Séptima Guía de Ejercicios

Matemáticas II. Semestre Primavera 2010

- 1. Considere la integral impropia $\int_{1}^{\infty} \frac{1}{x^{p}} dx$, con $p \in \mathbb{R}$. Pruebe que:
 - i) Si $p \leq 1$ entonces la integral diverge.
 - ii) Si p > 1 entonces la integral converge.
- 2. Para t>0 se define la función Gamma de Euler: $\Gamma(t)=\int_{0}^{\infty}x^{t-1}e^{-x}\,dx$. Demuestre: i) $\Gamma(1)=1$. ii) $\Gamma(t+1)=t\Gamma(t)$ para todo real t>0.
 - Calcule: iii) $\Gamma(7)$. iv) $\Gamma(n)$ para n cualquier entero positivo.
- 3. Averigüe si las siguientes integrales impropias convergen o divergen. Evalúelas si es posible.

(a)
$$\int_0^\infty sen^2(x) dx$$
 (d) $\int_{-\infty}^\infty xe^{-x^2} dx$ (g) $\int_0^\infty cos(x)e^{-sen(x)} dx$

(g)
$$\int_0^\infty \cos(x)e^{-sen(x)} dx$$

(b)
$$\int_0^\infty x e^{-2x} \, dx$$

(b)
$$\int_0^\infty x e^{-2x} dx$$
 (e) $\int_3^\infty \frac{1}{\sqrt{x+1}} dx$ (h) $\int_0^\infty \frac{1}{(x-1)^2} dx$

(h)
$$\int_0^\infty \frac{1}{(x-1)^2} dx$$

(c)
$$\int_0^9 \frac{1}{(9-x)^{\frac{3}{2}}} dx$$
 (f) $\int_0^1 \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$ (i) $\int_{-\infty}^{-1} \frac{1}{x} dx$

(f)
$$\int_0^1 \frac{e^{\sqrt{x}}}{\sqrt{x}} \, dx$$

(i)
$$\int_{-\infty}^{-1} \frac{1}{x} \, dx$$

- 4. i) ¿Es correcto escribir $\int_{-\infty}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{-t}^{t} f(x) dx$?
 - ii) Pruebe que la integral $\int_{-\infty}^{\infty} x^3 dx$ diverge pero $\lim_{t \to \infty} \int_{-t}^{t} x^3 dx = 0$.

1

5. Averigüe si las siguientes integrales impropias convergen o divergen.

a)
$$\int_0^1 x \ln(4x) dx$$
 b) $\int_0^\infty \frac{1}{\sqrt{1-x^2}} dx$ c) $\int_5^{10} \frac{2}{\sqrt{x-5}} dx$

d)
$$\int_0^\infty \tan(x) \, dx \quad e$$
) $\int_{-4}^4 \frac{1}{\sqrt[3]{x}} \, dx$

6. Averigüe si las siguientes integrales impropias convergen o divergen.

$$a)\int_1^\infty \frac{x}{1+x^2} dx$$
 $b)$ $\int_0^\infty \frac{3}{e^x} dx$ $c)$ $\int_0^\infty \frac{1}{1+e^x} dx$

7. Considere la sucesión $(S_n)_{n\in\mathbb{N}}$ definida en forma recursiva por:

 $S_1 = \sqrt{2}$, $S_{n+1} = \sqrt{2 + S_n} \quad \forall n \geq 1$ Demostrar que $(S_n)_{n \in \mathbb{N}}$ está acotada superiormente por 2, es creciente y calcule $\lim_{n \to \infty} S_n$.

- 8. Se unen los puntos medios de los lados de un cuadrado de lado 10cm, obteniendo otro cuadrado. Se repite indefinidamente el proceso. Determinar la sucesión formada por los perímetros y áreas. Hallar la suma de todas las áreas.
- 9. Averigue si las siguientes sucesiones son convergentes o divergentes:

$$\mathrm{a)} \quad \left(\frac{\ln(n)}{n}\right)_{n\in\mathbb{N}} \quad b) \quad \left(\frac{3n^3}{e^{2n}}\right)_{n\in\mathbb{N}} \quad c) \quad \left(\frac{sen^2(n)}{\sqrt{n}}\right)_{n\in\mathbb{N}} \quad d) \quad \left(\frac{6n^3++n-1}{n^2+3}\right)_{n\in\mathbb{N}}.$$

10. Averigue si las siguientes sucesiones son crecientes o decrecientes. ¿Son acotadas? Si tienen límites, cálculelo.

a)
$$\left(\frac{n+8}{n}\right)_{n\in\mathbb{N}}$$
 b) $\left(\frac{3-4n^2}{n^2+1}\right)_{n\in\mathbb{N}}$ c) $\left(\frac{n+3}{n+2}\right)_{n\in\mathbb{N}}$ d) $\left(\frac{6n-1}{n+3}\right)_{n\in\mathbb{N}}$.

- 11. Decida si las afirmaciones siguientes son verdaderas o falsas. En cada caso justifique su respuesta.
 - α . Toda sucesión convergente es acotada.
 - β .— Si $(S_n^2)_{n\in\mathbb{N}}$ es convergente, entonces $(S_n)_{n\in\mathbb{N}}$ es convergente.
 - γ Si $(S_n)_{n\in\mathbb{N}}$ es convergente, entonces $(S_n)_{n\in\mathbb{N}}^2$ es convergente.
 - δ . Toda sucesión acotada es convergente.
 - ϵ . Una sucesión creciente y acotada superiormente es convergente.