Guía 4, Álgebra y Geometría

Programa de Bachillerato, Universidad de Chile

- 1. Demostrar que los vectores $\alpha_1 = (1, 0, -1)$, $\alpha_2 = (1, 2, 1)$, $\alpha_3 = (0, -3, 2)$ forman una base para \mathbb{R}^3 . Expresar cada uno de los vectores de la base canónica como combinación lineal de α_1 , α_2 y α_3
- 2. En el espacio vectorial V de los polinomios reales de grado menor o igual que n unión el polonomio cero, se considera la base usual $B = \{1, x, x^2, \dots, x^n\}$. Pruébese que $B' = \{1, x a, (x a)^2, \dots, (x a)^n\}$, donde $a \in \mathbb{R}$ es dado, es una base de V.
- 3. Demostrar que (1, 2+i, 3), (2-i, i, 1) y (i, 2+3i, 2) es una base de \mathbb{C}^3 .
- 4. De una base de los siguientes espacios vectoriales V (o demuestre que no existe):

a)
$$V = \{(x, y, z) \in \mathbb{R}^3 / x + y - z = 0, x - y - z = 0\}$$

b)
$$V = [(2, -1, 3, 1), (-1, 3, 4, 0), (3, 1, 10, 0), (1, 1, 1, 2)]$$

- c) $V=\{$ polinomios p(x) con coeficientes reales de grado ≤ 3 y tales que $p(1)=p(0)=0\}$
- 5. Considérese el espacio vectorial $V = \mathcal{M}_{2\times 2}$, de las matrices cuadradas de tamaño 2×2 , y sea $S = \{M_1, M_2, M_3, M_4\}$ el conjunto formado por las matrices:

$$M_1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, M_2 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, M_3 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, M_4 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$

- a) Probar que S es una base de V.
- b) Hallar las coordenadas x_1, x_2, x_3, x_4 en la base de S de una matriz genérica M de V: $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$
- 6. Considere en \mathbb{R}^3 los siguientes conjuntos:

$$W_1 = \{(x, y, z) \in \mathbb{R}^3 / 2x + y - z = 0\}$$

$$W_2 = \{(x, y, z) \in \mathbb{R}^3 / 3x + y = 0, 2y + z = 0\}$$

1

- a) Demostrar que W_1, W_2 son subespacios de \mathbb{R}^3 .
- b) Encontrar base para $W_1, W_2, W_1 + W_2, W_1 \cap W_2$.

- 7. Sea V un espacio vectorial sobre K de dimensión finita. Sea W un subespacio de V, entonces, $dim_K(W) \leq dim_K(V)$. Además, $dim_K(W) = dim_K(V)$ ssi W = V.
- 8. En \mathbb{R}^4 tomemos los siguientes subespacios

$$S = [(1, -1, 2, -3), (1, 1, 2, 0), (3, -1, 6, -6)]$$
$$T = [(0, -2, 0, -3), (1, 0, 1, 0)]$$

Encontrar $dim_{\mathbb{R}}(S)$, $dim_{\mathbb{R}}(T)$ y $dim_{\mathbb{R}}(S \cap T)$

9. Sean W_1, W_2 subespacios de dimensión finita dentro de un espacio vectorial V. Definamos

$$W_1 + W_2 = \{ w \in V : w = w_1 + w_2, w_1 \in W_1, w_2 \in W_2 \}$$

- a) Demuestre que $W_1 + W_2$ es subespacio vectorial de V.
- b) Demuestre que $dim(W_1 + W_2) \le dim(W_1) + dim(W_2)$.
- c) Demuestre que $dim(W_1+W_2)=dim(W_1)+dim(W_2)$ ssi $W_1\cap W_2=\{0\}.$
- 10. Sean W_1,W_2 subespacios lineales de un espacio vectorial V sobre un cuerpo K. Supongamos que W_1,W_2 son de dimensión finita. Demostrar que $W_1\cap W_2$ y W_1+W_2 son de dimensin finita. Además

