GUIA 3. VARIABLE COMPLEJA

1

Describe todos los números complejos z que cumplen $e^z = 1$.

2

Sea $f: \mathbb{C} \to \mathbb{C}$ dada por $f(z) := |z|^2$.

- f es holomorfa en 0 .
- f no es holomorfa en $z \neq 0$.
- La función $F: \mathbb{R}^2 \to \mathbb{R}$ dada por $F(x,y) := x^2 + y^2$ es indefinidamente derivable.

3

Una función holomorfa es continua.

4

El conjunto de pares (u,v) de funciones armónicamente conjugadas forman un subespacio vectorial de $C^2(\Omega) \times C^2(\Omega)$.

5

Si (u, v) son armónicamente conjugadas, entonces (v, -u) son armónicamente conjugadas.

6

- Generalize el laplaciano, la ecuación de Laplace y el concepto de función armonica en n variables.
- Ejemplos de funciones armónicas en subconjuntos abiertos de \mathbb{R}^3 .

7

Sea $(x_0, y_0) \in \mathbb{R}^2$ y R > 0.

Pruebe que cada función armónica en el disco $D((x_0, y_0), R)$ tiene una conjugada armónica.

8

La función $f(x+iy):=2x^2-3xy+y^2-y+iv(x,y)$ es entera y cumple f(0)=0 . Calcule v .

9

La función

$$u: \mathbb{R}^2 \to \mathbb{R}$$
, $u(x,y) := \exp(x^2 - y^2)\cos(2xy)$

es armónica.

• Calcule su conjugada armónica y la función holomorfa correspondiente.

10

• La función

$$u: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}, \quad u(x,y) := \ln(x^2 + y^2)$$

es armónica.

• Calcule su conjugada armónica en $\Omega := \{(x,y) \in \mathbb{R}^2 \mid x>0\}$ y la función holomorfa correspondiente.

11

Sea $\Omega \subset \mathbb{C}$ un dominio abierto y conexo. Ocupando las ecuaciones de Cauchy Riemann, muestre (de nuevo) que une función $F:\Omega \to \mathbb{R}$ es holomorfa si y solo si es constante.

12

Determine el mas general polinómio armónico de la forma $p(x,y)=ax^3+bx^2y+cxy^2+dy^3$. La función f=p+iv es entera. Qué forma tiene v?

13

La función holomorfa $F: \Omega \to \mathbb{C}$ tiene la propiedad |f(z)| = 9 para cada $z \in \Omega$. Qué se puede decir de f?

14

Sea Ω un disco finito o infinito en el plano complejo. Sea $v:\Omega\to\mathbb{R}$ une función armónica. Existe una función armónica $g:\Omega\to\mathbb{C}$ tal que $\mathrm{Im}(g)=v$.

15

Muestre la regla de Leibnitz ocupando las ecuaciones de Cauchy-Riemann.

16

Sea la función

$$u: \mathbb{R}^2 \to \mathbb{R}$$
, $u(x,y) := 2x^2 - 2y^2 + 3x - 1$.

Muestre que existe una función entera f con Re(f) = u y f(0) = -1 + 3i . Calcule esta función.

17

Supongamos que f es una función holomorfa en el conjunto abierto $\,\Omega\subset\mathbb{C}\,.$

Ocupando las ecuaciones de Cauchy-Riemann, muestre que la función g(z):=1/f(z) es holomorfa en el conjunto abierto $\widetilde{\Omega}:=\{z\in\Omega\mid f(z)\neq 0\}$.