
Latinamerican School for

Computational Materials

Science.

Santiago, Chile - Enero, 2009

Floating Point numbers..Floating Point numbers..

Stefano Cozzini

CNR-INFM DEMOCRITOS, Trieste

OutlineOutline

● How to represent numbers on a computers.
● IEEE floating point formats
● Floating point arithmetic
● Few misconception about FP
● Pitfalls of FP arithmetic
● Role of the compilers in this game
● Some final tips to avoid (known) problems

Reality = real numbersReality = real numbers

● Real number = unlimited accuracy
● How can we store a number on a

computer ?
– Binary coded decimal (BCD)

– Rational Numbers

– Fixed Point

– Floating point

Floating-point representationFloating-point representation

 floating numbers are stored using a kind of scientific
notation.

 mantissa * 2exponent

 We can represent floating-point numbers with three binary
fields: a sign bit s, an exponent field e, and a fraction field f.

 The IEEE 754 standard defines several different precisions.
— Single precision numbers include an 8-bit exponent field

and a 23-bit fraction, for a total of 32 bits.
— Double precision numbers have an 11-bit exponent field

and a 52-bit fraction, for a total of 64 bits.

fes

IEEE 754 standard for FP IEEE 754 standard for FP
● Macheps = Machine epsilon = 2 -#significand bits = relative error

in each operation

● OV = overflow threshold = largest number

● UN = underflow threshold = smallest number

— In comparison, the range of possible 32-bit integers in two’s
complement are only -231 and (231 - 1)

— How can we represent so many more values in the IEEE 754 format,
even though we use the same number of bits as regular integers?

 There aren’t more IEEE numbers.
 With 32 bits, there are 232-1, or about 4 billion, different bit

patterns.
— These can represent 4 billion integers or 4 billion reals.

— But there are an infinite number of reals, and the IEEE format can only
represent some of the ones from about -2128 to +2128.

— Represent same number of values between 2n and 2n+1 as 2n+1 and 2n+2

 Thus, floating-point arithmetic has “issues”
— Small roundoff errors can accumulate with multiplications or exponentiations,

resulting in big errors.

— Rounding errors can invalidate many basic arithmetic principles such as the
associative law, (x + y) + z = x + (y + z).

 The IEEE 754 standard guarantees that all machines will
produce the same results—but those results may not be
mathematically correct!

FinitenessFiniteness

2 4 8 16

density of FP numbers.. density of FP numbers..

● Because the same number of bits are used
to represent all normalized numbers, the
smaller the exponent, the greater the
density of representable numbers.

● For example, there are approximately
8,388,607 single-precision numbers
between 1.0 and 2.0, while there are only
about 8191 between 1023.0 and 1024.0.

● this means that for large numbers (both
positive and negative) there are very few
FP numbers to play with..

Floating Point ArithmeticFloating Point Arithmetic
● Representable numbers:

– The way the numbers are stored
● Operations: (The way the number are handled)

– arithmetic: +,-,x,/,...

– comparison (<, =, >)

– conversion between different formats - short to long FP
numbers, FP to integer, etc.

– exception handling - what to do for 0/0,
2*largest_number, inexact etc.

– binary/decimal conversion - for I/O, when radix is not
10.

● Language/library support is required for all these
operations.

error handlingerror handling
● What happens when the “exact value” is not a real

number, or too small or too large to represent
accurately?

● Five exceptions:

– Overflow - exact result > OV, too large to represent.

– Underflow - exact result nonzero and < UN, too small
to represent.

– Divide-by-zero - nonzero/0.

– Invalid - 0/0, sqrt(-1), …

– Inexact - you made a rounding error (very common!).
● Possible responses

– Stop with error message (unfriendly, not default).

– Keep computing (default, but how?).

rounding problemrounding problem

● Many operations among floating point does
not end in a floating point...

● IEEE 754 defines the way to handle this:
– Take the exact value, and round it to the nearest

floating point number (correct rounding).

– Break ties by rounding to nearest floating point
number whose bottom bit is zero (rounding to
nearest even).

– Other rounding options also available (up, down,
towards 0).

