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Preface

Als überragende Gestalt . . . tritt uns Helmholtz entgegen . . . Seine
außerordentliche Stellung in der Geschichte der Naturwissenschaf-
ten beruht auf einer ungewöhnlich vielseitigen, eindringenden Bega-
bung, innerhalb deren die mathematische Seite eine wichtige, für uns
natürlich in erster Linie in Betracht kommende Rolle spielt. (Felix
Klein, [84, p. 223])1

Waves are interesting physical phenomena with important practical appli-
cations. Physicists and engineers are interested in the reliable simulation
of processes in which waves are scattered from obstacles (scattering prob-
lems). This book deals with some of the mathematical issues arising in the
computational simulation of wave propagation and fluid–structure interac-
tion.
The linear mathematical models for wave propagation and scattering are

well-known. Assuming time-harmonic behavior, one deals with the Helm-
holtz equation ∆u + k2u = 0, where the wave number k is a physical
parameter. Our interest will be mainly in the numerical solution of exte-
rior boundary value problems for the Helmholtz equation which we call
Helmholtz problems for short.
The Helmholtz equation belongs to the classical equations of mathema-

tical physics. The fundamental questions about existence and uniqueness

1In Helmholtz we meet an overwhelming personality. His extraordinary position in
the history of science is based on his unusually diverse and penetrating talents, among
which the mathematical side, which for our present purpose is of primary importance,
plays an important role.
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of solutions to Helmholtz problems were solved by the end of the 1950s; cf.,
e.g., the monographs of Leis [87], Colton–Kress [39], and Sanchez Hubert–
Sanchez Palencia [107]. Those results of mathematical analysis form the
fundamental layer on which the numerical analysis in this book is built.
The two main topics that are discussed here arise from the practical app-
lication of finite element methods (FEM) to Helmholtz problems.
First, FEM have been conceptually developed for the numerical discreti-

zation of problems on bounded domains. Their application to unbounded
domains involves a domain decomposition by introducing an artificial boun-
dary around the obstacle. At the artificial boundary, the finite element dis-
cretization can be coupled in various ways to some discrete representation
of the analytical solution. We review some of the coupling approaches in
Chapter 3, focusing on those methods that are based on the series represen-
tation of the exterior solution. In particular, we review localized Dirichlet-
to-Neumann and other absorbing boundary conditions, as well as the recent
perfectly matched layer method and infinite elements.
Second, when using discrete methods for the solution of Helmholtz prob-

lems, one soon is confronted with the significance of the parameter k. The
wave number characterizes the oscillatory behavior of the exact solution.
The larger the value of k, the stronger the oscillations. This feature has to
be resolved by the numerical model. The “rule of thumb” is to resolve a
wavelength by a certain fixed number of mesh points. It has been known
from computational experience that this rule is not sufficient to obtain re-
liable results for large k. Looking at this problem from the viewpoint of
numerical analysis, the reason for the defect can be found in the loss of
operator stability at large wave numbers. We address this topic in Chap-
ter 4, where we present new estimates that precisely characterize the error
behavior in the range of engineering computations. We call these estimates
preasymptotic in order to distinguish them from the well-known asympto-
tic error estimates for indefinite problems satisfying a G̊arding inequality.
In particular, we accentuate the advantages of the hp-version of the FEM,
as opposed to piecewise linear approximation. We also touch upon gene-
ralized (stabilized) FEM and investigate a posteriori error estimation for
Helmholtz problems. Our theoretical results are obtained mainly for one-
dimensional model problems that display most of the essential features that
matter in the true simulations.
In the introductory Chapters 1 and 2, we set the stage for the finite ele-

ment analysis. We start with an outline of the governing equations. While
our physical application is acoustic fluid–structure interaction, much of
the mathematics in this book may be relevant also for numerical electro-
dynamics. We therefore include a short section on Maxwell’s equations.
In Chapter 2, we first (Section 2.1) review mathematical techniques for
the analytical solution of exterior Helmholtz problems. Our focus is on the
separation of variables and series representations of the solution (comple-
mentary to the integral methods and representations), as needed for the
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outline of the coupling methods in Chapter 3. The second part (Sections
2.2–2.5) of Chapter 2 is a preparation of the finite element analysis in
Chapter 4. We first briefly review some necessary definitions and theorems
from functional analysis inasmuch as they are needed for the subsequent
investigation. Then we consider the variational formulation of Helmholtz
problems and discuss variational methods.
Computational results for three-dimensional scattering problems are re-

ported in Chapter 5.
This text is addressed to mathematicians as well as to physicists and

computational engineers working on scattering problems. Having a mixed
audience in mind, we attempted to make the text self-contained and easily
readable. This especially concerns Chapters 3 and 4. We hope that the illus-
tration with many numerical examples makes for a better understanding of
the theory. The material of the introductory chapters is presented in a more
compact manner for the convenience of later reference. It is assumed that
the reader is familiar with the basic physical and mathematical concepts
of fluid–structure interaction and/or finite element analysis. References to
various expositions of these topics are supplied.
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1
The Governing Equations of
Time-Harmonic Wave Propagation

In this chapter, we outline some of the basic relations of linear wave physics,
starting with acoustic waves, proceeding to elastic waves and fluid–solid
interaction, and finally considering the Maxwell wave equation. Thus we
deal with a scalar field (acoustics), a vector field (elastodynamics), the
coupling of these fields in fluid–solid interaction, or two coupled vector fields
(electrodynamics). While each class of problems has its distinctive features,
there are underlying similarities in the mathematical models, leading to
similar numerical effects in computational implementations.
We will be interested mostly in the time-harmonic case, assuming that

all waves are steady-state with circular frequency ω. We introduce here the
convention that the time variable in a time-dependent scalar field F (x, t)
is separated as

F (x, t) = f(x)e−iωt , (1.0.1)

where f is a stationary function. A similar convention holds for vector
fields.

