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A system can be :
A—> B Chemical reaction

Sistemas y entorno

Hermético (No hay intercambic
energia ni materia)

Cerrado (Hay intercambio de e




(i) Excrgonic reaction
{apontancous; encrgy-releasing)
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Froe onergy

Proslucts.

In an excrgonic reaction,
energy is released as
reactants form products.

Course of reaction

thy Endergonic reaction
e spomlanenus: encrgy -requiring!

Froe energy

Reaclams

Course of mradtion

Enery s required for an endergonic
reaction, in which reacsants with a low
ency cantent ar conversed 1
prochucts with a higher energy bevel,




activation
energy

total energy ——

b Unstable intermediate
molecules form

reaction pathway

Free energy

£, 15 the aclivalion energy
required for a reaction to begin,

Course of reaction

The ball needs a push (£,) 10
gel it out of the depression,

ATP - LIKE A RECHARGEABLE BATTERY
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Light (photosynthesis) or
compounds with high
p ial energy {respiration)

i

Synthesis of Synthesis of other Cellular movements, Transport of Generation of an Heat
cellular macro- cellular constituents  including muscle con- molecules against electric potential

molecules (DNA, {such as membrane  traction, crawling move- a concentration across a membrane

RNA, proteins, phospholipids and ments of entire cells, gradient {fimportant for nerve
poelysaccharides) certain required and movement of function}

metabolites) chromosomes during
mitosis

f Lk energy available
:mhm or ::;:;"‘1: 'N':I

photosynthesis synthesis
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kingtic energy transformed into part of the kinetic energy is used to the potential kinetic energy stored
heat energy only lift @ bucket of water, and a correspandingly i the elevated bucket of water
smaller amount is transformed into heat can be used to drive a wide variety

of different hydraulic machines

high-energy intermediate

m MHa .
ammaonia
ATP
OH
N/ ®
8]

O\
i
CH,
l NV
i :
H,N—CH—COOH
B CH;,
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H;N—CH—COOH

glutamine



Mitochondria Ribosomes
CeH1n04 i e = Proteins

2 CH4CH(OH)CO,~ + Amino acids




high-energy
electron

low-energy
electron

proton-motive membrane
force due to potential ﬂ.b"

H+

proton-motive H™ concentration
|: . force due to gradient ﬂpH _
. H” H

H alkaline




high-energy
elactrons

transmembraneg
electrochemical
raton (H™) gradient

active ATF" bacterial
membraneg synthesis flagellar
transport rotation

MESOPHYLL CELL

LEAF CROSS SECTION

Chloroplast

Vein

Mesophyll
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CHLOROPLAST

Granum

Inner
membrane

Thylakoid Thylakoid
space

Stroma




— In chiorophyll &

——— . In bactariochiorophyll
. G

Paorphyrin Fing

Chiorophyll 8

‘Comprght 1 Joke Wy and Bona. ine. Allsghis resarved.

Electron transfer
Reaction-
center
chlorophyll Primary electron
acceptor
Reaction

Photon

center

Antenna
pigment
molecules

Transfer
of energy

In a photosynthetic
reaction centre an
electron is stepwise
transferred between
chiorophyll and other
molecules.

dps = 1072 seconds
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Fhaton Phaton

—— Thylakoid
membrang

ADP + P | .8 ATP

GEGH

Lumen or p-side
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chlaroplast
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three molecules

three molecules six molecules

six molecules

1,3-diphosphoglycerate |

five malecules

six molecules 6

three molecules of
CO; fixed give a net
yield of one molecule
of glyceraldehyde
3-phosphate at a net
cost of nine molecules
of ATP and six
malecules of NADPH

one molecule

SUGARS, FATTY ACIDS, AMINO ACIDS

high-energy
elactrons

transmembrane
electrochemical
proton (H™) gradient

active bacterial

membrane synthesis fla ge!lar
transport rotation
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H, 0,

Explosive
release
of heat

energy

H,0

(a) Uncontrolled reaction

(b) Cellular respiration

2H 20,
(from food via NADH)
Controlled
release of
energy for
synthesis of

STAGE 1:
breakdown of

large mocromolecules
10 simple subunits

STAGE 2:

breakdown of simple
subunits to acetyl CoA
accompanied by
‘production of limited
amaounts of A’

‘and NADH

of acetyl CoA to H0
and CO; accomparied
by production of large
amounts of NADH and
ATP

[ polysaccharides | [ s |

fatty acids
and glycerol

[ simple sugars, }
€.9., glucose.
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Mitochondrion

Intermembrane space
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MATRIX

INTERMEMBRANE
SPACE
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Titar memrane
Inner membrane

INNER
MEMERANE

INTERMEMBRANE.
SPACE
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¢ Subunit cat pH3 .
Subunit c at pHE o, oligamer

Subunit 2

Subunit
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Model for the functioning FU complex. {a), Starting state. Arg210 of subunit & lies between protonated and deprotonated AspB1 side chains
inthe ¢ dligomer. The Iocation of subunits is shown, positioned according to cross linking data, with its initial oriertation indicated by an arrow
at right. (b), After protonation of AspB1, the C-terminal helix of the newly protonated monomer (shown in green) rotates towards its stable
protonated arientation. {c), Fully protonated intermediate. Subunit & is now at the interface to the next (blue) subunit ¢ The ¢ ring has rotated
ty 30° with respect to subunit . {d), The AspB1 of the next ¢ subunit loses its proton to the F, side of the membrane, via a pathway involving
both subunit & and subunit ¢, Its C-terminal helix rotates to adopt the stable conformation of the deprotonated state, regenerating the resting
state of the enzyme. The inttial postion of subunit e is indicated by an arrow at right, to highlight the rotation within the complex.
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