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● How to represent numbers on a computers.
● IEEE floating point formats
● Floating point arithmetic
● Few misconception about FP 
● Pitfalls of FP arithmetic 
● Role of the compilers in this game 
● Some final tips to avoid (known) problems 



  

Reality = real numbersReality = real numbers

● Real number =  unlimited accuracy
● How can we store a number on a 

computer ? 
– Binary coded decimal (BCD)

– Rational Numbers

– Fixed Point

– Floating point 



  

Floating-point representationFloating-point representation

 floating numbers are stored using a kind of scientific 
notation.

 mantissa * 2exponent

 We can represent floating-point numbers with three binary 
fields: a sign bit s, an exponent field e, and a fraction field f.

 The IEEE 754 standard defines several different precisions.
— Single precision numbers include an 8-bit exponent field 

and a 23-bit fraction, for a total of 32 bits.
— Double precision numbers have an 11-bit exponent field 

and a 52-bit fraction, for a total of 64 bits.

fes



  

IEEE 754 standard for  FP  IEEE 754 standard for  FP  
● Macheps = Machine epsilon = 2 -#significand bits =  relative error 

in each operation 

● OV = overflow threshold  = largest number

● UN = underflow threshold = smallest number 

— In comparison, the range of possible 32-bit integers in two’s 
complement are only -231 and (231 - 1)

— How can we represent so many more values in the IEEE 754 format, 
even though we use the same number of bits as regular integers?



  

 There aren’t more IEEE numbers.
 With 32 bits, there are 232-1, or about 4 billion, different bit 

patterns.
— These can represent 4 billion integers or 4 billion reals.

— But there are an infinite number of reals, and the IEEE format can only 
represent some of the ones from about -2128 to +2128.

— Represent same number of values between 2n and 2n+1 as 2n+1 and 2n+2 

 Thus, floating-point arithmetic has “issues”
— Small roundoff errors can accumulate with multiplications or exponentiations, 

resulting in big errors.

— Rounding errors can invalidate many basic arithmetic principles such as the 
associative law, (x + y) + z = x + (y + z).

 The IEEE 754 standard guarantees that all machines will 
produce the same results—but those results may not be 
mathematically correct!

FinitenessFiniteness
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density of FP numbers.. density of FP numbers.. 

● Because the same number of bits are used 
to represent all normalized numbers, the 
smaller the exponent, the greater the 
density of representable numbers. 

● For example, there are approximately 
8,388,607 single-precision numbers 
between 1.0 and 2.0, while there are only 
about 8191 between 1023.0 and 1024.0.

● this means that for large numbers (both 
positive and negative) there are very few 
FP numbers to play with.. 



  

Floating Point ArithmeticFloating Point Arithmetic
● Representable numbers:

– The way the numbers are stored 
● Operations: (The way the number are handled)

– arithmetic: +,-,x,/,...   

– comparison (<, =, >)

– conversion between different formats - short to long FP 
numbers, FP to integer, etc.

– exception handling - what to do for 0/0, 
2*largest_number, inexact etc.

– binary/decimal conversion - for I/O, when radix is not 
10.

● Language/library support is required for all these 
operations.



  

error handlingerror handling
● What happens when the “exact value” is not a real 

number, or too small or too large to represent  
accurately? 

● Five exceptions: 

– Overflow - exact result > OV, too large to represent. 

–  Underflow - exact result nonzero and < UN, too small 
to represent. 

– Divide-by-zero - nonzero/0. 

– Invalid - 0/0, sqrt(-1), …

– Inexact - you made a rounding error (very common!). 
● Possible responses 

– Stop with error message (unfriendly, not default). 

– Keep computing (default, but how?).



  

rounding problemrounding problem

● Many operations among floating point does 
not end in a floating point...

● IEEE 754 defines the way to handle this:
– Take the exact value, and round it to the nearest 

floating point number (correct rounding). 

– Break ties by rounding to nearest floating point  
number whose bottom bit is zero (rounding to  
nearest even). 

– Other rounding options also available (up, down, 
towards 0). 



  

Floating Point Arithmetic: A Little HistoryFloating Point Arithmetic: A Little History

● 1960s-1970s: Each computer handled FP arithmetic 
differently:

– Format, accuracy, rounding mode and exception handling 
all differed.

– It was very difficult to write portable and reliable technical 
software.

