
Transformación en levaduras

o El primer reporte de transformación en hongos fue en el año 1973 en el laboratorio de E.L. Tatum en la Universidad de Rockefeller y la especie fue Neuropora crassa inl-.

Procedimientos para la Transformación

Preparación de las células

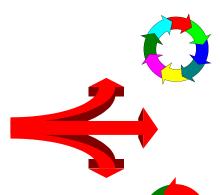
Protoplastos Glucuronidasa Zimoliasa Sales de Litio Acetato de Litio Electroporación Dependiente del Aparato

El tipo de transformación depende del vector

o Principales vectores:

o Integrativos: Ex. YIp5

o Replicativos

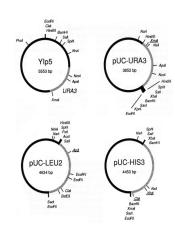

o a) Episómicos : YEp13

o b) Autónomos: YRp7

o Centroméricos : YCp50

o Lineales : YLp

o Cromosomas Artificiales YAC



\bullet

Vectores de Integración

- Los vectores de integración se caracterizan porque sólo llevan un gen estructural de Saccharomyces cerevisiae en un vector bacteriano.
- o Ej. YIp5

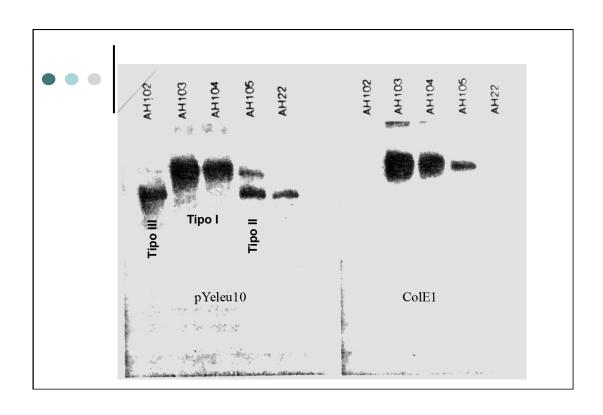
• • •

Vectores replicativos

- Los vectores replicativos se caracterizan por tener un origen de replicación que puede ser un ARS o un ori del plásmido 2μ de Sacharomyces cerevisiae
- o Ex: YRp7; YEp13

Reemplazo de genes en Saccharomyces

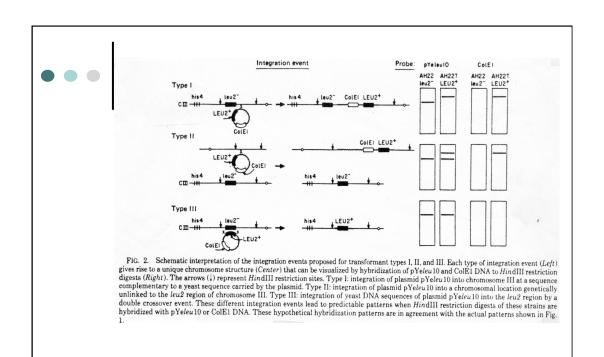
Vectores centroméricos


- Se caracterizan porque llevan un replicador, un gen marcador y un centrómero.
- Transforman en alta frecuencia y se mantienen en bajo número de copias por célula

Propiedades de la Transformación de levaduras

	Chromosomal integration	Gene conversion	Episomal replicator	Chromosomal replicato:	Mini- chromosome	Linear DNAs
Vector	1	1	E	R	C	1
Transformation frequency	10	1	10,000	10,000	10,000	10.000
Autonomous replication	None	None	Circular	Circular	Circular	Linear
Copies per cell	1	1	5-40	3-30	1	5-30
Vector sequences	Yes	No	Yes	Yes	Yes	Yes
Integration frequency	1	1	Variable	10-5	10-7	NT
Required elements	Yeast	Yeast			ARS	ARS
	DNA	DNA	2µ ARS	ARS	CEN	TEL
Mitotic loss	0.1%	0	30%	30%	1%	30%
Meiotic loss	1-10%	0	90%	90%	30%	90%