1.1 Acoustic Waves

Acoustic waves (sound) are small oscillations of pressure P (x, t) in a com-
pressible ideal fluid (acoustic medium). These oscillations interact in such
a way that energy is propagated through the medium. The governing equa-
tions are obtained from fundamental laws for compressible fluids.
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1.1.1 Linearized Equations for Compressible Fluids
Conservation of Mass:

Consider the flow of fluid material with pressure P (x, t), density ρ(x, t),
and particle velocity V(x, t). Let V be a volume element with boundary
∂V , and let n(x), x ∈ ∂V , be the normal unit vector directed into the
exterior of V , see Fig. 1.1. Then V(x, t) ·n(x) is the velocity of normal flux

V,

n(x)

n(x)

n(x)

ρ

FIGURE 1.1. A volume element with definition of normal direction.

through ∂V . The conservation of mass in a unit time interval is expressed
by the relation

− ∂

∂t

∫
V

ρdV =
∮
∂V

ρ (V · n) dS . (1.1.1)

The surface integral on the right is transformed into a volume integral using
the Gauss theorem,

∮
∂V

(ρV) · n dS =
∫
V

div (ρV) dV .

We thus obtain ∫
V

(
∂ρ

∂t
+ div (ρV)

)
dV = 0 ,

which leads to the continuity equation

∂ρ

∂t
+ div (ρV) = 0 . (1.1.2)

Remark 1.1. The signs in (1.1.1) correspond to the decrease of mass due
to outflow (namely, in the direction of the exterior normal) of material. A
similar relation with opposite signs on both sides is obtained for inflow of
material/increase of mass.
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Equation of Motion:

Assume that the volume element V is subject to a hydrostatic pressure
P (x, t). The total force along ∂V is then F = − ∮ PndS, where again n
denotes the outward unit normal vector along ∂V . The second Newtonian
law F = ma now gives

−
∮
∂V

Pn dS =
∫
V

ρ
dV
dt

dV .

The total differential in the integral on the right is linearized as dV/dt ≈
∂V/∂t (see Remark 1.2 below). Further, from the Gauss theorem it follows
that − ∮

∂V
Pn dS = − ∫

V
∇P dV , where ∇ = {·,x , ·,y , ·,z } is the nabla

operator (gradient) in spatial cartesian coordinates. Thus we arrive at the
equation of motion (Euler equation)

ρ
∂V
∂t

= −∇P . (1.1.3)

Remark 1.2. Generally, the total differential dV/dt is expanded into the
nonlinear expression (cf. Landau–Lifshitz [86, p. 3])

dV
dt

=
∂V
∂t

+ (V · ∇)V.

With the assumption of small oscillations, this relation is linearized in
acoustics.

Using the time-harmonic assumption, we obtain the steady-state expres-
sion of the Euler equation,

iωρv = ∇p . (1.1.4)

where we applied the separation of variables as in (1.0.1) to the scalar field
P (x, t) and the vector field V(x, t). Introducing the vector field U(x, t) of
fluid particle displacements, the Euler equation is equivalently written as

ρ
∂2U
∂t2

= −∇P (1.1.5)

or, in stationary form,
ρω2u = ∇p . (1.1.6)

1.1.2 Wave Equation and Helmholtz Equation
By definition, sound is a small perturbation (P, ρ) of a constant state
(P0, ρ0) of a compressible, ideal fluid. At any field point x, the functi-
ons P (x, t), ρ(x, t) represent vibrations with a small amplitude. Using the
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Euler equation the velocities are also small. Assuming a linear material law,
we write

P = c2ρ, (1.1.7)

where the material constant c is called the speed of sound. Then, using
linearized versions of (1.1.2) and (1.1.3), we obtain

P,tt= c2ρ,tt= −c2ρ0 divV,t= c2 div (∇P ) ,

to arrive at the wave equation

∆P − 1
c2

P,tt= 0 , (1.1.8)

where ∆ = ∇ · ∇ is the Laplacian in spatial coordinates. Throughout
the book, we denote by f,t , f,x, etc. the partial derivatives ∂f∂t ,

∂f
∂x , etc.

With the assumption of time-harmonic waves (1.0.1), we finally obtain the
Helmholtz equation

∆p+ k2p = 0 , (1.1.9)

with
k :=

ω

c
. (1.1.10)

The physical parameter k of dimension m−1 is called the wave number.
This notion will become clear in the following paragraph.

One-Dimensional Wave Equation:

Let x ∈ R. It can be easily checked that functions of the form P (x, t) =
f(kx − ωt) are solutions of the one-dimensional wave equation. The value
of the function f does not change if d(kx − ωt) = 0 or, equivalently,

dx

dt
=

ω

k
. (1.1.11)

The expression

vph :=
dx

dt
(1.1.12)

is called the phase velocity of the solution f(kx− ωt). Comparing (1.1.11)
with (1.1.10) we see that the phase velocity of the one-dimensional solution
f(kx − ωt) is equal to the speed of sound in the acoustic medium and
hence depends on material properties only. A wave whose phase velocity
is independent of k or ω is called nondispersive. The phase velocity of
dispersive waves depends on the wave number k.
To illustrate the meaning of the parameter k, consider steady-state so-

lutions P (x, t) = p(x)e−iωt. The stationary part satisfies the Helmholtz
equation

p′′ + k2p = 0 ,
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with the general solution p(x) = Aeikx +Be−ikx. The solution is periodic;
i.e., p(x+ λ) = p(x) holds for all x with

λ =
2π
k

.