● 1982: IEEE-754 standard defined.  First 
implementation: Intel 8087.

● 1985 the IEEE 754 standard was adopted.

– Having a standard at least ensures that all compliant 
machines will produce the same outputs for the same 
program.

● 2000: IEEE FP arithmetic is now almost universally 
implemented in general purpose computer systems.



  

Fortran/C intrinsic data types for IEEE Fortran/C intrinsic data types for IEEE 
standards standards 

● Fortran:
– REAL*4 / REAL (32 bit ) 

– REAL*8 /DOUBLE PRECISION (64 bit) 

– REAL*16/ QUADRUPLE PRECISION (128 bit: not 
always present and implemented)

● C/C++
– Float  (32 bit )

– Double  (64 bit)

– Double extended   (80 bit  on all commodity 
hardware (INTEL/AMD etc) 



  

Misconception 1 Misconception 1 
● Floating-point arithmetic is fuzzily defined, 

programs involving  floating-point should not be 
expected to be deterministic. 

– Since 1985 there is a IEEE standard for floating-point 
arithmetic. 

– Everybody agrees it is a good thing and will do his 
best to comply 

– ... but full compliance requires more cooperation 
between  processor, OS, languages, and compilers 
than the world is able to provide. 

– Besides full compliance has a cost in terms of 
performance. 

● Floating-point programs are deterministic, but 
should not be expected to be spontaneously 
portable...



  

Misconception 2Misconception 2

● I need 3 significant digits in the end, a double 
holds 15 decimal digits,  therefore I shouldn’t 
worry about precision. 

 ⊖ You can destroy 14 significant digits in one 
subtraction 

 ⊖ it will happen to you if you do not expect it 

 ⊕ It is relatively easy to avoid if you expect it 



  

Misconception 3Misconception 3

● All floating-point operations involve a 
(somehow fuzzy) rounding error. 
– Many are exact, we know who they are and we 

may even force them into our programs 

– Since the IEEE-754 standard, rounding is well 
defined, and  you can do maths about it 



  

PITFALL: addition is not associativePITFALL: addition is not associative

EXERCISE ON SUM NUMBERS IN THE LAB #2 



  

PITFALL: cancellation PITFALL: cancellation 

● Cancellation: if you subtract numbers which 
were very close 

    (example: 1.2345e0 - 1.2344e0 = 1.0000e-4) 
– you loose significant digits (and get meaningless 

zeroes) 

– although the operation is exact! (no rounding 
error) 

● Problems may arise if such a subtraction is 
followed by multiplications or divisions 

● You may get meaningless digits in your result 



  

PITFALL: some numbers are not exactly PITFALL: some numbers are not exactly 
representable.. representable.. 

● 1/3 is not  exactly representable
● 0.01 is NOT  exactly representable
● Question to be answered during lab 2

– how many 1/N (inverse) are not exactly 
representable in the range [1, 100] ?

EXERCISE ON INVERSE S IN THE LAB #2 



  

so do not expect exact results..so do not expect exact results..

 
0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+
0.1 != 1.0
– The literal "0.1" doesn’t equal 0.1

– Limited precision of floating-point implies 
roundoff

● More generally, exact results also fail from
– Limited range (overflow, underflow)

– Special values



  

horrible story #1  0.10horrible story #1  0.10
● During the Gulf War in 1991, a U.S. Patriot missile failed to intercept 

an Iraqi Scud missile, and tens of peoples were killed.
● A later study determined that the problem was caused by the 

inaccuracy of the binary representation of 0.10.
– The Patriot incremented a counter once every 0.10 seconds.
– It multiplied the counter value by 0.10 to compute the actual time.

● However, the (24-bit) binary representation of 0.10 actually 
corresponds to 0.099999904632568359375, which is off by 
0.000000095367431640625.

● This doesn’t seem like much, but after 100 hours the time ends up 
being off by 0.34 seconds—enough time for a Scud to travel 500 
meters!

http://www.mc.edu/campus/users/travis/syllabi/38
1/patriot.htm



  

What about compilers ?What about compilers ?

● IEEE754 standard defines how FP are to be 
performed

● compilers which translates our high level 
language (fortran/C)  to assembler is 
responsible to generate IEEE-compliant code 

● compilers should respect the semantic of the 
language. 



  

About the semantic..About the semantic..

