Universidad de Chile Programa Académico de Bachillerato Álgebra y geometría, segundo semestre 2021

Ejercicio Resuelto 3

• Determine si L_1 y L_2 se intersectan, se cruzan o son paralelas: L_1 la recta que contiene a $P = \begin{pmatrix} 1 \\ 5 \\ 3 \end{pmatrix}$ y $Q = \begin{pmatrix} 3 \\ 7 \\ 1 \end{pmatrix}$. L_2 la recta que pasa por $A = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$ y es paralela a $\vec{u} = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}$.

Solución. Para L_1 escogemos cualquier punto perteneciente a la recta como vector posición, por ejemplo P. Como vector director consideramos $d_1 = Q - P = \begin{pmatrix} 2 \\ 2 \\ -2 \end{pmatrix}$. Con esto nos queda la expresión vectorial

$$L_1: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \\ 3 \end{pmatrix} + t \begin{pmatrix} 2 \\ 2 \\ -2 \end{pmatrix}, t \in \mathbb{R}.$$

Para L_2 escogemos como vector posición el vector dado por A, y como es una recta paralela a \vec{u} , utilizamos ese mismo vector como vector director. Nos queda la forma vectorial

$$L_2: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} + s \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}, s \in \mathbb{R}.$$

Notamos inmediatamente que los vectores directores de L_1 y L_2 no son paralelos; Sea $\lambda \in \mathbb{R}$ tal que $\lambda \begin{pmatrix} 2 \\ 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}$ entonces $\lambda = 1$ y $\lambda = -1$. Por lo tanto no existe tal λ .

De hecho, estos vectores directores son perpendiculares; $\begin{pmatrix} 2 \\ 2 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} = 0.$

Nos resta ver la intersección; supongamos que $L_1 \cap L_2 \neq \emptyset$ y sea $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in L_1 \cap L_2$, entonces existen $t, s \in \mathbb{R}$ tales que

$$1 + 2t = 2$$

 $5 + 2t = 1 + 2s$
 $3 - 2t = 2 + 2s$

De la primera ecuación tenemos que $t = \frac{1}{2}$ y si a la tercera ecuación restamos la segunda obtenemos que $-2 - 4t = 1 \implies t = \frac{-3}{4}$, lo que es una contradicción. En consecuencia $L_1 \cap L_2 = \emptyset$.

Como los vectores directores de L_1 y L_2 no son paralelos y $L_1 \cap L_2 = \emptyset$, decimos que L_1 se cruza con L_2 .