The parameter λ is called the wavelength of the stationary wave p. Thus k
is the number of waves per “unit” (2π) wavelength.
The corresponding time-dependent solution is

P (x, t) = Aei(kx−ωt) +Be−i(kx+ωt) . (1.1.13)

Computing the phase velocities, we see that the first term on the right-
hand side of (1.1.13) represents an outgoing wave (traveling to the right
with vph = c), whereas the second term is an incoming wave (traveling
to the left with vph = −c). Further, applying at any point x = x0 the
boundary condition

cP,x (x0) + P,t (x0) = 0 , (1.1.14)

we eliminate the incoming wave. Condition (1.1.14) thus acts as a nonre-
flecting boundary condition (NRBC) at x0. We summarize this in Table
1.1 as follows.

TABLE 1.1. Wave directions and nonreflecting boundary conditions.

Sign
convention:

P (x, t) = p(x)e−iωt

Solutions: P1 = ei(kx−ωt) P2 = e−i(kx+ωt)

Wave
direction:

d(kx− ωt) = 0 d(kx+ ωt) = 0

vph = x,t= c vph = x,t= −c
−→ ←−

(outgoing) (incoming)

NRBC: cP,x+P,t= 0 ↓ cP,x−P,t= 0
P,t= −iωP

↙ ↘
p,x−ikp = 0 p,x+ikp = 0

Plane Waves:

Important particular solutions of the 2-D and 3-D Helmholtz equations
are the plane waves

p(x) = ei(k·x)
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φ
x

k

1

2x
λ

FIGURE 1.2. Plane wave in 2-D.

with |k| = k. Writing (in 2-D) k = k{cosφ, sinφ}, we have
p(x) = eik(x1 cosφ+x2 sinφ),

describing a plane wave with wave number k moving in direction φ, see
Fig. 1.2. The wave front is a plane (reducing to a straight line in two di-
mensions) through the point (x1, x2) with normal n = k/k = {cosφ, sinφ}.
Along an axis x in direction k, plane waves are one-dimensional waves eikx,
as in the previous example. A nonreflecting boundary condition for a plane
wave can thus be prescribed if its direction is known. In general, this is not
possible. Instead, one can prescribe absorbing boundary conditions (ABC)
as an approximation to nonreflecting conditions.
The impedance of a plane wave is constant over the wave front and equal

to the characteristic impedance

z = ρc . (1.1.15)

Indeed, impedance is defined as the ratio of the force amplitude to the
particle velocity in the normal direction. Multiplying the Euler equation
(1.1.4) by the normal n = k/k and denoting vn = v · n we have iωρvn =
(k/k) · ∇p = ikp, since ∇p = ikp for plane waves, and (1.1.15) follows.

1.1.3 The Sommerfeld Condition
Considering wave propagation in free space (unbounded acoustic domain)
we postulate that no waves are reflected from infinity. The mathematical ex-
pression for this far-field condition is obtained from the Helmholtz integral
equation as follows. Let u(r) be a solution of the homogeneous Helmholtz
equation −∆u − k2u = 0 in an exterior domain Ω+ = R3 \ Ω, and let
g(r, r′) = g(|r′ − r|) be the free space Green’s function (fundamental solu-
tion). This function is defined everywhere in Ω+, relating an “observation
point” r = (x1, x2, x3) to a “source point” r′ = (x′

1, x
′
2, x

′
3). By definition,

this Green’s function satisfies the inhomogeneous Helmholtz equation

∆g(|r′ − r|) + k2g(|r′ − r|) = δ(|r′ − r|)
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for all r, r′ ∈ Ω+, where δ is the Dirac delta function. In three dimensions,
the Green’s function is given by

g(|r′ − r|) = eik|r
′−r|

4π|r′ − r| . (1.1.16)

Remark 1.3. In two dimensions, the function is

g(|r′ − r|) = iH
(1)
0 (k|r′ − r|)

4
, (1.1.17)

where H(1)
0 (x) is the cylindrical Hankel function of the first kind (see Chap-

ter 2).

Using the free space Green’s function, one can show (cf. Kress [85, p.
60]) that u(r), r ∈ Ω+, satisfies the integral equation

u(r) =
∫
∂Ω

[
u(r′)

∂

∂n′ g(r, r
′)− g(r, r′)

∂

∂n′ u(r
′)
]
dS(r′) . (1.1.18)

We truncate Ω+ at a fictitious far-field boundary in the form of a sphere SR
with large radius R that encloses Ω. The full region will then be recovered
by letting R → ∞. Thus ∂Ω+ = ∂Ω ∪ SR. We demand that∫

SR

[
u(r′)

∂

∂n′ g(r, r
′)− g(r, r′)

∂

∂n′ u(r
′)
]
dS(r′)→ 0 (1.1.19)

for R → ∞. For any fixed r ∈ Ω+, we may assume that the sphere SR is
sufficiently large that

R = |r′ − r| ≈ |r′| ,
and the normal derivatives ∂/∂n′ can be identified with ∂/∂R. Then (1.1.19)
becomes ∫

SR

1
R

(
ik u − u

R
− du

dR

)
eikR

4π
dS .