$$dim_K(W_1 + W_2) = dim_K(W_1) + dim_K(W_2) - dim_K(W_1 \cap W_2)$$

- 11. Sean V, W dos espacios vectoriales sobre K de dimensión finita. Calcular $dim_K(V \times W)$.
- 12. Sea $S = \{v_1, \ldots, v_p\}$ un conjunto de vectores en un espacio vectorial V de dimensión finita. Demostrar:
 - a) Si S genera a V entonces $p \ge \dim(V)$.
 - b) Si S es un conjunto linealmente independiente, entonces $p \leq \dim(V)$.
 - c) Si S es linealmente independiente y dim(V)=p, entonces S es base de V.
- 13. Encontrar una base de \mathbb{C} como espacio vectorial sobre \mathbb{R} y sobre \mathbb{C} . Hallar $\dim_{\mathbb{R}}\mathbb{C}$ y $\dim_{\mathbb{C}}\mathbb{C}$.
- 14. Sea $\mathcal{B} = \{v_1, v_2, v_3\}$ la base ordenada de \mathbb{R}^3 formada por $v_1 = (1, 0, -1)$, $v_2 = (1, 1, 1)$ y $v_3 = (1, 1, 0)$. Encuentre las coordenadas del vector (a, b, c) en la base \mathcal{B} .

- 15. Sea W el subespacio de \mathbb{C}^3 generado por $v_1=(1,0,i)$ y $v_2=(1+i,1,-1)$.
 - a) Demostrar que $B = \{v_1, v_2\}$ forman una base ordenada de W.
 - b) Demostrar que los vectores $w_1 = (1, 1, 0)$ y $w_2 = (1, i, 1+i)$ pertenecen a W y forman otra base C de W.
 - c) Encontrar las coordenadas de v_1 y v_2 en la base ordenada $\{w_1, w_2\}$ de W.
 - d) Encontrar la matriz cambio de la base B a la base C y la matriz de cambio de la base C a la base B.
- 16. Considere el espacio vectorial $\mathbb{P}_2[x]$ de todos los polinomios con coeficientes reales de grado menor o igual a 2 unión el cero. Sea t un número real fijo y defínase $p_1(x) = 1, p_2(x) = x + t, p_3(x) = (x + t)^2$. Pruebe que $B = \{p_1, p_2, p_3\}$ es una base ordenada de $\mathbb{P}_2[x]$. Si $f(x) = a_0 + a_1x + a_2x^2$ encuentre las coordenadas del polinomio f en la base ordenada B.
- 17. Sea B_1 y $B_2 = \{(-1,0,2), (1,1,0), (1,2,-1)\}$ dos bases ordenadas de \mathbb{R}^3 y sea

$$[I]_{B_1}^{B_2} = \begin{pmatrix} 1 & 0 & 2 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix}$$

la matriz cambio de la base B_1 a la base B_2 .

- a) Encontrar la base B_1 .
- b) Para v = (1, 0, 6) determine $[v]_{B_1}$ y $[v]_{B_2}$, las matrices de las coordenadas de v respecto de las bases ordenadas B_1 y B_2 , respectivamente.
- 18. Sea $B = \{(1, -1), (0, 2)\}$ una base ordenada de \mathbb{R}^2 . Si $v \in \mathbb{R}^2$ es tal que $[v]_B = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$, encuentre el vector v.
- 19. Sea $B = \{e_1, e_2\}$ una base ordenada de \mathbb{R}^2 . Sea $v = \alpha_1 e_1 + \alpha_2 e_2$ con $\alpha_i \in \mathbb{R}$. Demostrar que $e'_1 = e_1 + e_2$ y $e'_2 = e_1 e_2$ forman una base ordenada de \mathbb{R} . Escriba el vector v como combinación lineal de los vectores e'_1 y e'_2 hallando las coordenadas de v respecto a esta nueva base.