Each column represents a particular mode of yeast transformation. To use their distinct properties, yeast shuttle vectors were developed; for simplicity they are categorized as 1, E, R, C and L. It should be noted that these distinctions, being somewhat arbitrary, break down in complex situations. The transformation frequency is measured in colonies per µg of transforming DNA. In cases involving high rates of mitotic loss, the number of copies per cell represents an average. Except for 1 vectors, the integration frequency is calculated as events per generation; for 1 vectors, the frequency of 1 indicates that all transformation events require integration. (Chromosomal integration of E vectors is discussed in refs 14, 94 and 95.) Mitotic loss is measured on a per generation basis. Meiotic loss is determined by tetrad analysis and thus the values also reflect mitotic instability. CEN, centromeric DNA: TEL, telomeric DNA: NT, not tested.

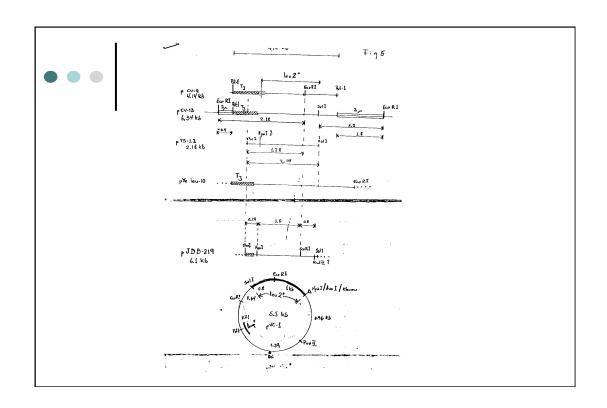


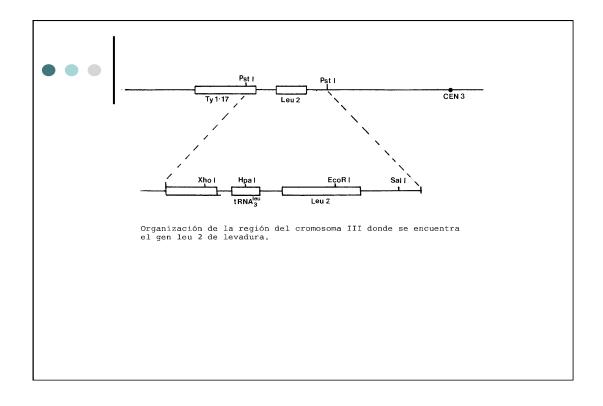
			leu2-his	4		eu2-trp	1	
		PD	NPD	TT	PD	NPD	TT	_
	Expected	50	<1	50	45	45	10	
	Observed:							
Ligados	AH-102 × MC-333	18	0	22	17	22	10	10% Ligados al centrómero
	.7% AH-103 × MC-333	17	1	15	17	16	6	7.7% 1:1<4
20	.7% AH-104 × MC-333	31	0	22	27	25	6	5.2%
No ligados	ATT 105 × MO 000	•						
.vo ilgadoo	These data represen mants (LEU2+ his4- HIS4+ trp1- met8-).1 a ratio parental ditype (TT) of 1:0.01:0.7, ind	n nont	+ METS ransform nonpare	8+) by ned stra ental di	strain ains, hi itype ()	MC333 s4 and le NPD)/te	(leu2 u2 giv tratyp	e e

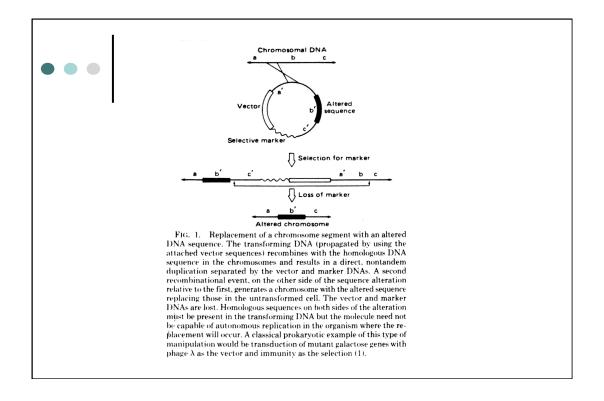
Table 2. Segregation of LEU2+ in transformants × wild type (S288C) crosses