Hence waves are absorbed at infinity if (note that dS ∼ R2)

u = O
(
R−1) , ik u − du

dR
= o
(
R−1) , R → ∞ . (1.1.20)

Here, the notation f(x) = o(g(x)), x → ∞, means that the ratio f(x)/g(x)
approaches zero as x → ∞, while f(x) = O(g(x)) means that this ratio
is bounded for all x. Equation (1.1.20) is known as the Sommerfeld condi-
tion. We will call solutions of exterior Helmholtz problems that satisfy the
Sommerfeld condition radiating solutions.
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Remark 1.4. Strictly speaking, the Sommerfeld condition consists of two
equations, one of which characterizes the decay and the other the directio-
nal character of the stationary solution in the far field (cf. Dautray–Lions
[41, p. 94] or Sanchez Hubert–Sanchez Palencia [107, p. 329]). It can be
shown (Wilcox [119]; cf. also Colton–Kress [39, p. 18]) that any function
that satisfies both the Helmholtz equation and the radiation condition (i.e.,
the second equation in the Sommerfeld condition) automatically satisfies
the decay condition. Therefore, only the radiation condition is explicitly
assumed in most references.

A similar consideration leads to the Sommerfeld condition in R2,

u = O(R−1/2), ik u − du

dR
= o(R−1/2), R → ∞ . (1.1.21)

In the one-dimensional case, the condition

u′(x)− iku(x) = 0 (1.1.22)

selects the outgoing wave eikx from the set of solutions
{
e−ikx, eikx

}
. Unlike

the higher-dimensional case, this condition can be imposed for finite x as
a usual mixed boundary condition (also called a Robin condition).
A compact way of writing the radiation condition for any dimension d is

u = O
(
R−(d−1)/2

)
, ik u − du

dR
= o
(
R−(d−1)/2

)
, R → ∞ . (1.1.23)

1.2 Elastic Waves

In an elastic medium, waves propagate in the form of small oscillations of
the stress field. The dynamic equations of elasticity are obtained from the
same basic relations of continuum mechanics as the hydrodynamic equa-
tions. We review the basic relations only very briefly; a detailed introduc-
tion can be found, e.g., in Bedford–Drumheller [21].

1.2.1 Dynamic Equations of Elasticity
Equilibrium:

The derivatives of the stress tensor components σij and the components of
the applied dynamic load F are in equilibrium with the components of the
dynamic volume force ρsU,tt (here again U is the vector of displacements),

σij ,j +Fi = ρsUi,tt (1.2.1)

for i = 1, 2, 3. Note that the summation convention has to be applied in
the first term on the left; i.e., the sum is taken over the range of the index
j.
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Strain-Displacement Relation:

With the assumption of small deformations, the strains are related to the
displacements by the linearized equations

eij =
1
2
(Ui,j +Uj ,i ), i, j = 1, 2, 3 . (1.2.2)

Material Law:

The material is elastic:

σij = λellδij + 2Geij , i, j = 1, 2, 3 , (1.2.3)

with
λ =

Eν

(1 + ν)(1− 2ν) , G =
E

2(1 + ν)
,

where E and ν, respectively, denote Young’s modulus and the Poisson ratio
of the solid, and the summation convention applies for the term ell.
From equations (1.2.1), (1.2.2), and (1.2.3), the equation of elastodyna-

mic equilibrium is found to be

∆∗U+ F = ρsU,tt , (1.2.4)

where
∆∗U = G∆U+ (λ+G)∇(∇ ·U) . (1.2.5)

Here ∆U is the vector Laplacian of U given by ∆U = {∆U1,∆U2,∆U3}T ,
and ∇ ·U is the divergence of the vector field U.

1.2.2 Vector Helmholtz Equations
Equation (1.2.4) can be further transformed, introducing the Helmholtz
decomposition

U = ∇Φ+∇ ×Ψ , (1.2.6)

with scalar potential Φ and vector potentialΨ. This leads to (in the absence
of volume forces)

∇ [ρsΦ,tt−(λ+ 2G)∆Φ] +∇ × [ρsΨ,tt−G∆Ψ] = 0 ,

which is satisfied if the wave equations

Φ,tt−α2∆Φ = 0 , (1.2.7)
Ψ,tt−β2∆Ψ = 0 (1.2.8)

hold, where the elastic speeds of sound are defined as

α =
(
λ+ 2G

ρs

)1/2
, β =

(
G

ρs

)1/2
.



10 1. The Governing Equations of Time-Harmonic Wave Propagation

For G = 0, the equation (1.2.7) reduces to the acoustic wave equation.
Since λ = B − 2/3G, where B is the bulk modulus1 of the material, the
speed of sound in the acoustic medium is

c =

√
B

ρ
. (1.2.9)

All waves in the acoustic medium are compressional. In addition to the
compressional waves, an elastic medium also allows shear waves. For further
details, see, e.g., [21].
With the assumption of time-harmonic fields, the elastic wave equations

lead to the elastic Helmholtz equations

∆Φ + k2αΦ = 0 , (1.2.10)
∆Ψ+ k2βΨ = 0 , (1.2.11)

with the elastic wave numbers

kα :=
ω

α
, kβ :=

ω

β
.

