2.1. Guía 2

Cálculo II Cs. Exactas 2010

1. Considere

a)
$$P_1 = \{0, 1, 1, 5, 2, 3, 3, 3\}$$
 b) $P_2 = \{-2, -0, 5, 1, 3, 4\}$ c) $P_3 = \{-\sqrt{2}, \pi/4, 1, \sqrt{3}\}$

 P_1,P_2 y P_3 son particiones de ciertos intervalos. Para cada una de ellas:

- a) Determine el intervalo del que es partición.
- b) Decida si la partición es o no regular.
- c) Encuentre la norma ||P|| de la partición (el mayor ancho de entre los subintervalos determinados por P).
- d) Exprese y calcule las sumas superiores e inferiores para la función $f(x) = x^2$.
- e) Encuentre refinamientos de estas particiones que tengan norma 0,5.
- 2. Demuestre que si f es una función acotada en un intervalo [a,b], y para cada $n \in \mathbb{N}$ se tiene la partición regular P_n de [a,b], entonces $U(f,[a,b]) = \inf\{S(f,P_n) : n \in \mathbb{N}\}$ y $L(f,[a,b]) = \sup\{s(f,P_n) : n \in \mathbb{N}\}$
- 3. Calcule las sumas superiores e inferiores para la función f en el intervalo indicado usando una partición regular en 4 subintervalos.

a)
$$f(x) = 2x + 3$$
, [1,5] b) $f(x) = \sqrt{x}$, [0,3] c) $f(x) = x^3 - 3x$, [-2,2]

- 4. Determine si es o no integrable en el intervalo [1, 5], y cuanto vale la integral, para la función $f: \mathbb{R} \to \mathbb{R}$ dada por $\forall x \in \mathbb{R}$ f(x) = 3.
- 5. Demuestre que toda función constante en un intervalo es integrable en él y exprese su integral en términos del valor constante de la función y de los extremos del intervalo.
- 6. Asuma que la función $f: \mathbb{R} \to \mathbb{R}$ dada por $\forall x \in \mathbb{R} f(x) = x + 3$ es integrable en [1,4]. Calcule sus sumas parciales y con ellas calcule la integral. Puede ser útil considerar el ejercicio 2
- 7. Asumiendo que f y g son funciones integrables en un intervalo [a,b], demuestre que la función f+g es integrable en [a,b]. Para ello, exprese las sumas superiores e inferiores en términos de las sumas superiores e inferiores de f y de g, y analice el comportamiento de los supremos e infimnos involucrados.