		Leu+:Leu-			
		4:0	3:1	2:2	
	Expected:	DP	TT	DNP	
	New Leu ⁺ at leu2 New Leu ⁺	100	0	0 .	
	unlinked to leu2	17	66	17	
	Observed:				
	AH-102 × S288C	41	0	0	
igados:	$AH-103 \times S288C$	38	2	0	2.5%
yau0s:	AH-104 × S288C	42	2	0	2.3%
	AH-105 × S288C	4	19	6	53.0%

All strains used in these crosses are phenotypically Leu⁺. The appearance of Leu⁻ segregants therefore means that the original leu2 region of the recipient is still present in the transformed strain. The frequency of Leu⁻ segregants (3:1 and 2:2 asci) is a measure of the linkage between the old $leu2^-$ region and the new $LEU2^+$ region introduced by transformation. In the last three crosses, the $leu2^-$ region was clearly present. In the second and third crosses, $LEU2^+$ and $leu2^-$ were closely linked, whereas in the last cross they segregated independently.

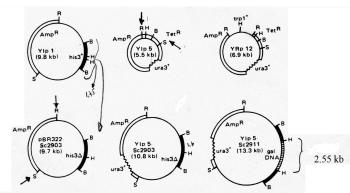
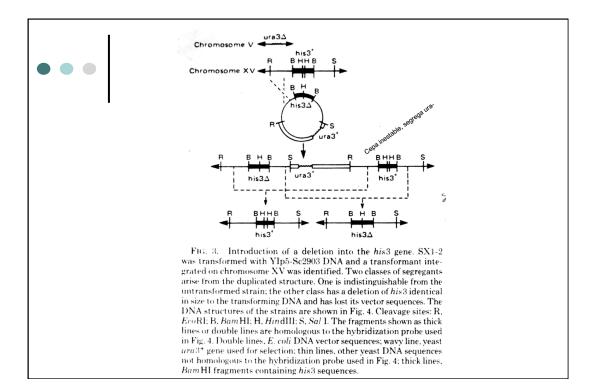
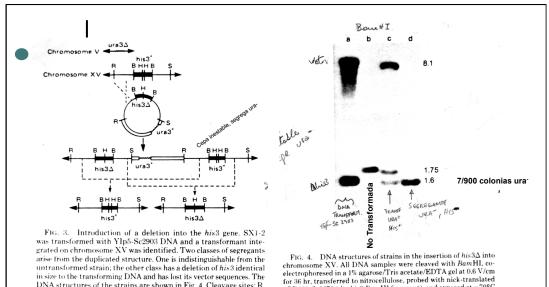
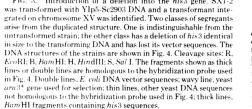
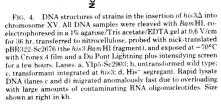


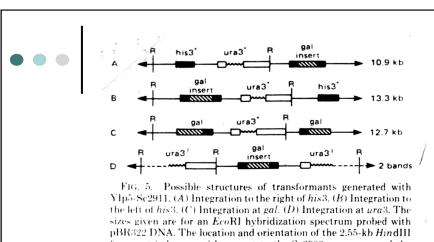

Table 1. Segregation of Markers *leu2*, *his.3*, *ade2*, and the Mating Type Locus (MAT) in Genetic Crosses