Example 1.5. (In vacuo vibrations of a spherical shell). Consider an ela-
stic spherical shell freely vibrating in vacuo. We denote by t the constant
thickness of the shell and by a the radius of its midsurface, see Fig. 1.3. We

y

z
t

x

a

v

wu

FIGURE 1.3. Spherical shell with coordinate system and deflection components.

are interested in the eigenfrequencies of the vibrations. The characteristic
equations are obtained in the following steps:

1The bulk modulus is the material constant in the hydrostatic stress-strain relation
s = Be, where s = σll/3 is the hydrostatic pressure and e = ell is the volume dilatation.
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1. Solve the Helmholtz equations (1.2.10), (1.2.11) for the potentials Φ
and Ψ.

2. Compute the displacement field {u, v, w} from the potentials using
definition (1.2.6).

3. Compute the stress fields (in terms of displacements) using (1.2.2),
(1.2.3).

4. Set the stress fields to zero at the inner and outer shell boundaries to
obtain a homogeneous system of equations.

5. Compute the characteristic eigenvalues from the condition that the
determinant of the system vanishes.

For a detailed outline of this procedure, see Chang and Demkowicz [36]. For
the full 3–D solution, the homogeneous system consists of six equations. If
the shell is subject to nontorsional axisymmetric motions only; i.e., v = 0
and u = u(θ), w = w(θ), then the number of equations reduces to four.
Chang and Demkowicz further show that for thin shells (up to t/a = 0.05)
the first 25 eigenfrequencies are computed with sufficient accuracy from the
Kirchhoff–Love shell theory. In this theory, eigenfrequencies Ω are found as
the real solutions of the frequency equation (see also Junger–Feit [81, p.
231])

Ω4 − [2(1 + ν) + λn − (β2(λn + 1) + 1)(1− ν − λn)]Ω2

+(λn − 2)(1− ν2) + β2
[
λ3n − 4λ2n + λn(5− ν2)− 2(1− ν2)

]
= 0

with

Ω =
aω

cp
; λn = n(n+ 1); β =

t√
12a

; cp =
(

E

(1− ν2)ρ

)1/2
.

This equation is quadratic in Ω; there are two different resonant frequencies
for each mode except for the case n = 0, which permits only one positive
real solution.

1.3 Acoustic/Elastic Fluid–Solid Interaction

An acoustic wave that is incident on a rigid obstacle is totally reflected.
This is called rigid scattering of sound. If the obstacle is elastic, a part of
the incident energy is transmitted in the form of elastic vibrations. The
acoustic pressure waves act as time-varying loads, causing forced elastic
vibrations. In that case, we speak of elastic scattering. Conversely, if the
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acoustic medium picks up elastic vibrations of an embedded body in the
form of acoustic waves, we say that sound is radiated from the body.
In this section, we will obtain the equations for all these effects as special

cases of the general equations of fluid–solid interaction.

1.3.1 Physical Assumptions
We consider elastic scattering, making the following assumptions:

Ω

Ω

+

Γ

p ps
inc

u 

FIGURE 1.4. Fluid–solid interaction (schematic plot).

Space: Let Ω ⊂ R3 be a bounded domain of a solid (called obstacle) with
boundary Γ (called wet surface), which is enclosed by the unbounded fluid
domain Ω+ = R3 \ Ω; see Fig. 1.4. It is assumed that outgoing waves are
absorbed in the far field; i.e., no waves are reflected from infinity.

Material: The fluid is supposed to be ideal, compressible, and homoge-
neous with density ρf and speed of sound c. The solid obstacle is considered
as rigid or linearly elastic with density ρs. The scalar pressure field in the
fluid is denoted by P (x, t). The vector field of solid displacements is denoted
by U(x, t).

Time: All waves are steady-state (time-harmonic) with circular frequency
ω, satisfying the separation convention (1.0.1).

Range of unknowns: The amplitudes of the oscillations both in the solid
and in the fluid regions are supposed to be small.

Load: In the fluid region Ω+, an incident acoustic field Pinc(x, t) =
pinc(x)e−iωt is given and/or the solid region is subject to a time-harmonic
driving force F(x, t) = f(x) exp(−iωt).

Coordinates: A cartesian coordinate system is fixed in R3 throughout all
calculations (global Lagrangian approach).
The objective is to determine the stationary acoustic field of scattered

pressure p(x) for x ∈ Ω+. This solution is complex-valued. The solution of
physical interest is then the real part of P (x, t) = p(x)e−iωt. We have

ReP = Re ((Re p+ i Im p)(cosωt − i sinωt))
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= |p|
(
Re p
|p| cosωt+

Im p

|p| sinωt
)

= |p| sin(φ+ ωt) ,

where we define

φ := arctan
Re p
Im p

. (1.3.1)

Hence, in the standard terminology for harmonic motion (see, e.g., Inman
[77, p. 12]), the absolute value of the stationary solution is the amplitude
of the physical solution, whereas φ is its phase.

1.3.2 Governing Equations and Special Cases
Transmission Conditions:

Consider an arbitrary point P ∈ Γ of the wet surface. Let n be a unit vector
in the outward normal direction and let {t1, t2,n} be a local orthonormal
basis at P; see Fig. 1.5. We then can formulate two conditions of static
equilibrium at the point P.

t
t

T
P

n2

1

Γ

FIGURE 1.5. Local orthonormal coordinate system at the point P ∈ Γ.

