Control 3 de Matemáticas 2

Programa de Bachillerato. Universidad de Chile.

Lunes 7 de Octubre, 2013

Tiempo: 15 minutos.

Nombre:

Elija sólo un problema.

1. Sea

$$f(x) = \int_{1}^{x} \left(\frac{t^4 - 2}{t}\right) dt$$

Indique en qué intervalo f es creciente y en qué intervalo f es decreciente.

Solución:

Aplicando T.F.C tenemos que:

$$f'(x) = \frac{x^4 - 2}{x}, \quad f'(x) = 0 \quad \Leftrightarrow \quad x^4 - 2 = 0 \quad \Rightarrow \quad x = \pm \sqrt[4]{2}, \text{ con } x \in [1, \infty[$$

$$\boxed{3 \text{ puntos.}}$$

análisis de signo de la derivada:

	$1 \le x < \sqrt[4]{2}$	$\sqrt[4]{2} \le x < \infty$
f(x)	decreciente	creciente
f'(x)	negativa	positiva

Por lo tanto, f es decreciente en $]1, \sqrt[4]{2}[$ y es creciente en $]\sqrt[4]{2}, \infty[$.

2. Sea

$$G(x) = \int_{1}^{x} (2sen(t) - 3cos(t) - 2t + 5) dt$$

Determine $G'(2\pi) - G'(0)$.

Solución:

Si $G(x)=\int_1^x f(t)\,dt=\int_1^x \left(2sen(t)-3cos(t)-2t+5\right)\,dt,$ (en este caso f es continua).

Por T.F.C tenemos que: G'(x) = f(x) ya sea x < 1 o x > 1, luego G'(x) = 2sen(x) - 3cos(x) - 2x + 5,

3 puntos.

Así,

$$G'(2\pi) = -3 - 4\pi + 5 = 2 - 4\pi$$
 y $G'(0) = -3 + 5 = 2$.

2 puntos.

Por lo tanto, $G'(2\pi) - G'(0) = -4\pi$.

1 punto.