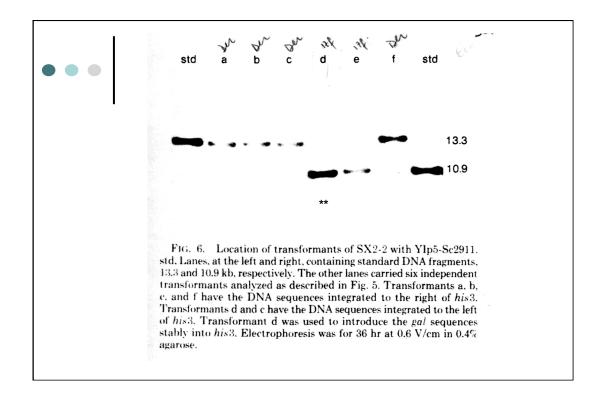

				(a)	Nor	mal	arrangement				
	1	iis3-	leu2		le	2u2-1	MAT			his3-	ade2
P	N	T		P	N	T		P	N	T	
12	16	38	(unlinked)	31	1	37	(linked)	31	1	72	(linked)
			(b) L	EU2+ :	Tran	spose	ed to chromoso	me XV	,		
	1	is3-	leu2		le	12-A	MAT			leu2-	ade2
P	N	T		P	N	T		P	N	T	
74	0	0	(linked)	11	13	50	(unlinked)	20	3	54	(linked)
			(c) F	HIS3+	Tran:	spose	ed to chromosor	ne III			
	F	is3-	leu2		h	is3-A	MAT		1	his3-	ade2
P	N	T		P	N	T		P	N	T	
70	0	2	(linked)	26	0	30	(linked)	7	10	47	(unlinked

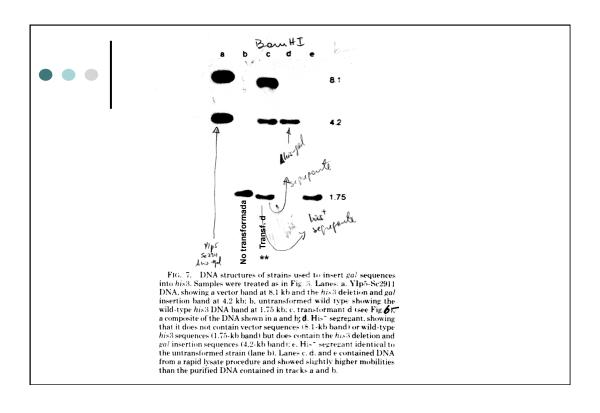
Numbers shown here represent the types of meiotic tetrads obtained for each pair of markers. Genetic linkage is determined by the ratios of parental (P), nonparental (N), and tetratype (T) arrangements of the markers in these tetrads. Linked genes yield an excess of parental over nonparental segregants (e.g., leu2-MAT in a); P:N:T ratios approaching 1:1:4 indicate no linkage between markers.

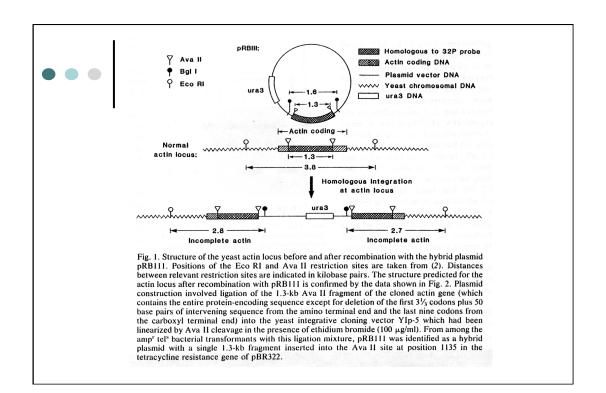
(a) Crosses involving normal (untransformed) strains of genotypes MATaleu2his3× MATade2; leu2 is linked to MAT on chromosome III, and his3 and ade2 are linked on chromosome XV. In b, a strain transformed to LEU2* was crossed with a normal strain: MATaleu2his3(LEU2*) × MATaleu2ade2. Tetrad data from this cross clearly show that the newly introduced LEU2* allele resides at the his3 locus linked to ade2 on chromosome XV. Conversely, c demonstrates the integration of a HIS3* allele at the leu2 locus on chromosome III This cross is of the type MATaleu2(HIS3*)his3* × MATahis3ade2.