The pressure is in static equilibrium with the traction normal to the solid
boundary:

−(p+ pinc) = Tn , (1.3.2)

where pinc is the known incident pressure.
Since the fluid is supposed to be ideal, no tangential traction occurs at

the boundary:
Tt1 = Tt2 = 0 . (1.3.3)

The local components of the traction vector T = {Tt1 , Tt2 , Tn}T are re-
lated by an orthonormal transform to the global cartesian components
T = {Tx, Ty, Tz}T . These components are computed by

Ti = σijnj ,
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where nj are the cartesian components of the normal vector n. In local
coordinates, we have T = {0, 0, Tn}T , whence

Tn = T · n = Tini = σijninj ,

and the equilibrium conditions are equivalently written as

σijninj = −(p+ pinc) . (1.3.4)

Another equation is obtained from the compatability condition that the
normal displacements of solid and fluid are equal at the wet surface. We
multiply the Euler equation (1.1.6) by the normal vector n and interpret
the resulting normal displacements as solid displacements. This leads to

ρfω
2u · n = ∂(p+ pinc)

∂n
. (1.3.5)

Using the time-harmonic velocity form (1.1.4) of the Euler equation, we
can write alternatively

−iωρfvn =
∂(p+ pinc)

∂n
,

relating the normal particle velocity to the normal pressure derivative.

Governing Equations:

The transmission conditions, together with the elastodynamic and the
acoustic equations, form the following general system of equations for fluid–
solid interaction:

∆∗u+ ρsω
2u = −f in Ωs , (1.3.6)

ρfω
2u · n− ∂p

∂n
=

∂pinc
∂n

on Γ , (1.3.7)

σij(u)ninj + p = −pinc on Γ , (1.3.8)

∆p+ k2p = 0 in Ω+ , (1.3.9)

p = O
(
R−(d−1)/2

)
,

dp

dR
− ik p = o

(
R−(d−1)/2

)
, R → ∞ , (1.3.10)

where ∆∗ in the first equation is the elasticity operator; see (1.2.5). In
equations (1.3.9), (1.3.10), k = ω/c is the wave number in the fluid.



1.3 Acoustic/Elastic Fluid–Solid Interaction 15

Special Cases:

From the general equations above, we can deduce several important special
cases:

1. u = 0
Rigid scattering: (1.3.7), (1.3.9), (1.3.10).

2. Tn = 0
Soft scattering: (1.3.8), (1.3.9), (1.3.10).

3. u = 0 , pinc = 0
Wave propagation in free space: (1.3.9), (1.3.10).

4. pinc = 0
Radiation of sound from an elastic body vibrating in fluid: all equa-
tions.

5. pinc = 0 , p = 0
Vibrations of an elastic body in vacuo: (1.3.6), (1.3.8).

Since the model is linear, the general case can be interpreted as a su-
perposition of special cases as follows. We write the solution for elastic
scattering p = pse formally as pse = pr+ ps∞, where ps∞ is the solution for
rigid scattering. Since ∂ps∞/∂n = −∂pinc/∂n, the transmission condition
(1.3.7) reduces to

ρfω
2u · n− ∂pr

∂n
= 0.

The equilibrium condition reads

Tn = pinc + ps∞ + pr.

Referring to the appropriate special cases, we see that pr can be interpreted
as the pressure radiated from the elastic body.
We conclude with a simple example for solid–fluid interaction.

Example 1.6. The system of one-dimensional equations

−E
d2u

dx2
− ρsω

2u = f , 0 ≤ x ≤ l

u = 0 , x = 0 ,

ρfω
2u − dp

dx
= 0 , x = l ,

E
du

dx
+ p = 0 , x = l ,

−d2p

dx2
− k2p = 0 , x ≥ l ,

dp

dx
− ikp = 0 , x → ∞ ,
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can be physically interpreted as the forced longitudinal vibrations of a slab
of length l that is coupled to an infinite fluid layer. Recall that in one
dimension, the radiation condition can be prescribed at any field point
x > l. Such a condition can even be imposed directly on the slab. Indeed,
the solution in the fluid is p = p0 exp(ikx), where the amplitude p0 is
determined by the boundary and transmission conditions. Inserting this
result into the transmission conditions at x = l, we can eliminate p0 to
obtain the boundary condition

E
du

dx
− iω

√
ρfBu = 0 at x = l , (1.3.11)

or, equivalently,

a
du

dx
− iku = 0 at x = l , (1.3.12)

with the nondimensional parameter a = E/ρfc
2. Thus the solution of the

coupled problem can be reduced to the solid domain; cf. Demkowicz [42].

A second example (elastic scattering from a thin spherical shell) will be
given in Chapter 2.

1.4 Electromagnetic Waves

The electromagnetic wave equations follow from Maxwell’s electrodynamic
equations. Maxwell’s equations describe the interaction between two time-
varying force fields: the electric field and the magnetic field. Electric fields
are generated by charges. In conducting media, electric fields enforce cur-
rents (flow of free electric charges). The interaction of currents generates
the magnetic force field. If the magnetic field does not change in time,
it does not influence the electric field. The static electric and magnetic
fields are coupled only implicitly via their relation to the steady current.
However, any change of a magnetic field produces an electric field. Thus
the fields are directly coupled in the dynamic case. A simple transforma-
tion of Maxwell’s equations shows that both the electric and the magnetic
fields satisfy a vector wave equation, showing that in both fields energy is
transmitted in the form of waves.

