

Química 1 - Primer Semestre 2021

Unidad 2: Estructura de los Átomos

Clase 3

06-04-2021

Rodrigo A. Valenzuela Fernández rvalenzuelafer@uchile.cl

Contenidos de la Clase

• Números cuánticos y su significado

Orbitales atómicos

- El modelo atómico de Bohr tuvo una serie de desacuerdos, por ejemplo sólo explicaba los espectros de emisión de los átomos que tenían un electrón
- ☐ Con el descubrimiento del comportamiento ondulatorio de los electrones surgió otro problema: ¿cómo se podía especificar la "posición" de una onda?
- Werner Heisenberg: es imposible conocer con certeza el momento y la posición de una partícula simultáneamente (principio de incertidumbre)
- Aplicando el principio de incertidumbre al átomo de H, en realidad el electrón no viaja en la órbita alrededor del núcleo con una trayectoria bien definida

Descripción mecánico-cuántica del átomo de Hidrógeno

Función de onda de Schrödinger

En 1926, Schrödinger desarrolló <u>una ecuación que describe el comportamiento y la energía de las partículas subatómicas en general</u>

La función de onda (Ψ) nos dice:

- 1. La energía de un e⁻ tiene base en una función de onda dada
- 2. La probabilidad de encontrar un e⁻ en un espacio definido

$$\widehat{H}\Psi = E\Psi$$

Dicha ecuación solo puede ser utilizada de forma exacta con un átomo de hidrógeno. Por otra parte, dicha ecuación aproxima los resultados de partículas con muchos electrones.

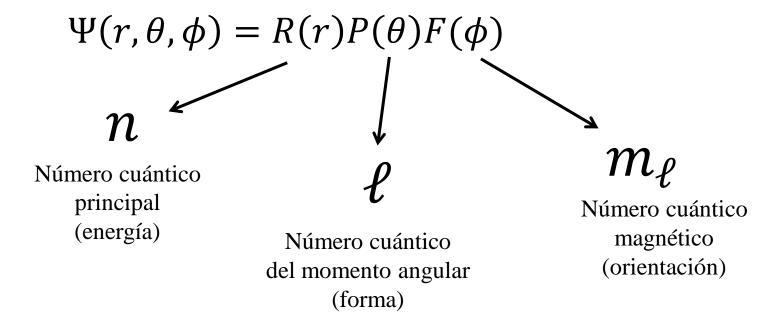
Función de onda de Schrödinger

$$\widehat{H}\Psi = E\Psi$$

 \widehat{H} es el operador Hamiltoniano que incluye una serie de operaciones matemáticas que, aplicadas sobre la función de onda del sistema, nos devuelve los valores propios para la energía de dicho sistema

$$\widehat{H} = -\sum_{i} \frac{-\hbar^2}{2m_e} \nabla_i^2 - \sum_{k} \frac{-\hbar^2}{2m_k} \nabla_k^2 - \sum_{i} \sum_{k} \frac{e^2 Z_k}{r_{ik}} + \sum_{i < j} \frac{e^2}{r_{ij}} + \sum_{k < l} \frac{e^2 Z_k Z_l}{r_{kl}}$$
Energía
Cinética

Para describir la distribución de los electrones en el hidrógeno y otros átomos, la mecánica cuántica necesita unos números que derivan de la solución matemática de la ecuación de Schrödinger: estos son los números cuánticos

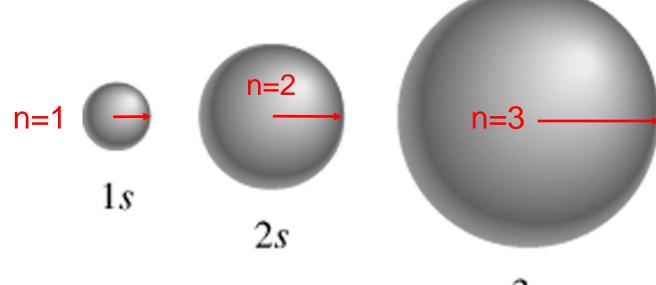


- (1) Un límite en el número de electrones en un orbital
- (2) Un conjunto más complejo de niveles de energía del orbital
- (3) Un cuarto número cuántico

Número cuántico principal $\Psi = (\mathbf{n}, \ell, m_{\ell}, m_{S})$

$$n = 1, 2, 3, 4, \dots$$

Distancia desde e- hasta el núcleo



Número cuántico del momento angular

$$\Psi = (\mathbf{n}, \ell, m_{\ell}, m_{s})$$

Los valores de \(\ell \) dependen del número cuántico principal:

$$\ell = 0, 1, 2, 3, ..., n-1$$

$$n = 1 \Rightarrow \ell = 0$$
 $n = 2 \Rightarrow \ell = 0 \text{ o } 1$
 $n = 3 \Rightarrow \ell = 0, 1 \text{ o } 2$