Floating Point Arithmetic: A Little HistoryFloating Point Arithmetic: A Little History

● 1960s-1970s: Each computer handled FP arithmetic
differently:

– Format, accuracy, rounding mode and exception handling
all differed.

– It was very difficult to write portable and reliable technical
software.

● 1982: IEEE-754 standard defined. First
implementation: Intel 8087.

● 1985 the IEEE 754 standard was adopted.

– Having a standard at least ensures that all compliant
machines will produce the same outputs for the same
program.

● 2000: IEEE FP arithmetic is now almost universally
implemented in general purpose computer systems.

Fortran/C intrinsic data types for IEEE Fortran/C intrinsic data types for IEEE
standards standards

● Fortran:
– REAL*4 / REAL (32 bit)

– REAL*8 /DOUBLE PRECISION (64 bit)

– REAL*16/ QUADRUPLE PRECISION (128 bit: not
always present and implemented)

● C/C++
– Float (32 bit)

– Double (64 bit)

– Double extended (80 bit on all commodity
hardware (INTEL/AMD etc)

Misconception 1 Misconception 1
● Floating-point arithmetic is fuzzily defined,

programs involving floating-point should not be
expected to be deterministic.

– Since 1985 there is a IEEE standard for floating-point
arithmetic.

– Everybody agrees it is a good thing and will do his
best to comply

– ... but full compliance requires more cooperation
between processor, OS, languages, and compilers
than the world is able to provide.

– Besides full compliance has a cost in terms of
performance.

● Floating-point programs are deterministic, but
should not be expected to be spontaneously
portable...

Misconception 2Misconception 2

● I need 3 significant digits in the end, a double
holds 15 decimal digits, therefore I shouldn’t
worry about precision.

 ⊖ You can destroy 14 significant digits in one
subtraction

 ⊖ it will happen to you if you do not expect it

 ⊕ It is relatively easy to avoid if you expect it

Misconception 3Misconception 3

● All floating-point operations involve a
(somehow fuzzy) rounding error.
– Many are exact, we know who they are and we

may even force them into our programs

– Since the IEEE-754 standard, rounding is well
defined, and you can do maths about it

PITFALL: addition is not associativePITFALL: addition is not associative

EXERCISE ON SUM NUMBERS IN THE LAB #2

PITFALL: cancellation PITFALL: cancellation

● Cancellation: if you subtract numbers which
were very close

 (example: 1.2345e0 - 1.2344e0 = 1.0000e-4)
– you loose significant digits (and get meaningless

zeroes)

– although the operation is exact! (no rounding
error)

● Problems may arise if such a subtraction is
followed by multiplications or divisions

● You may get meaningless digits in your result

PITFALL: some numbers are not exactly PITFALL: some numbers are not exactly
representable.. representable..

● 1/3 is not exactly representable
● 0.01 is NOT exactly representable
● Question to be answered during lab 2

– how many 1/N (inverse) are not exactly
representable in the range [1, 100] ?

EXERCISE ON INVERSE S IN THE LAB #2

so do not expect exact results..so do not expect exact results..

0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+
0.1 != 1.0
– The literal "0.1" doesn’t equal 0.1

– Limited precision of floating-point implies
roundoff

● More generally, exact results also fail from
– Limited range (overflow, underflow)

– Special values

horrible story #1 0.10horrible story #1 0.10
● During the Gulf War in 1991, a U.S. Patriot missile failed to intercept

an Iraqi Scud missile, and tens of peoples were killed.
● A later study determined that the problem was caused by the

inaccuracy of the binary representation of 0.10.
– The Patriot incremented a counter once every 0.10 seconds.
– It multiplied the counter value by 0.10 to compute the actual time.

● However, the (24-bit) binary representation of 0.10 actually
corresponds to 0.099999904632568359375, which is off by
0.000000095367431640625.

● This doesn’t seem like much, but after 100 hours the time ends up
being off by 0.34 seconds—enough time for a Scud to travel 500
meters!

http://www.mc.edu/campus/users/travis/syllabi/38
1/patriot.htm

What about compilers ?What about compilers ?

● IEEE754 standard defines how FP are to be
performed

● compilers which translates our high level
language (fortran/C) to assembler is
responsible to generate IEEE-compliant code

● compilers should respect the semantic of the
language.

