

1 H		_	7 D	الد ماد		t ~											He
3 Li	⁴ Be		■ Bulk elements ■ Trace elements						5 B	6 C	7 N	8	9 F	10 Ne			
11 Na	12 Mg		13 14 15 16 17 18 A1 Si P S Cl A1							18 Ar							
19 K	20 Ca	21 Se	²² Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	²⁹ Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Te	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	⁵² Te	53 I	⁵⁴ Xe
55 Cs	56 Ba	K	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	_		thanid inides	les												

table 4-3

Solubilities of Some Gases in Water

Gas	Structure*	Polarity	Solubility in water (g/L) [†]
Nitrogen	N = N	Nonpolar	0.018 (40 °C)
Oxygen	0=0	Nonpolar	0.035 (50 °C)
Carbon dioxide	O=C=O	Nonpolar	0.97 (45 °C)
Ammonia	H H H 8-	Polar	900 (10 °C)
Hydrogen sulfide	$H \setminus_{\delta^-} H \mid_{\delta^-}$	Polar	1,860 (40 °C)

^{*}The arrows represent electric dipoles; there is a partial negative charge (δ^-) at the head of the arrow, a partial positive charge (δ^+ ; not shown here) at the tail.

[†]Note that polar molecules dissolve far better even at low temperatures than do nonpolar molecules at relatively high temperatures.

(a)

Highly ordered H₂O molecules form "cages" around the hydrophobic alkyl chains

table 4-4

Four Types of Noncovalent ("Weak") Interactions among Biomolecules in Aqueous Solvent

Hydrogen bonds

Between neutral groups

Between peptide bonds

Ionic interactions

Attraction

$$-^+NH_3 \rightarrow \leftarrow ^-O-C$$

Repulsion

$$-^+NH_3 \longleftrightarrow H_3N^+ -$$

Hydrophobic interactions

Van der Waals interactions

Any two atoms in close proximity

Table 2-1 Covalent and Noncovalent Chemical Bonds

BOND TYPE	LENGTH (nm)	STRENGTH (I	kcal/mole) IN WATER	
Covalent Noncovalent: ionic* hydrogen	0.15 0.25 0.30	90 80 4	90 3 1	
van der Waals attraction (per atom)	0.35	0.1	0.1	

^{*}An ionic bond is an electrostatic attraction between two fully charged atoms.

Figure 2-21 Molecular Biology of the Cell (© Garland Science 2008)

table 11-1

						at 30 °C solvent)
Carbon skeleton	Structure*	Systematic name [†]	Common name (derivation)	Melting point (°C)	Water	Benzene
12:0	CH ₃ (CH ₂) ₁₀ COOH	n-Dodecanoic acid	Lauric acid (Latin laurus, "laurel plant")	44.2	0.063	2,600
14:0	CH3(CH2)12COOH	n-Tetradecanoic acid	Myristic acid (Latin <i>Myristica</i> , nutmeg genus)	53.9	0.024	874
16:0	CH3(CH2)14COOH	n-Hexadecanoic acid	Palmitic acid (Latin <i>palma</i> , "palm tree")	63.1	0.0083	348
18:0	CH ₃ (CH ₂) ₁₆ COOH	n-Octadecanoic acid	Stearic acid (Greek stear, "hard fat")	69.6	0.0034	124
20:0	CH ₃ (CH ₂) ₁₈ COOH	n-Eicosanoic acid	Arachidic acid (Latin <i>Arachis</i> , legume genus)	76.5		
24:0	CH ₃ (CH ₂) ₂₂ COOH	n-Tetracosanoic acid	Lignoceric acid (Latin <i>lignum</i> , "wood" + cera, "wax")	86.0		
$16:1(\Delta^9)$	CH ₃ (CH ₂) ₅ CH==CH(CH ₂) ₇ COOH	cis-9-Hexadecenoic acid	Palmitoleic acid	-0.5		
18:1(Δ ⁹)	CH ₃ (CH ₂) ₇ CH==CH(CH ₂) ₇ COOH	cis-9-Octadecenoic acid	Oleic acid (Latin <i>oleum,</i> "oil")	13.4		
$18:2(\Delta^{9,12})$	CH ₃ (CH ₂) ₄ CH==CHCH ₂ CH== CH(CH ₂) ₇ COOH	cis-,cis-9,12-Octadecadienoic acid	Linoleic acid (Greek linon, "flax")	-5		
$18:3(\Delta^{9,12,15})$	CH ₂ CH ₂ CH—CHCH ₂ CH— CHCH ₂ CH—CH(CH ₂) ₇ COOH	cis-,cis-,cis-9,12,15- Octadecatrienoic acid	α -Linolenic acid	-11		
20:4(\Delta^5.8.11.14)	CH ₃ (CH ₂) ₄ CH—CHCH ₂ CH— CHCH ₂ CH—CHCH ₂ CH— CH(CH ₂) ₃ COOH	cis-,cis-,cis-,cis-5,8,11,14- lcosatetraenoic acid	Arachidonic acid	-49.5		

^{*}All acids are shown in their nonionized form. At pH 7, all free fatty acids have an ionized carboxylate. Note that numbering of carbon atoms begins at the carboxyl carbon.

