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Figure 20-1 The neural architecture of the somatosensory

system.

Top: A lateral view of a cerebral hemisphere illustrates the

location of the primary somatic sensory cortices in the pal

ietal

lobe. The somatic sensory cortex has three major divisions: the
primary (S-1) and secondary (S-1l) somatosensory cortices and
the posterior parietal cortex. The relationship of S-I to S-Il and
to the posterior parietal cortex is seen best from a lateral
perspective of the surface of the cerebral cortex. Bottom: A
section shows the four distinct cytoarchitectonic regions of S-1
(Brodmann's areas 3a, 3b, 1, and 2) and their spatial
relationship to area 4 of the motor cortex and areas 5 and 7 of

the posterior parietal cortex.
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Sistema motor
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Figure 16.1. Overall organization of neural structures involved in the control of
movement. Four systems—local spinal cord and brainstem circuits, descending
modulatory pathways, the basal ganglia, and the cerebellum—make essential and
distinct contributions to motor control.
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Figure 11-1 The neuromuscular junction is
readily visible with the light microscope. At
the muscle the motor axon ramifies into
several fine branches approximately 2 pm
thick. Each branch forms multiple swellings
called presynaptic boutons, which are
covered by a thin layer of Schwann cells.
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The boutons lie over a specialized region of
the muscle fiber membrane, the end-plate,
and are separated from the muscle

b by a 100 nm ic cleft. Each
p ptic bouton itochondrie
and synaptic vesicles clustered around active
zones, where the acetylcholine (ACh)
itter is rel ] liately under
each bouton in the end-plate are several
Jjunctional folds, which contain a high
density of ACh receptors at their crests. The
muscle fiber is covered by a layer of
tissue, the b
(or basal lamina), consisting of collagen and
glycoproteins. Both the presynaptic terminal
and the muscle fiber secrete proteins into
the , including the
enzyme acetylcholinesterase, which
inactivates the ACh released from the
i inal by breaking it down
mta acetate and choline. The basement
membrane also organizes the synapse by
ligning the p ich with the
postsynaptic ]unctmnal folds. (Adapted in
part from McMahan and Kuffler 1971.)
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Figure 11-12 The binding of ACh in a
postsynaptic muscle cell opens
channels permeable to both Na+
and K+.

Achbindng at The flow of these ions into and out

(—'m"”‘"; of the cell depolarizes the cell

Channel epening membrane, producing the end-plate
Ma® -t.-uw potential. This depolarization opens

K* outflow

¥ neighboring voltage-gated Na+
e channels in the muscle cell. To
j trigger an action potential, the
depolarization produced by the end-
plate potential must open a
B sufficient number of Na+ channels
ey to exceed the cell's threshold. (After
/ ® rat D“'””"I""‘ on Alberts et al. 1989.)
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Muscle contraction
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Ach receptors

*EPSP evokes action potential

eAction potential (excitation) triggers Ca2+ release, leads
to fiber contraction

eRelaxation, Ca2+ levels lowered by organelle reuptake
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Diseases Affecting the Motor System

+ Amyotrophic Lateral Sclerosis (ALS)
-motor neuron disease

*Duchenne Muscular Dystrophy
-dystrophin deficit

+Myasthenia Gravis
-autoimmune ACh receptors

+Parkinson’s disease
- DA neurons in substantia nigra

Psychology 355 21
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Figure 16.9. Stretch reflex circuitry. (A) Diagram of muscle spindle, the sensory receptor that initiates the
stretch reflex. (B) Stretching a muscle spindle leads to increased activity in la afferents and an increase in
the activity of a motor neurons that innervate the same muscle. la afferents also excite the motor neurons
that innervate synergistic muscles, and inhibit the motor neurons that innervate antagonists (see also
Figure 1.5). (C) The stretch reflex operates as a negative feedback loop to regulate muscle length.
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Sensory stimuli
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Nature Reviews | Neuroscience

Temporal binding has been suggested as a remedy to the problem of how to define dynamic functional relations between neurons in distributed sensorimotor
networks. The proposal is that this 'binding problem' could be solved by exploiting the temporal aspects of neuronal activity16.1%.18.40.41,42.43 The model predicts
that neurons that respond to the same sensory object might fire in temporal synchrony with a precision in the millisecond range. However, no such
synchronization should occur between cells that are activated by different objects in sensory space. Such a temporal integration mechanism would provide an
elegant solution to the binding problem, as synchrony would selectively tag the responses of neurons that code for the same object, and demarcate their
responses from those of neurons activated by other objects. This highly selective temporal structure would allow the system to establish a distinct
representational pattern — an assembly2L — for each object, and so enable figure-ground segregation. Moreover, such a temporal binding mechanism could
establish relationships between neuronal responses over large distances, solving the integration problem imposed by the anatomical segregation of specialized

processing areas.
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Review

Nature Reviews Neuroscience 2, 704-716 (October 2001) |
doi:10.1038/35094565

Dynamic predictions: Oscillations and synchrony in top—down processing
Andreas K. Engel?, Pascal Fries22 & Wolf Singer4

Classical theories of sensory processing view the brain as a passive, stimulus-
driven device. By contrast, more recent approaches emphasize the constructive
nature of perception, viewing it as an active and highly selective process.
Indeed, there is ample evidence that the processing of stimuli is controlled by
top—down influences that strongly shape the intrinsic dynamics of
thalamocortical networks and constantly create predictions about forthcoming
sensory events. We discuss recent experiments indicating that such predictions
might be embodied in the temporal structure of both stimulus-evoked and
ongoing activity, and that synchronous oscillations are particularly important in
this process. Coherence among subthreshold membrane potential fluctuations
could be exploited to express selective functional relationships during states of
expectancy or attention, and these dynamic patterns could allow the grouping
and selection of distributed neuronal responses for further processing.
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