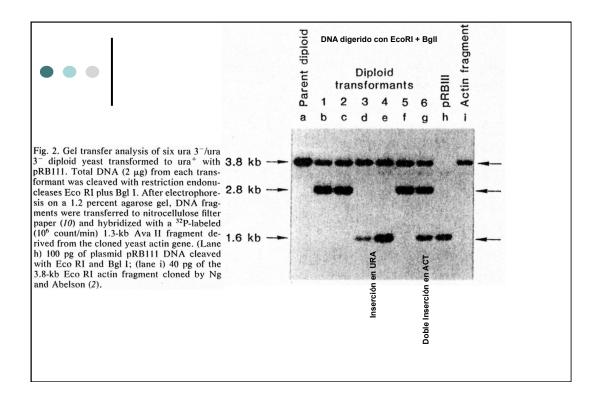
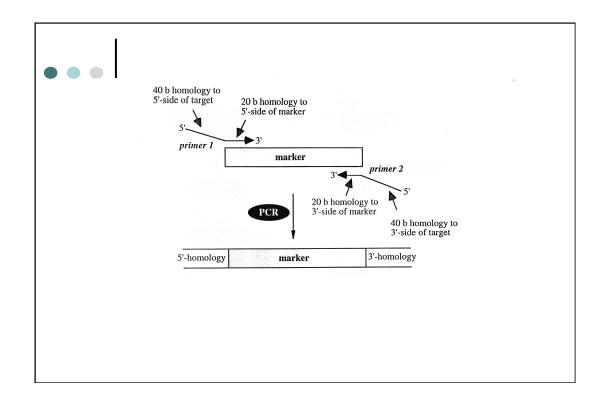
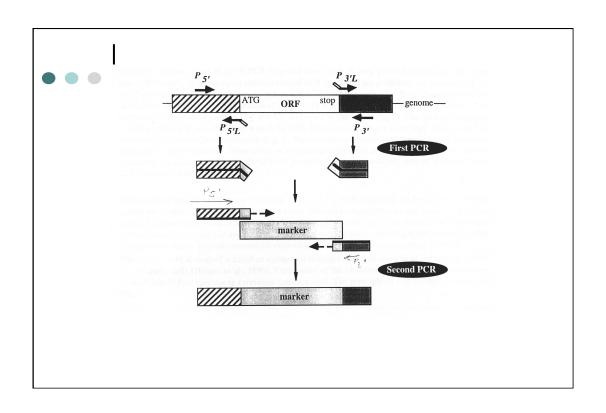
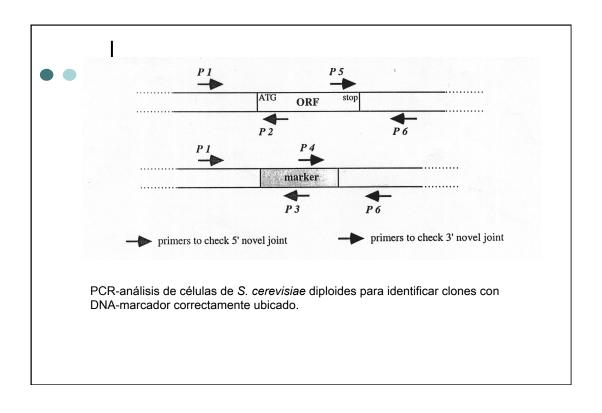

Fig. 2. Structures of plasmids used in these experiments. Ylpl contains 6.1 kilobases (kb) of DNA from the his3 region of yeast replacing a portion of the tetracycline-resistance genes of pBR322 (3). The his3 gene is contained within the 1.75-kb BamHl fragment (8). Ylp5 has a 1.1-kb fragment containing the ura3 gene inserted by 4G/dC homopolymer extensions into the Arc 1 site of pBR322 (3). Genotypes and DNA structures of the plasmids constructed for this work were verified by transformation of appropriate E. coli strains and preparation of small quantities of DNA by a sodium dodecyl sulfate lysis procedure similar to that used for phage λ (14). Cleavage sites: R, EcoRt: B, BamHl: H. HindIll: S, 3al I. Double lines, pBR322 DNA sequences; wavy lines, yeast ura3* gene; thick lines, yeast his3 DNA sequences; striped bar, gal DNA; thin lines, other yeast DNA sequences.