About the semantic..About the semantic..

● the semantic of most recent languages is to
respect your parentheses:

● if you write (a + b) + c the compiler should
not replace it with a + (b + c), unless it can
prove that both computations always yield the
same result. Even if it would be faster!

● if you write r := b - ((a + b)- a) ; the compiler
shouldn’t replace it with r:=0 ;

Again on compilers Again on compilers

● There are generally specific flags to force the
compiler to adhere to the standard

● By default some compiler do not adhere to it:
you have to force them to adhere..

Compiler IEEE flagsCompiler IEEE flags

● Gnu suite:
● -ffloat-store

 .. a few programs rely on the precise definition of IEEE floating point. Use
-ffloat-store for such programs, after modifying them to store all pertinent
intermediate computations into variables.

● PGI:

 -Kieee -Knoieee (default) Perform floating-point
operations in strict conformance with the IEEE 754 standard. Some
optimizations are disabled with -Kieee, and a more accurate math library is
used. The default -Knoieee uses faster but very slightly less accurate methods.

● intel:

 -mp Maintains floating-point precision (while disabling some
optimizations). The -mp option restricts optimization to maintain declared
precision and to ensure that floating-point arithmetic conforms more closely to
the ANSI* and IEEE standards. This is the same as specifying -fltconsistency or
-mieee-fp.

●

final tip #1: be careful on final tip #1: be careful on
 float -> integer conversion float -> integer conversion

● FP numbers converted in integer number can
lead to overflow/underflow ...

 horrible story #2 :horrible story #2 :
 Data conversion Data conversion

● On 4 June 1996, the Ariane 5 launcher ended in a failure. Only about
40 seconds after initiation of the flight sequence, exploded.

● The failure of the Ariane 501 was caused by the complete loss of
guidance and attitude. This loss of information was due to specification
and design errors in the software of the inertial reference system.

● The internal SRI* software exception was caused during execution of a
data conversion from 64-bit floating point to 16-bit signed integer
value.

● The floating point number which was converted had a value greater

than what could be represented by a 16-bit signed integer.
http://www.ima.umn.edu/~arnold/disasters/arian
e.html

Final tip #2 : single vs double Final tip #2 : single vs double
precisionprecision

● Storing low-precision data as float is fine, but
generally not recommended to use float for
computations

– Float has less than half the precision of double

– Using double intermediates greatly reduces the risk
of roundoff problems polluting the answer

– Round double value back to float to give a float
result

● Extra internal precision is ablative armor
against roundoff problems

the last slide the last slide

● There are many situations in floating-point calculations that can generate
results that are surprising to the programmer. There are four general rules that
should be followed:

● 1. In a calculation involving both single and double precision, the result will not
usually be any more accurate than single precision. If double precision is
required, be certain all terms in the calculation, including constants, are
specified in double precision.

● 2. Never assume that a simple numeric value is accurately represented in the
computer. Most floating-point values can't be precisely represented as a finite
binary value.

● 3. Never assume that the result is accurate to the last decimal place. There
are always small differences between the "true" answer and what can be
calculated with the finite precision of any floating point processing unit.

● 4. Never compare two floating-point values to see if they are equal or not-
equal. This is a corollary to rule 3. There are almost always going to be small
differences between numbers that "should" be equal. Instead, always check to
see if the numbers are nearly equal. In other words, check to see if the
difference between them is very small or insignificant.

References on Floating Point ArithmeticReferences on Floating Point Arithmetic

● What Every Computer Scientist Should Know
About Floating-Point Arithmetic, by David
Goldberg, published in the March, 1991 issue of
Computing Surveys. Copyright 1991

● Available as link on our wiki
● Prof. Kahan’s “Lecture Notes on IEEE 754”

– www.cs.berkeley.edu/~wkahan/ieeestatus/ieee7
54.ps

● Prof. Kahan’s “The Baleful Effects of
Computer Benchmarks on Applied Math,
Physics and Chemistry
– www.cs.berkeley/~wkahan/ieee754status/baleful

.ps

Final citation Final citation

“It makes me nervous to fly on airplanes since I
know they are designed using floating-point
arithmetic.”

 A. Householder
● Any questions ?

