Figure 9.1 Overview:

the function of RNA
polymerase is to copy
one strand of duplex
DNA into RNA.
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ATGCGCCATGCCAGTTACGTACATGGA
TACGCGGTACGGTCAATGCATCTACCT

complementary to template strand
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| identical to coding strand

UACGCGGUACGGUCAAUGCAUCUACCU



Figure 9.2 Overview: a transcription unit is a
sequence of DNA transcribed into a single RNA,
starting at the promoter and ending at the terminator.
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RNA synthesis occurs in the transcription bubble
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Figure 9.3 DNA strands separate to form a transcripion
bubble. BNA 15 synthesized by complementary base pairng
with one of the DNA smands.



Figure 9.3 Transcription takes place in a ‘bubble’, in
which RNA is synthesized by base pairing with one
strand of DNA in the transiently unwound region. As
the bubble progresses, the DNA duplex reforms
behind it, displacing the RNA in the form of a single
polynucleotide chain.
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Figure 9.4 During transcription, the bubble is
maintained within bacterial RNA polymerase, which
unwinds and rewinds DNA, maintains the conditions
of the partner and template DNA strands, and
synthesizes RNA.

Enzyme movement

DNA coding strand

Rewinding point

Unwinding point

b

DNA template strand

Catalytic site

RNA binding site



Figure 9.6 Phosphodiester bond formation involves
a hydrophilic attack by the 3'-OH group of the last
nucleotide of the chain on the 5' triphosphate of the
incoming nucleotide, with release of pyrophosphate.
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Figure 9.8 Transcription has four stages, which
involve different types of interaction between

RNA polymerase and DNA. The enzyme binds to the
promoter and melts DNA, remains stationary during
initiation, moves along the template during elongation,
and dissociates at termination.
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Figure 9.9 Eubacterial RNA polymerases have four
types of subunit; a, B, and B’ have rather constant sizes
in different bacterial species, but o varies more widely.
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i} and [V’ subunits contact DNA and RNA
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Figure 9.17 Both the template and coding strands of DNA are
contacted by the B and B * subunits largely in the 1eg1011 of the
transcription bubble and downstream. The RNA is contacted
mostly in the transcription bubble. (Usually there is no
downstream RNA. and contacts with ENA downstream oceur
only 1 the special case when the enzyme backtracks.) (Based



Sigma factor controls specificity

Core enzyme binds to any DNA
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Figure 9.18 Core enzyme binds indiscriminately to any DNA.
Sigma factor reduces the affimity for sequence-independent
binding, and confers specificity for promoters.




Figure 9.10 RNA polymerase passes through
several steps prior to elongation. A closed binary
complex is converted to an open form and then into

a ternary complex.
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Figure 9.11 RNA polymerase initially contacts the
region from -55 to +20. When sigma dissociates, the
core enzyme contracts to —-30; when the enzyme
moves a few base pairs, it becomes more compactly
organized into the general elongation complex.
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Figure 9.12 Core enzyme and holoenzyme are
distributed on DNA, and very little RNA polymerase is
free.
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Figure 9.13 How does RNA polymerase find target
promoters so rapidly on DNA?
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Figure 9.14 Sigma factor and core enzyme recycle

at different points in transcription.
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Figure 9.15 A typical promoter has three
components, consisting of consensus sequences at
-35 and -10, and the startpoint.
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Contact binding melting
-35 -10 Start

1. RNA polymerase initially
contacts -35 sequence
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Figure 9.27 The —35 sequence 15 used for mitial recognition,
and the —10 sequence is used for the melting reaction that
converts a closed complex to an open complex.



Figure 9.16 Footprinting identifies DNA-binding sites for proteins by their protection against nicking.
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Figure 9.17 One face of the promoter contains the contact points for RNA.
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Figure 9.18 Transcription may generate more tightly
wound (positively supercoiled) DNA ahead of RNA
polymerase, while the DNA behind becomes less
tightly wound (negatively supercoiled).
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Sigma controls promoter recognition

Holoenzyme with a® recognizes
one set of promoters
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Figure 9.31 The sigma factor associated with core enzyme
determines the set of promoters where transcription 1s initiated.



Figure 9.19 E. coli
sigma factors recognize
promoters with different
consensus sequences.
(Numbers in the name of
a factor indicate its
mass.)
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Figure 9.20 A map of the E. coli ' factor identifies
conserved regions. Regions 2.1 and 2.2 contact core
polymerase, 2.3 is required for melting, and 2.4 and
4.2 contact the —10 and —35 promoter elements. The
N-terminal region prevents 2.4 and 4.2 from binding to
DNA in the absence of core enzyme.
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Figure 9.22 Period Changes in RNA polymerase Reactions
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