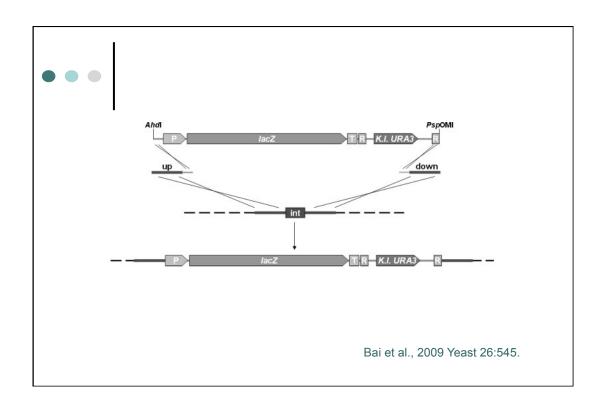


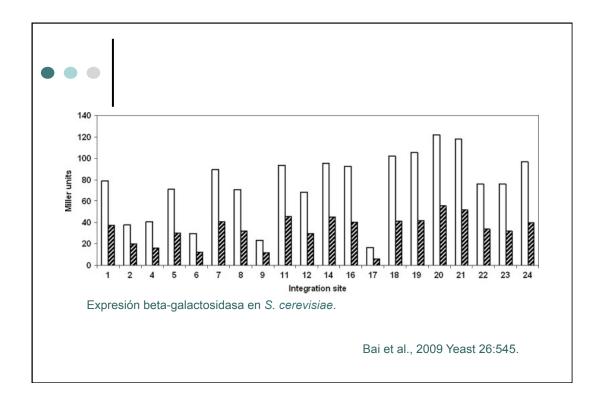


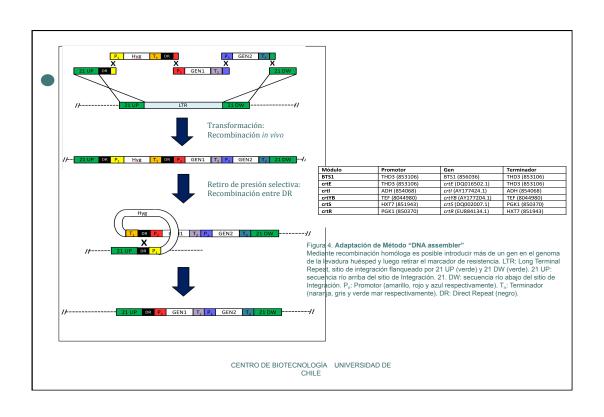


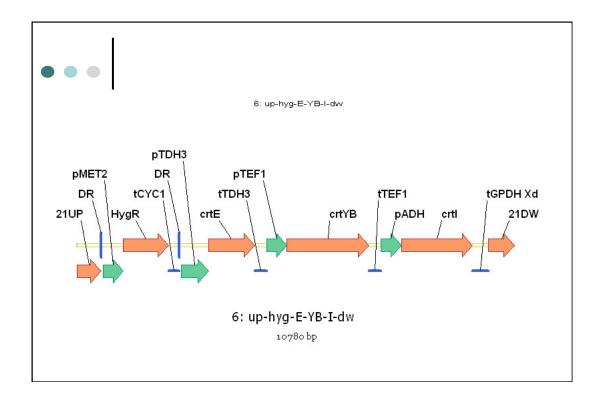
fragment is known with respect to the Sc2903 sequences and the neighboring EcoRI sites at gal. Clones in both orientation have been constructed. The orientation used here gives more easily resolved DNA fragments. Thick lines, his 3 BamHI DNA fragment sequences (Sc2676); striped bar, gal DNA; wavy line, ura3 DNA; double line, pBR322 DNA; thin unbroken lines, other yeast DNA segments of known size; thin broken lines, yeast DNA sequences adjacent to the ura 3 gene of undetermined size.