1.4.1 Electric Fields
By Coulomb’s law, the force exerted by a charge Q on a test charge q is

FQ =
qQ

4πε0R2
aR ,

where ε0 is a material constant (permittivity), R is the distance between
the charges, and aR is a unit vector pointing from Q in the direction of q.
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Generalizing to a volume distribution of charges with charge density ρV ,
the force exerted on q is

F =
∫
V

qρV
4πε0R2

aRdV ,

which leads directly to the definition of electric field intensity

E =
F
q
=
∫
V

ρV
4πε0R2

aRdV .

Gauss’s law states that the total charge in a volume enclosed by a closed
surface S is equal to the surface integral of the electric flux density ε0E:∮

S

ε0E · ds =
∫
V

ρ dV .

Here ds := ndS is the outward differential surface vector, and ρ is the
charge per unit volume.
The electric field produces a flow of free charges in a conducting medium.

By Ohm’s law, the current in a conductor is proportional to the applied
electrical field:

J = σE ,

where σ is the conductivity of the material.
Similarly to the conservation of mass in continuum mechanics, the prin-

ciple of conservation of charge states that the current passing through any
closed surface S is equal to the decrease of charge in the volume enclosed
by S: ∮

S

J · ds = − ∂

∂t

∫
V

σdV .

1.4.2 Magnetic Fields
The magnetic field intensity H characterizes the force field that is exerted
by a current element on another current element in its vicinity. By Ampère’s
law, the integral of the (static) magnetic field intensity around any closed
path is equal to the total current enclosed by that path,∮

c

H · dl =
∫
S

J · ds .

Analogously to electric flux, the magnetic flux density B is related to the
field intensity by the material law

B = µH ,

where the material parameter µ is called the permeability. The integral
of the magnetic flux over any closed surface is zero, since magnetic point
sources (that would be similar to electric charges) do not exist:∮

S

B · ds = 0 .
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1.4.3 Maxwell’s Equations
Time-varying magnetic fields produce electric fields. The interaction is de-
scribed by Faraday’s law,∮

c

E · dl = − ∂

∂t

∫
S

B · ds ,

and the dynamic Ampère’s law reads∮
c

H · dl =
∫
S

J · ds+
∫
S

∂D
∂t

· ds .

Assuming linear material laws with constant material parameters, we col-
lect the full system of Maxwell’s equations in integral form:∮

c

E · dl = −µ
∂

∂t

∫
S

H · ds ,∮
S

E · ds =
1
ε0

∫
V

ρdV ,∮
c

H · dl = σ

∫
S

E · ds+ ε0
∂

∂t

∫
S

E · ds ,∮
S

H · ds = 0 ,

The corresponding differential equations

∇ ×E = −µ
∂

∂t
H ,

∇ ·E =
ρ

ε0
,

∇ ×H = σE+ ε0
∂

∂t
E ,

∇ ·H = 0

are obtained from the integral equalities by applying the divergence theo-
rem ∮

S

F · ds =
∫
V

∇ · FdV

or Stokes’s theorem ∮
c

F · dl =
∫
V

(∇ × F) · ds ,

respectively. If the electric field is free of charges (ρ ≡ 0), then the system
of Maxwell’s equations reduces to the coupled equations

∇ ×E+ µ
∂

∂t
H = 0 ,

∇ ×H− σE− ε0
∂

∂t
E = 0 ,
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with the condition that the vector fields be divergence-free. This system
can be transformed to the vector wave equation

∇2A = µσ
∂A
∂t

+ µε0
∂2A
∂t2

,

where A = E or H. The stationary form of the Maxwell wave equation is

∇2A+ γ2A = 0 , (1.4.1)

where
γ2 = ω2µε0 + iωµσ .

For exterior radiation and scattering problems, the Maxwell wave equation
is associated with the Silver–Müller radiation condition [119]

lim
R→∞

R (R0 × (∇ ×A) + iγA) = 0; (1.4.2)

cf. the Sommerfeld radiation condition in the scalar case. Here R0 is a
unit vector in the direction of R, and R = |R|. Solutions of the Maxwell
wave equation satisfying (1.4.2) are called radiating solutions. The radiating
solutions automatically satisfy the decay condition |A| = O

(
R−1); see the

discussion on the Sommerfeld condition in Section 1.1.3.
If the medium is lossless (σ = 0), then the wave number is real, and the

Maxwell wave equation transforms to the vector Helmholtz equation

∇2A+ k2A = 0 ,

with
k2 = ω2µε0 .

1.5 Summary

The physical effect of wave propagation is described by the scalar wave
equation (acoustics) or the vector wave equation (elastic waves) or a system
of two vector wave equations (electrodynamics). In the time-harmonic case,
the wave equations transform to the corresponding Helmholtz equations.
The Helmholtz equations are characterized by a physical parameter—the
wave number. If no loss of energy occurs in the medium, the wave number
is real. For exterior problems, we impose the Sommerfeld condition (or
the Silver–Müller condition for Maxwell’s equations) in the far field. This
condition, which prevents the reflection of outgoing waves from infinity,
introduces the radiation damping into the physical model. Consequently,
standing waves cannot occur in exterior problems.
The components of vector Helmholtz equations satisfy scalar Helmholtz

equations. Thus the investigation of scalar (acoustic) Helmholtz equations
is also relevant for the physical problems of elastic and electrodynamic wave
propagation.
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1.6 Bibliographical Remarks

The material of this chapter can be found in many textbooks and mono-
graphs. We have used mostly the corresponding volumes of the treatise by
Landau and Lifshitz [86] as well as the textbooks by Nettel [99] and by
Bedford and Drumheller [21]. The monograph by Junger and Feit [81] is a
standard reference for formulations and methods in acoustic scattering and
fluid–solid interaction. A very precise and detailed outline of the mathe-
matical models is given by Dautray and Lions [41]. For instance, we have
introduced here the assumption of time-harmonic behavior without further
ado. This assumption has to be understood in its asymptotic meaning, as
given in [41, p. 92, Remark 4].