¹The prefix *n*- indicates the "normal" unbranched structure. For instance, "dodecanoic" simply indicates 12 carbon atoms, which could be arranged in a variety of branched forms; "*n*-dodecanoic" specifies the linear, unbranched form. For unsaturated fatty acids, the configuration of each double bond is indicated; in biological fatty acids the configuration is almost always cis.

Glycerol

1-Stearoyl, 2-linoleoyl, 3-palmitoyl glycerol, a mixed triacylglycerol

Name of glycerophospholipid	Name of X	Formula of X	Not charge (at pH 7)
Phosphatidic acid	-	— н	-1
Phosphatidylethanolamine	Ethanolamine	$ CH_z$ $ CH_z$ $ \stackrel{+}{N}H_z$	0
Phosphatidylcholine	Choline	$- CH_z$ $-CH_z$ $-N(CH_3)_3$	0
Phosphatidylserine	Serine	− CH _z −CH−NH _z	-1
Phosphatidylglycerol	Glycerol	- CH _z -CH-CH _z -OH OH	-1
Phosphatidylinositol 4,5-bisphosphate	myo-Inositol 4,5- bisphosphate	H O-P OH H OH HO O-P H H H	-4
Cardiolipin	Phosphatidyl- glycerol	- СН ₂ - СН ₂ - СН ₂ - О- СН	-2

Sphingolipid (general structure)

Name of sphingolipid	Name of X	Formula of X
Ceramide	_	— н
Sphingomyelin	Phosphocholine	$-\Pr_{\mathbf{O}^-}^{\mathbf{O}}\mathbf{-}\mathbf{CH}_2\mathbf{-}\mathbf{CH}_2\mathbf{-}\mathop{\mathrm{N}}^+_{\mathbf{N}}(\mathbf{CH}_3)_3$
Neutral glycolipids Glucosylcerebroside	Glucose	CH ₂ OH H OH H H
Lactosylceramide (a globoside)	Di-, tri-, or tetrasaccharide	Glc
Ganglioside GM2	Complex oligosaccharide	Neu5Ae Gle Gal GalNAc

Figure 10-5 Molecular Biology of the Cell (© Garland Science 2008)

$$CH_2OH$$
 $C=O$
 CH_3C
 OH
 H_3C
 OH

Prednisolone

$$\begin{array}{c|c} & CH_2OH \\ O & C \\ HO & C \\ \end{array}$$

$$\begin{array}{c} CH_2OH \\ C=O \\ H_3C \\ O \end{array}$$
 Prednisone

Ball-and-stick models

 α -D-Glucopyranose

 α -D-Fructofuranose

 β -D-Glucopyranose

$$HOCH_2$$
 O OH H HO CH_2OH

 β -D-Fructofuranose

$$HC$$
 CH H_2C CH

Pyran

Furan

Lactose (β form) β -D-galactopyranosyl-(1 \rightarrow 4)- β -D-glucopyranose Gal(β 1 \rightarrow 4)Glc

Sucrose α -D-glucopyranosyl β -D-fructofuranoside $\operatorname{Glc}(\alpha 1 \leftrightarrow 2\beta)$ Fru

Homopolysaccharides Heteropolysaccharides Unbranched Branched Two Multiple monomer monomer types, types, unbranched branched

FIGURE 7-13 Homo- and heteropolysaccharides. Polysaccharides may be composed of one, two, or several different monosaccharides, in straight or branched chains of varying length.