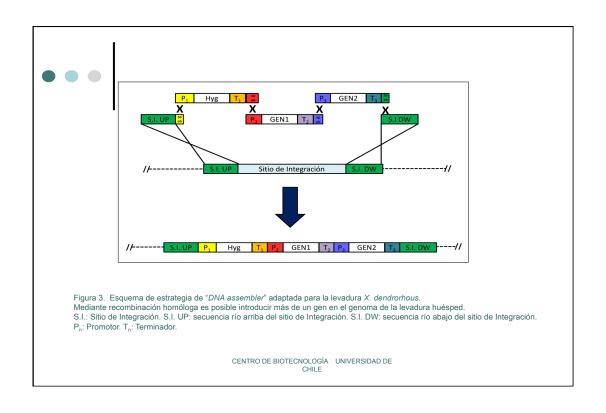





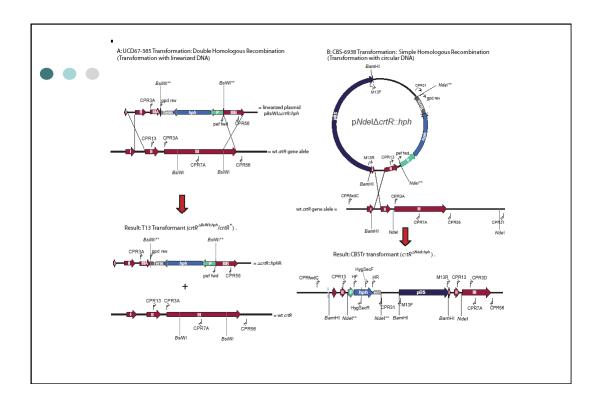

Table 1. Results of tetrad analysis on the six yeast diploids transformed with pRB111. Procedures for growth of cells, sporulation, micromanipulation, and scoring of genetic markers were carried out by standard methods (15).

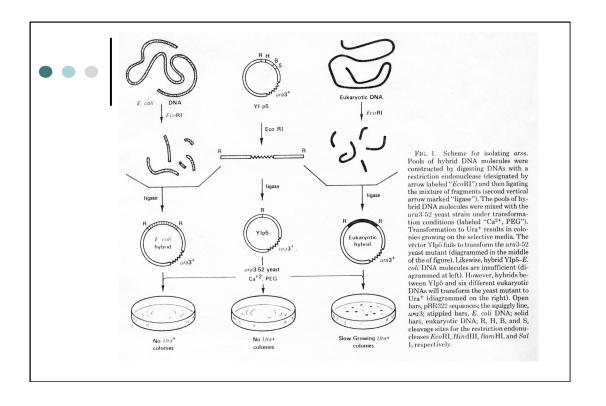

Trans- formant	Locus of	1	Ratio of spores			
tormant	inte- gration	4	3	2	1	ura+:ura
1	Actin	0	1	11	3	0:28
2	Actin	0	0	16	1	0:33
5	Actin	0	0	9	0	0:18
6	Actin	0	0	10	1	0:21
3	Ura 3	13	3	0	0	30:31
4	Ura 3	5	3	0	0	15:14

