TALLER 11 de MATEMATICAS 2 Programa de Bachillerato. Universidad de Chile

En clases se ha visto el método de sustitución, de integración por partes y de descomposición en fracciones parciales para obtener la familia de primitivas de una función f y como una de las aplicaciones de la integral el cálculo del área de una región acotada por ciertas curvas. En este taller aplicarás estos conceptos en la resolución de problemas.

Objetivos:

- Aplica métodos de resolución de integrales para resolver problemas.
- Resuelve problemas de valor inicial, aplicando métodos de integración.
- Determina área de regiones acotadas.
- Resuelve problemas contextualizado aplicando método de integración.

Problema 1

Halle la función f(x) tal que $f'(x) = (1 - 3x)e^{-(2x + \ln(2))} + 1$ y $f(\ln(0.5)) = 2.5$.

Problema 2

Sea b un número real positivo y R_b la región del plano XY acotada por las curvas:

$$y = \frac{10}{1+2e^{-3x}}$$
, $y = 10$, $x = 0$ y $x = b$.

a) Calcule el área A(b)de la región R_b , acotada por las curvas:

$$y = \frac{10}{1+2e^{-3x}}$$
 , $y = 10$, $x = 0$ y $x = b > 0$.

b) ¿Existe un número real M, tal que para todo b > 0 se cumple que A(b) < M?

Problema 3

Se proyecta que dentro de t años la población de una cierta ciudad cambiará a una razón de:

 $r(t) = \frac{100}{(x+3)\sqrt{x+4}}$ miles de persona por año. ¿En cuánto aumentará la población al cabo de 5 años?

Problema 4

Calcule el volumen del sólido, que se forma al girar alrededor del eje X la región acotada por las curvas:

$$y = \frac{1}{\sqrt{e^x + e^{-x}}}$$
; $y = 0$; $x = 0$ y $x = 2$.

Problema 5

Determine las siguientes funciones:

a)
$$F(x) = \int \frac{x}{(x^2 - x + 1)(x - 1)} dx$$
, $x \ne 1$

b)
$$G(x) = \int \frac{(x+1)(x-2)(x+3)}{(x+2)(4x^2+1)} dx$$
, $x \neq -2$