \mathbb{Z}/2\mathbb{Z}\times \mathbb{Z}/3\mathbb{Z}$. Considere ahora las matrices $T=\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$ y $S=\begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$. Observe que dichas matrices son centrales. Además $S^2=S$, $T^2=T$ y $T=\mathrm{id}-S$. Luego estas matrices descomponenen A como $A\cong A/TA\times A/SA$. Pero $TA=\mathbb{M}_2(3\mathbb{Z}/6\mathbb{Z})\cong \mathbb{M}_2(\mathbb{Z}/2\mathbb{Z})$. Luego $A\cong \mathbb{M}_2(\mathbb{Z}/6\mathbb{Z})/\mathbb{M}_2(\mathbb{Z}/2\mathbb{Z})\times \mathbb{M}_2(\mathbb{Z}/3\mathbb{Z})\cong \mathbb{M}_2(\mathbb{Z}/3\mathbb{Z})\times \mathbb{M}_2(\mathbb{Z}/2\mathbb{Z})$.
- ii.- Supongamos que $A \in \mathbb{M}_2(K)$ es idempotente no trivial. Luego dicho elemento, en cierta base apropiada, es $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Pero si consideramos $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ tenemos que AB = B y BA = 0. Luego A no es central. Por ello $\mathbb{M}_2(K)$ no tiene elementos idempotentes centrales no triviales. Luego $\mathbb{M}_2(K)$ no es un producto de anillos.
- iii.- Como $\mathbb{M}_2(\mathbb{Z}/3\mathbb{Z})$ y $\mathbb{M}_2(\mathbb{Z}/2\mathbb{Z})$ no son producto de anillos concluimos que estos no poseen elementos idempotentes no triviales. Luego tenemos que en A solamente existen dos elementos de este tipo.

5.- Problema 5:

Resuelva cada uno de los siguientes problemas.

- i.- Encuentre las soluciones de $x^2 \equiv -1(55)$.
- ii.- Resuelva el sistema: $2x + 3 \equiv 0(5)$, $2x + 5 \equiv 0(11)$.

Desarrollo:

i.- Observe que $(-10)^2 = 100 = -10$. Luego -10 = 45 es un elementos idempotente central de $A = \mathbb{Z}/55\mathbb{Z}$. Además 11 es otro elemento del mismo tipo. Por lo tanto $A \cong -10\mathbb{Z}/55\mathbb{Z} \times 11\mathbb{Z}/55\mathbb{Z} \cong \mathbb{Z}/11\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$. Observe

- que $(\mathbb{Z}/11\mathbb{Z})^2 = \{0, 1, 4, 9, 5, 3\}$. Luego $x^2 \equiv -1(11)$ no tiene solución a $x^2 \equiv -1(55)$. Esto pues si la hubiera, entonces cualquier x_0 solución de esta cumpliría con $(-10x_0)^2 = -1(11)$.
- ii.- Resolvamos cada ecuación en cada cociente. En efecto $x\equiv 1(5)$ y $x\equiv -30\equiv 3(11)$. Luego todo representante de una solución de la ecuación cumple con x=1-5n, para algún $n\in\mathbb{Z}$. Por lo tanto $1-5n\equiv 3(11)$. Así obetenemos que $5n\equiv -2(11)$. Luego $n\equiv 4(11)$. Es decir n=4+11k, para cierto $k\in\mathbb{Z}$. Por lo tanto x=1-5n=1-20+55k=-19+55k. Es decir $x\equiv -19(55)\equiv 26(55)$.
- 5.- **Ejercicio:** Encuentre las soluciones del sistema: $2x^2 \equiv 3(11)$, $5x + 4 \equiv 0(3)$.