Nombre del orbital s p d f
 f
 f
 f
 f

Express 1a "forma" de los orbitale f

Expresa la "forma" de los orbitales

El nivel con n= 2 está formado de dos subniveles, $\ell = 0$ y $\ell = 1$

∴ esos números cuánticos corresponden a los subniveles 2s y 2p

Número cuántico magnético

$$\Psi = (\mathbf{n}, \ell, \mathbf{m}_{\ell}, m_{s})$$

Los valores de m_ℓ dependen del valor que tenga el número cuántico del momento angular:

$$m_{\ell} = -\ell, (-\ell+1), ..., 0, ..., (+\ell-1), +\ell$$

$$n = 1 \quad \ell = 0 \text{ (orbital s)} \qquad \Rightarrow m_{\ell} = 0$$

$$n = 2 \quad \ell = 0 \text{ (orbital s)} \qquad \Rightarrow m_{\ell} = 0$$

$$\ell = 1 \text{ (orbital p)} \qquad \Rightarrow m_{\ell} = -1, 0, +1$$

$$\ell = 0 \text{ (orbital s)} \qquad \Rightarrow m_{\ell} = 0$$

$$n = 3 \quad \ell = 1 \text{ (orbital p)} \qquad \Rightarrow m_{\ell} = -1, 0, +1$$

$$\ell = 2 \text{ (orbital d)} \qquad \Rightarrow m_{\ell} = -2, -1, 0, +1, +2$$

Cuando n= 2 y
$$\ell = 1$$

→ corresponde al subnivel 2p

∴ el subnivel 2p tiene tres orbitales: $2p_x$, $2p_y$, $2p_z$

Describe la orientación del orbital en el espacio

En general, para obtener la cantidad total de $m_{\ell} = (2 \cdot \ell) + 1$

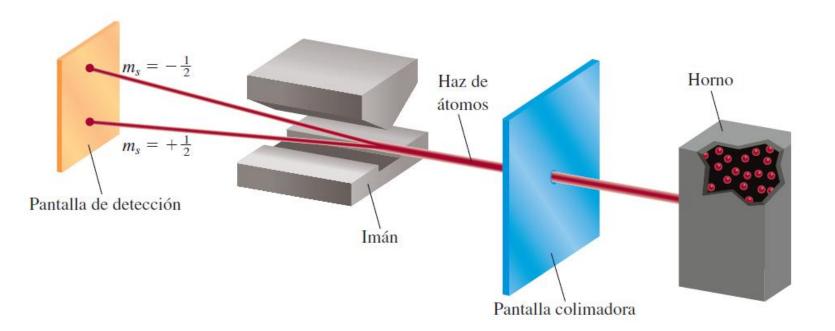
Número cuántico de espín del electrón

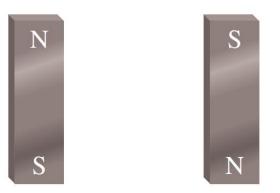
$$\Psi = (n, \ell, m_{\ell}, \mathbf{m}_{s})$$

Sólo son posible dos valores:

$$m_s = +1/2 \text{ o} -1/2$$

Suponiendo que los electrones se comportan como pequeños imanes es posible explicar sus propiedades magnéticas





$$\Psi = (\mathbf{n}, \ell, m_{\ell}, m_{s})$$

Nivel – electrones con valor de *n* definido

Subnivel – electrones con valores de n y ℓ definidos

Orbital – electrones con valores de n, ℓ , y m_{ℓ} definidos

¿Cuántos electrones pueden existir en un orbital?

Si n, ℓ , y m_{ℓ} están definidas, entonces $m_{S} = \frac{1}{2}$ o - $\frac{1}{2}$