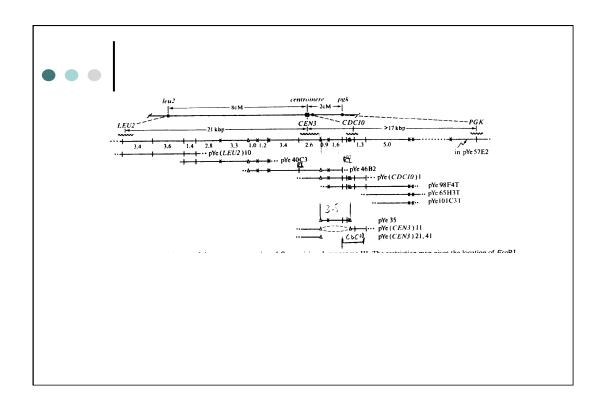


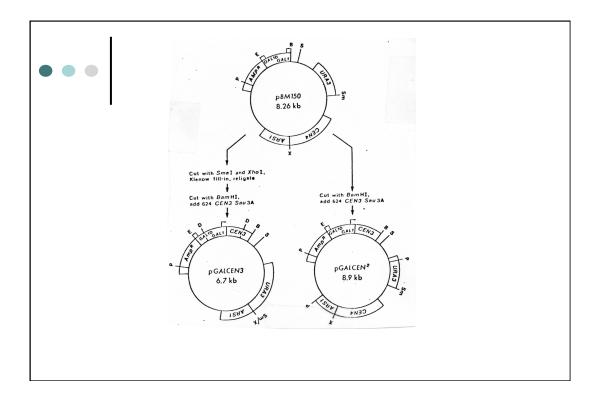


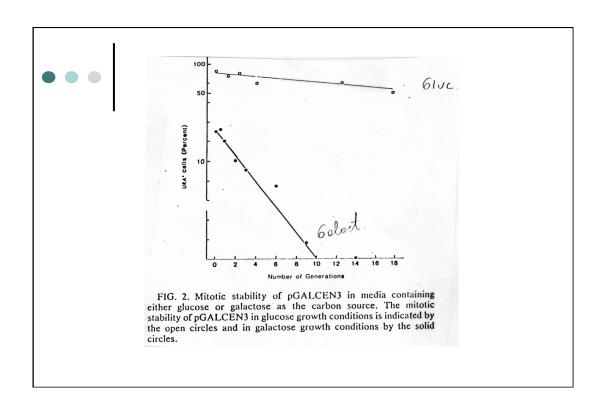


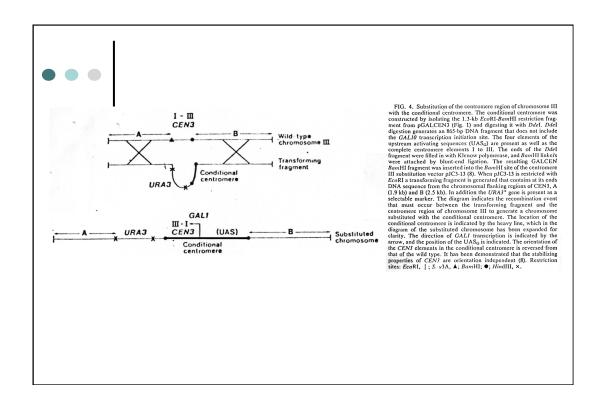


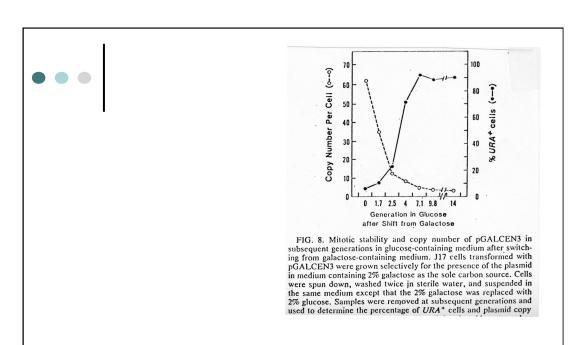


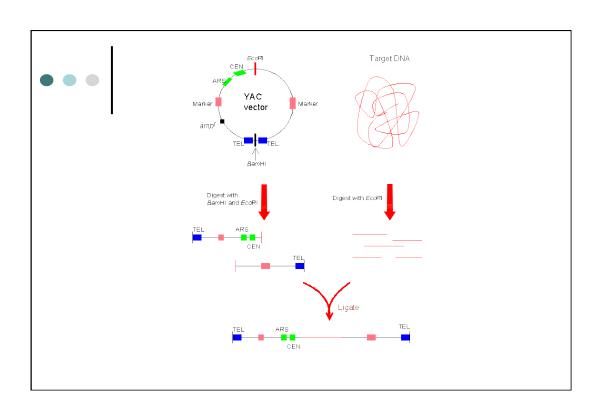

Panel cepa industrial











Strain	Carbon source	Fraction of mated cells in population		
YGALCEN3	Glucose	1.8×10^{-4}		
	Glycerol plus lactate	2.0×10^{-4}		
	Galactose (five generations)	1.8×10^{-1}		
J178-1D × J17	Glucose	3.5×10^{-4}		
	Glycerol plus lactate	4.5×10^{-4}		
	Galactose	4.7×10^{-4}		

^a Mating experiments were done to determine the frequency with which mating-competent cells arise from a diploid YGALCEN3 population cultured in various carbon sources.