TABLE 7-2 Structures and Roles of Some Polysaccharides

			Size (number of monosaccharide	
Polymer	Туре*	Repeating unit [†]	units)	Roles/significance
Starch				Energy storage: in plants
Amylose	Homo-	$(\alpha 1 \rightarrow 4)$ Glc, linear	50-5,000	
Amylopectin	Homo-	$(\alpha 1\rightarrow 4)$ Glc, with $(\alpha 1\rightarrow 6)$ Glc branches every 24-30 residues	Up to 10 ⁶	
Glycogen	Homo-	(α1→4)Glc, with (α1→6)Glc branches every 8–12 residues	Up to 50,000	Energy storage: in bacteria and animal cells
Cellulose	Homo-	(β1→4)Glc	Up to 15,000	Structural: in plants, gives rigidity and strength to cell walls
Chitin	Homo-	(β1→4)GlcNAc	Very large	Structural: in insects, spiders, crustaceans, gives rigidity and strength to exoskeletons
Dextran	Homo-	$(\alpha 1 \rightarrow 6)$ Glc, with $(\alpha 1 \rightarrow 3)$ branches	Wide range	Structural: in bacteria, extracellular adhesive
Peptidoglycan	Hetero-; peptides attached	4)Mur2Ac(β1→4) GlcNAc(β1	Very large	Structural: in bacteria, gives rigidity and strength to cell envelope
Agarose	Hetero-	3)D-Gal(β 1 \rightarrow 4)3,6- anhydro-L-Gal(α 1	1,000	Structural: in algae, cell wall material
Hyaluronate (a glycosamino- glycan)	Hetero-; acidic	4)GlcA(β1→3) GlcNAc(β1	Up to 100,000	Structural: in vertebrates, extracellular matrix of skin and connective tissue; viscosity and lubrication in joints

Glycogen granules

FIGURE 7-17 Cellulose breakdown by wood fungi. A wood fungus growing on an oak log. All wood fungi have the enzyme cellulase, which breaks the $(\beta 1\rightarrow 4)$ glycosidic bonds in cellulose, such that wood is a source of metabolizable sugar (glucose) for the fungus. The only vertebrates able to use cellulose as food are cattle and other ruminants (sheep, goats, camels, giraffes). The extra stomach compartment (rumen) of a ruminant teems with bacteria and protists that secrete cellulase.

L-Alanine

D-Alanine

(a)

Figure 2-24 Molecular Biology of the Cell (© Garland Science 2008)

The carbonyl oxygen has a partial negative charge and the amide nitrogen a partial positive charge, setting up a small electric dipole. Virtually all peptide bonds in proteins occur in this trans configuration; an exception is noted in Figure 6–8b.

(a) Antiparallel

(b) Parallel

Beginning of helix formation and collapse

Reaction coordinate $(A \rightarrow B)$

Time

Table 3–1 Some Common Types of Enzymes

ENZYME	REACTION CATALYZED
Hydrolases	general term for enzymes that catalyze a hydrolytic cleavage reaction; nucleases and proteases are more specific names for subclasses of these enzymes.
Nucleases	break down nucleic acids by hydrolyzing bonds between nucleotides.
Proteases	break down proteins by hydrolyzing bonds between amino acids.
Synthases	synthesize molecules in anabolic reactions by condensing two smaller molecules together.
Isomerases	catalyze the rearrangement of bonds within a single molecule.
Polymerases	catalyze polymerization reactions such as the synthesis of DNA and RNA.
Kinases	catalyze the addition of phosphate groups to molecules. Protein kinases are an important group of kinases that attach phosphate groups to proteins.
Phosphatases	catalyze the hydrolytic removal of a phosphate group from a molecule.
Oxido-Reductases	general name for enzymes that catalyze reactions in which one molecule is oxidized while the other is reduced. Enzymes of this type are often more specifically named either oxidases, reductases, or dehydrogenases.
ATPases	hydrolyze ATP. Many proteins with a wide range of roles have an energy-harnessing ATPase activity as part of their function, for example, motor proteins such as <i>myosin</i> and membrane transport proteins such as the <i>sodium-potassium pump</i> .

Enzyme names typically end in "-ase," with the exception of some enzymes, such as pepsin, trypsin, thrombin and lysozyme that were discovered and named before the convention became generally accepted at the end of the nineteenth century. The common name of an enzyme usually indicates the substrate and the nature of the reaction catalyzed. For example, citrate synthase catalyzes the synthesis of citrate by a reaction between acetyl CoA and oxaloacetate.

(b) Enzyme complementary to substrate

(c) Enzyme complementary to transition state

Reaction coordinate

Reaction coordinate

$$V_0 = rac{V_{ ext{max}}[ext{S}]}{K_{ ext{m}} + [ext{S}]}$$

Substrate concentration, [S] (mm)

$$\frac{1}{V_0} = \frac{K_{\rm m}}{V_{\rm max}[S]} + \frac{1}{V_{\rm max}}$$