$$\Psi = (n, \ell, m_{\ell}, +1/2)$$
 $\Psi = (n, \ell, m_{\ell}, -1/2)$

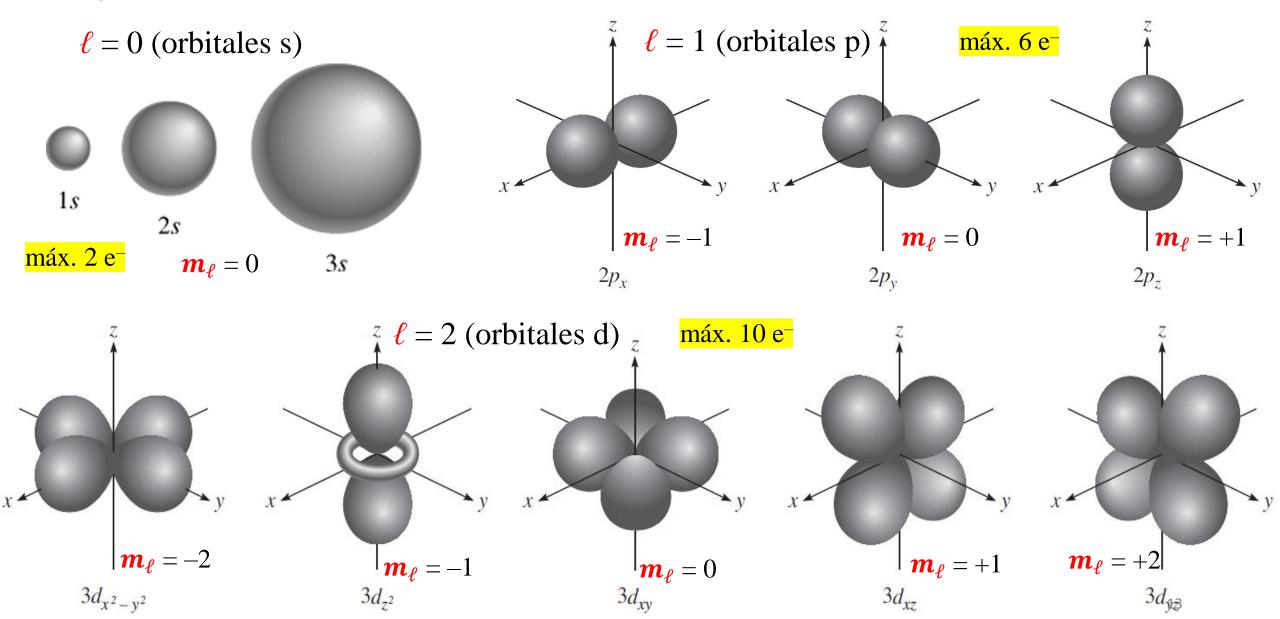
Un orbital puede contener 2 electrones

Orbitales Atómicos

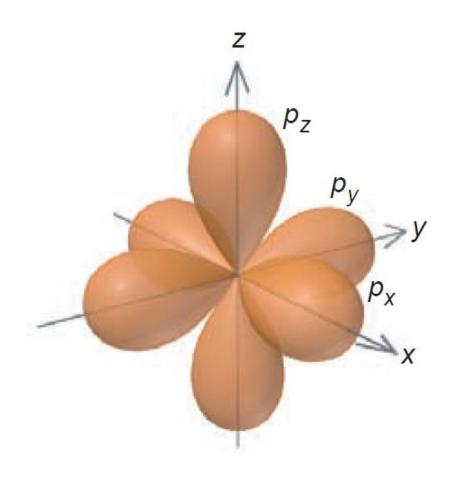
Tabla 7.2		Relación entre números cuánticos y orbitales atómicos		
n	ℓ	\overline{m}_ℓ	Número de orbitales atómicos	Designación de orbitales
1	0	0	1	1 <i>s</i>
2	0	0	1	2s
	1	-1, 0, 1	3	$2p_x$, $2p_y$, $2p_z$
3	0	0	1	3s
	1	-1, 0, 1	3	$3p_x$, $3p_y$, $3p_z$
	2	-2, -1, 0, 1, 2	5	$3d_{xy}$, $3d_{yz}$, $3d_{xz}$,
				$3d_{x^2-y^2}$, $3d_{z^2}$
•		•	•	•
		•	· ·	•

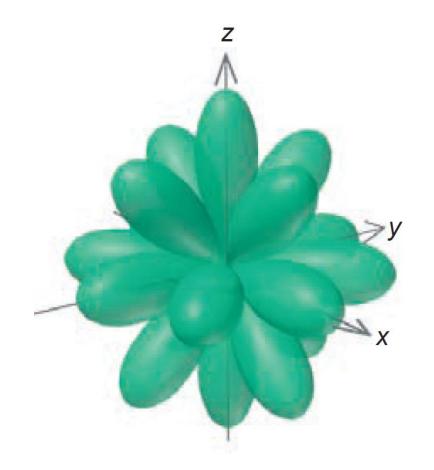
Orbitales Atómicos

NO HAY UNA CORRESPONDENCIA ENTRE LOS VALORES DE m_ℓ Y LA ORIENTACIÓN DADA DEL ORBITAL!!!!!



