GUÍA 1 ANÁLISIS

1

En el espacio vectorial $\mathbb R$ se define la función

$$d: \mathbb{R} \times \mathbb{R} \to [0, \infty), \quad d(x, y) := |x^3 - y^3|.$$

- (a) Probar que d es una distancia.
- (b) Mostrar que no existe una norma $\|\cdot\|$ en $\mathbb R$ tal que

$$d(x, y) = ||x - y||, \quad \forall x, y \in \mathbb{R}.$$

2

En cada conjunto $E \neq \emptyset$ se considera la métrica discreta:

$$\delta(x, x) = 0$$
, $\delta(x, y) = 1$ si $x \neq y$.

- 1. De verdad δ es una métrica.
- 2. Con respecto a esta métrica se tiene

$$B(x;r) = \{x\} \text{ si } 0 < r \le 1, \qquad B(x;r) = E \text{ si } r > 1.$$

- 3. Cada subconjunto de E es abierto (la topología generada por δ es la topología discreta).
- 4. Supongamos que E es un espacio vectorial de dimensión $n \ge 1$. Entonces δ no es definida por una norma.

3

Se define

$$d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+, \quad d(x, y) := |e^x - e^y|.$$

- ullet Muestre que d es una distancia.
- Existe una norma $\|\cdot\|$ en el espacio vectorial $\mathbb R$ tal que $d(x,y)=\|x-y\|$ para todos los elementos $x,y\in\mathbb R$?

4

Dar tres (otros) ejemplos de distancias en $E = \mathbb{R}^n$ que no son definidas por normas.

5

Mostrar que $\|\cdot\|_{\infty}$ es una norma en C([a,b]) .

6

El espacio vectorial real C([0,1]) no tiene dimensión finita.

7

Sea X un espacio vectorial sobre $\mathbb C$ y $\langle\cdot,\cdot\rangle:X\times X\to\mathbb C$ una forma sesquilineal.

• Muestre la identidad de polarización:

$$4\langle x,y\rangle = \sum_{k=0}^{4} i^k \langle x+i^k y, x+i^k y \rangle , \quad \forall x,y \in X.$$

- Muestre que $\langle \cdot, \cdot \rangle$ es simétrica si y solo si $\langle x, x \rangle \in \mathbb{R}$ para cada $x \in X$.
- Qué sucede en el caso real?

8

Sea $(X, \langle \cdot, \cdot \rangle)$ un espacio vectorial complejo con producto escalar. Se preserva la misma adición, se define la nueva multiplicación con escalares

$$\alpha \bullet x := \overline{\alpha} x$$

y la función

$$\langle \cdot, \cdot \rangle_{\bullet} : X \times X \to \mathbb{C} , \quad \langle x, y \rangle_{\bullet} := \langle y, x \rangle .$$

 $\text{Muestre que } \left(X, \langle \cdot, \cdot \rangle_{\bullet} \right) \text{ es un (nuevo) espacio con producto escalar. Se llama } \textit{el opuesto del espacio } \left(X, \langle \cdot, \cdot \rangle\right).$

9

Sean x, y elementos de E, espacio con producto escalar $\langle \cdot, \cdot \rangle$ y norma asociada $\| \cdot \|$.

Se tiene ||x+y|| = ||x|| + ||y|| si y solo si y = 0 o $x = \lambda y$ para un $\lambda \ge 0$.

10

El producto escalar $\langle \cdot, \cdot \rangle : E \times E \to \mathbb{K}$ es una función continua.

La adición y la multiplicación con escalares son funciones uniformemente continuas.

11

Sean $\langle \cdot, \cdot \rangle_1$ y $\langle \cdot, \cdot \rangle_2$ dos productos escalares definidos en el espacio vectorial E. Es $\langle \cdot, \cdot \rangle$ dado por

$$\langle x, y \rangle := \langle x, y \rangle_1 + \langle x, y \rangle_2$$

un producto escalar?

12

Sea $(E, \|\cdot\|)$ un espacio normado. Si cada subespacio de dimensión 2 de E es un espacio con producto escalar, entonces E es un espacio con producto escalar.

13

En el espacio vectorial c_F , para cada $p \in [1, \infty)$, se define

$$\|(\alpha_n)_{n\in\mathbb{N}}\|_p := \left(\sum_n |\alpha_n|^p\right)^{1/p}.$$

Si $p = \infty$ se pone

$$\|(\alpha_n)_{n\in\mathbb{N}}\|_{\infty} := \sup_{n\in\mathbb{N}} |\alpha_n|.$$

- Cada $\|\cdot\|_p$ es une norma.
- La norma $\|\cdot\|_p$ corresponde a un producto escalar si y solo si p=2 .

14

Un semi-producto escalar en el espacio vectorial E se define como el producto escalar, pero el subespacio vectorial $E_0 := \{x \in E \mid \langle x, x \rangle = 0\}$ puede no ser trivial. Muestre que E/E_0 tiene un producto escalar natural.

15

Completando un espacio con producto escalar, se consigue un espacio de Hilbert.

16

Verifique que $l^2(I)$ es un espacio de Hilbert.

17

En un espacio con producto escalar se tiene

$$\|\,x\,\| = \sup_{\|y\|=1} |\,\langle x,y\rangle\,| = \sup_{\|y\|\leq 1} |\,\langle x,y\rangle\,|\,, \quad \, \forall\,x\in E\,.$$

18

Sea \mathcal{H} un espacio de Hilbert sobre \mathbb{R} .

Demuestre que hay un espacio de Hilbert \mathcal{K} sobre \mathbb{C} (la *complexificación* del \mathcal{H}) y una aplicación $U: \mathcal{H} \to \mathcal{K}$ tal que:

- U es lineal,
- $\langle Uh_1, Uh_2 \rangle_{\mathcal{K}} = \langle h_1, h_2 \rangle_{\mathcal{H}}$ para todos h_1, h_2 en \mathcal{H} ,
- para cualquier k en K existen y son unicos h_1, h_2 en H tal que $k = Uh_1 + iUh_2$.

19

Si $\{h_n \mid n \in \mathbb{N}\}$ es una sucesión en un espacio de Hilbert \mathcal{H} tal que $\sum_n \|h_n\| < \infty$, entonces demuestre que $\sum_{n=1}^\infty h_n$ converge en \mathcal{H} .