

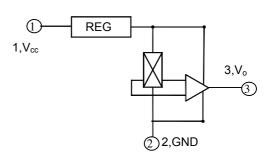
AH49E

LINEAR HALL-EFFECT SENSOR

The Hall-effect sensor accurately track extremely small changes in magnetic flux density—changes generally too small to operate Hall-effect switches. As motion detectors, gear tooth sensors, and proximity detectors, they are magnetically driven mirrors of mechanical events. As sensitive monitors of electromagnets, they can effectively measure a system's performance with negligible system loading while providing isolation from contaminated and electrically noisy environments. Each Hall-effect integrated circuit includes a Hall sensing element, linear amplifier, and emitter-follower output stage. Problems associated with handling tiny analog signals are minimized by having the Hall cell and amplifier on a single chip. Three package styles provide a magnetically optimized package for most applications.

FEATURES

- . Extremely Sensitive
- . Flat response to 23kHz
- . Low-Noise Output
- . 4.5V to 6V Operation
- . Magnetically Optimized Package

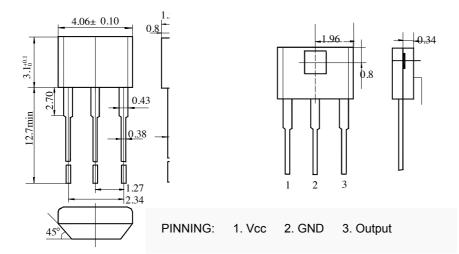

TYPICAL APPLICATION

- . Motion detector
- . Gear tooth sensors
- . Proximity detector
- . Velocity detecting of motor bicycle
- . Current detecting sensor

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Supply voltage	V _{cc}	6	٧
Magnetic flux density	В	Unlimited	mT
Operating temperature range	T _A -20~+85		$^{\circ}$
Storage temperature range	Ts	150	$^{\circ}$

FUNCTIONAL BLOCK DIAGRAM


ELECTRICAL CHARACTERISTICS T_A=25℃ 1mT=10Gs

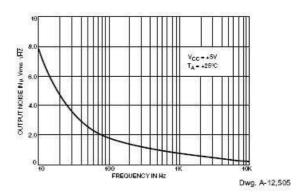
Characteristics S	Symbol	Test conditions	Limits			Unit
	Symbol		Min.	Тур.	Max.	Offic
Operating voltage	V _{cc}		3.0	-	6.5	V
Supply current	I _{cc}		1	4	6	mA
Linearity range			-100	-	+100	mT
Linearity				0.007		
Quiescent output voltage	V _{out}	B=0	2.25	2.5	2.75	V
Zero temperature drift			-0.1		0.1	%/℃
Sensitivity	S	B=±90mT	10.0	14.0	175	mV/mT
Respond time			-	3	-	μS

Note: All output-voltage measurement are made with a voltmeter having an input impedance of at lease $10 \text{K}\,\Omega$.

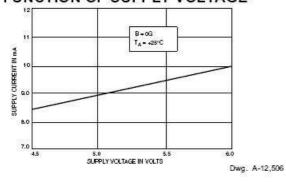
PACKAGE (Unit: mm)

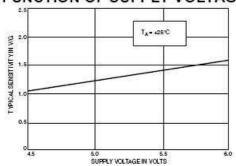


Cautions


When install. should as full as possible decrease the mechanical acting on the Hall IC, to avoid the influence of the operate point and release point. 2. On the premise of welding ensuring quality, use as possible low as welding temperature an short time.

CHARACTERISTICS CURVE OUTPUT VOLTAGE AS A


OUTPUT VOLTAGE AS A FUNCTION OF TEMPERATURE


OUTPUT NOISE AS A FUNCTION OF FREQUENCY

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

DEVICE SENSITIVITY AS A FUNCTION OF SUPPLY VOLTAGE

Dwg. A-12,507