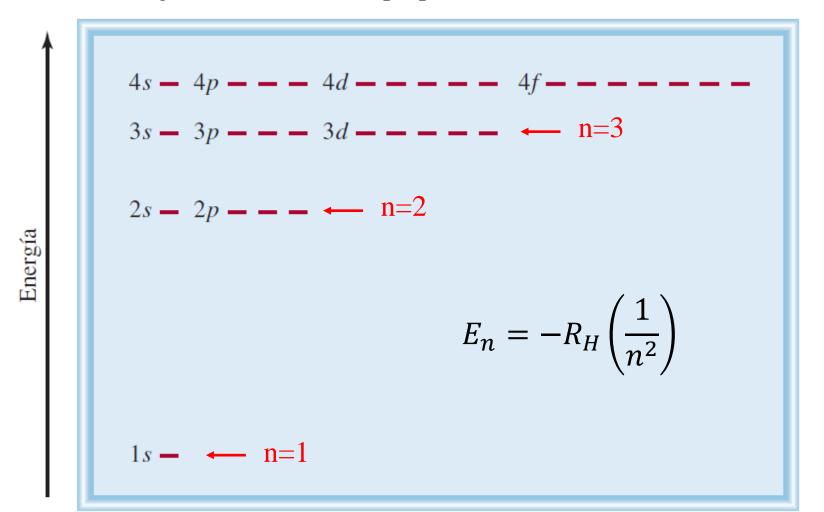
Orbitales Atómicos





Para el átomo de hidrógeno $1s < 2s = 2p < 3s = 3p = 3d < 4s = 4p = 4d = 4f < \cdots$

La energía de un electrón es proporcional al número cuántico *n*



Para átomos poliatómicos, la energía depende de n y ℓ

Energía $2s - 2p - 2\ell = 0$ $= 2\ell = 1$ Un electrón de cierto átomo está en el nivel cuántico n=2, y posteriormente dicho electrón es excitado al n=3. Enliste los posibles valores de los subniveles ℓ y m_{ℓ} para ambos niveles

$$\ell = 0, 1, 2, 3, ..., n-1$$
 $m_{\ell} = -\ell, (-\ell+1), ..., 0, ..., (+\ell-1), +\ell$

Como
$$n=2 \rightarrow \ell=0$$
, 1 Si $\ell=0$ (s) $\rightarrow m_{\ell}=0$
$$\ell=1$$
 (p) $\rightarrow m_{\ell}=-1$, 0, +1

Como
$$n = 3 \to \ell = 0, 1, 2$$
 Si $\ell = 0$ (s) $\to m_{\ell} = 0$
$$\ell = 1 \text{ (p)} \to m_{\ell} = -1, 0, +1$$

$$\ell = 2 \text{ (d)} \to m_{\ell} = -2, -1, 0, +1, +2$$

¿Cuál sería la cantidad máxima de electrones que pueda tener un cierto átomo que tiene los siguientes números cuánticos?

a)
$$n = 1, \, \ell = 0, \, m_{\ell} = 0$$

a)
$$n = 1$$
, $\ell = 0$, $m_{\ell} = 0$ b) $n = 3$, $m_{S} = -1/2$ c) $n = 5$, $m_{\ell} = +1$

a)
$$n = 1$$
, $\ell = 0$, $m_{\ell} = 0$

Como n=1, el único valor posible de ℓ es 0, y por ende $m_{\ell}=0$ No especifican el m_s : pueden haber 2 electrones

b)
$$n = 3$$
, $m_s = -1/2$

Como
$$n = 3$$
, $\ell = 0, 1, 2$
 $\ell = s, p, d \Rightarrow \sum e^- = 2 + 6 + 10 = 18$

9 e^- tienen $m_S = +1/2$
9 e^- tienen $m_S = -1/2$

∴ pueden haber 9 electrones

c)
$$n = 5$$
, $m_{\ell} = +1$

Como
$$n = 5$$
, $\ell = 0, 1, 2, 3, 4$

$$m{\ell}$$
 $m{m}_{\ell}$ 0 0 0 1 $-1, 0, +1$ 2 $-2, -1, 0, +1, +2$ 3 $-3, -2, -1, 0, +1, +2, +3$ 4 $-4, -3, -2, -1, 0, +1, +2, +3, +4$

Hay 4 orbitales que tienen un valor de $m_{\ell} = +1$ ∴ pueden haber 8 electrones

Recuerde **siempre** complementar esta diapositiva con los textos del programa

Hasta la próxima clase.