● the semantic of most recent languages is to 
respect your parentheses: 

● if you write (a + b) + c the compiler should 
not replace it with  a + (b + c ), unless it can 
prove that both computations always yield the 
same result.  Even if it would be faster! 

● if you write r := b - ((a + b)- a) ;  the compiler 
shouldn’t replace it with r:=0 ; 



  

Again on compilers Again on compilers 

● There are generally specific flags to force the 
compiler to adhere to the standard

● By default some compiler do not adhere to it: 
you have to force them to adhere.. 



  

Compiler IEEE flagsCompiler IEEE flags

● Gnu suite:
● -ffloat-store        

  .. a few programs rely on the precise definition of IEEE floating point.  Use 
-ffloat-store for such programs, after modifying them to store all pertinent 
intermediate computations into variables.

● PGI:

    -Kieee -Knoieee (default)    Perform floating-point 
operations in strict conformance with the IEEE 754 standard.  Some 
optimizations are disabled with -Kieee, and a more accurate math library is 
used.  The default -Knoieee uses faster but very slightly less accurate methods.

● intel:

    -mp    Maintains  floating-point  precision  (while disabling some 
optimizations). The -mp option restricts optimization to maintain declared 
precision and to ensure that floating-point arithmetic conforms more closely  to 
the ANSI* and IEEE standards.  This is the same as specifying -fltconsistency or 
-mieee-fp.

●



  

final tip #1: be careful on final tip #1: be careful on 
          float -> integer conversion          float -> integer conversion

● FP numbers converted in integer number can 
lead to overflow/underflow ...



  

          horrible story #2 :horrible story #2 :
      Data conversion      Data conversion

● On 4 June 1996, the Ariane 5  launcher ended in a failure. Only about 
40 seconds after initiation of the flight sequence,  exploded.

● The failure of the Ariane 501 was caused by the complete loss of 
guidance and attitude. This loss of information was due to specification 
and design errors in the software of the inertial reference system.

● The internal SRI* software exception was caused during execution of a 
data conversion from 64-bit floating point to 16-bit signed integer 
value. 

● The floating point number which was converted had a value greater 

than what could be represented by a 16-bit signed integer. 
http://www.ima.umn.edu/~arnold/disasters/arian
e.html



  

Final tip #2 :   single vs double Final tip #2 :   single vs double 
precisionprecision

● Storing low-precision data as float is fine, but 
generally not recommended to use float for 
computations

– Float has less than half the precision of double

– Using double intermediates greatly reduces the risk 
of roundoff problems polluting the answer

– Round double value back to float to give a float 
result

● Extra internal precision is ablative armor 
against roundoff problems



  

the last slide the last slide 

● There are many situations  in floating-point calculations that can  generate 
results that are surprising to the programmer. There are four general rules that 
should be followed:

● 1. In a calculation involving both single and double precision, the result will not 
usually be any more accurate than single precision. If double precision is 
required, be certain all terms in the calculation, including constants, are 
specified in double precision.

● 2. Never assume that a simple numeric value is accurately represented in the 
computer. Most floating-point values can't be precisely represented as a finite 
binary value.

● 3. Never assume that the result is accurate to the last decimal place. There 
are always small differences between the "true" answer and what can be 
calculated with the finite precision of any floating point processing unit.

● 4. Never compare two floating-point values to see if they are equal or not- 
equal. This is a corollary to rule 3. There are almost always going to be small 
differences between numbers that "should" be equal. Instead, always check to 
see if the numbers are nearly equal. In other words, check to see if the 
difference between them is very small or insignificant.



  

References on Floating Point ArithmeticReferences on Floating Point Arithmetic

● What Every Computer Scientist Should Know 
About Floating-Point Arithmetic, by David 
Goldberg, published in the March, 1991 issue of 
Computing Surveys. Copyright 1991

● Available as link on our wiki 
● Prof. Kahan’s “Lecture Notes on IEEE 754”

– www.cs.berkeley.edu/~wkahan/ieeestatus/ieee7
54.ps

● Prof. Kahan’s “The Baleful Effects of 
Computer Benchmarks on Applied Math, 
Physics and Chemistry
– www.cs.berkeley/~wkahan/ieee754status/baleful

.ps



  

Final citation Final citation 

“It makes me nervous to fly on airplanes since I 
know they are  designed using floating-point 
arithmetic.” 

                                     A. Householder 
● Any questions ? 