2
Analytical and Variational Solutions of
Helmholtz Problems

In this chapter we review essential facts concerning the analytical (“strong”)
and variational (“weak”) solutions of exterior Helmholtz problems. This is
in preparation for the following chapters, where we will treat the solution
of exterior Helmholtz problems with finite element methods. The finite ele-
ment discretization of the exterior is carried out in a small annular domain
enclosing the scatterer. The solution behavior in the exterior of that do-
main must be modeled and coupled appropriately to the degrees of freedom
of the finite element model. Thus information from the analytical solution
is used in the exterior region, leading to a semianalytical numerical model.
In particular, one has to make sure that essential characteristics of the ma-
thematical formulation, such as the radiation damping, are carried over to
the numerical approximation.
As a practical matter, solutions to partial differential equations can be

found in the form of an integral representation or by separation of variables
(which, in general, leads to a series representation).1 Integral representa-
tions are used in the boundary integral method. For our purpose of finite
element analysis and simulation, we will be mostly interested in the coup-
ling of finite elements with various discretizations of the separated solution.
Further, we review variational formulations of exterior Helmholtz problems
and discuss variational methods. In particular, we explore the conditions

1cf. Morse and Feshbach [95, pp. 493-494]: “Aside from a few cases where solutions
are guessed and then verified to be solutions, only two generally practicable methods of
solution are known, the integral solution and the separated solution.”
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for well-posedness of variational problems with indefinite variational forms
and discuss the convergence of variational methods in this case.

2.1 Separation of Variables

We illustrate the technique on Helmholtz problems in cartesian, spherical,
and cylindrical coordinates. The solutions will be used in the semianalytical
discretization methods described in Chapter 3.

2.1.1 Cartesian Coordinates
Consider the Helmholtz equation ∆u+ k2u = 0 in R3. Looking for nontri-
vial solutions of the form u = X(x)Y (y)Z(z), we get

X ′′Y Z +XY ′′Z +XY Z ′′ + k2XY Z = 0 ,

which we can rewrite as

−X ′′

X
=

Y ′′

Y
+

Z ′′

Z
+ k2 .

Since the right-hand side of the latter equation does not depend on x,
equality can hold only if both sides are equal to a constant, say λ. Thus we
find that the two equations

X ′′ + λX = 0 ,
Y ′′

Y
+

Z ′′

Z
+ k2 − λ = 0

must hold simultaneously. Repeating now the argument for the second
equation, we see that functions X,Y, and Z satisfy

X ′′ + λX = 0 ,
Y ′′ + νY = 0 , (2.1.1)

Z ′′ + (k2 − λ − ν)Z = 0 ,

for independent constants λ, ν. Since we are interested in propagating so-
lutions, we consider only positive real values of these constants, letting
λ := α2, ν := β2 with α, β ∈ R. Then the last equation can be rewritten as

Z ′′ + γ2Z = 0 ,

with
γ :=

√
k2 − α2 − β2 .
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For k2 ≥ α2 + β2, the parameter γ is also real, and we have obtained
solutions in the form of plane waves

u(x, y, z) = ei(αx+βy+γz) ,

where the parameters α, β, γ satisfy the dispersion relation

α2 + β2 + γ2 = k2 . (2.1.2)

For α2 + β2 > k2, γ is complex, and hence the solution is decaying in
the z-direction. Such solutions are called evanescent waves. Similarly, one
obtains evanescent waves by allowing α or β to be a complex number.
Consider the function

u(x, y, z) =
∫ ∞

−∞

∫ ∞

−∞
U(α, β)ei(αx+βy+γz)dαdβ , (2.1.3)

where α, β, γ have to satisfy the dispersion relation (2.1.2), and U(α, β) is
an amplitude function such that the integral is defined. This general form
of the separated solution is called a “packet” of plane waves with wave
vector k = {α, β, γ}. Choosing γ = +

√
k2 − α2 − β2 defines a wave packet

traveling to the right on the z-axis (outgoing in the z-direction), whereas
the choice γ = −

√
k2 − α2 − β2 defines a wave packet traveling to the left.

Example 2.1. Wave Guide with a Square Cross-Section. In Fig. 2.1,
a wave guide with a square cross-section 0 ≤ x, y ≤ π is depicted. Assume
that the pressure-release condition p = 0 is given at the walls of the wave
guide. Looking for a solution of the Helmholtz equation ∆p + k2p = 0 by

0

π
x

y

π

z

FIGURE 2.1. Wave guide with a square cross-section.

separation of variables, we arrive at the system (2.1.1). From the pressure-
release condition, we find that the separated boundary conditions for the
first two equations are X(0) = X(π) = 0, Y (0) = Y (π) = 0. The correspon-
ding boundary value problems have eigenfunctions X = sinnx, Y = sinmy
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for the integer eigenvalues λ = n2, ν = m2, respectively. The solution p
hence can be written as

p(x, y, z) =
∞∑

m,n=1

pmnZmn(z) sinnx sinmy , (2.1.4)

where the functions Zmn(z) satisfy

Z ′′
mn + γ2mnZmn = 0 ,

with
γmn :=

√
k2 − n2 − m2 .

The elementary solutions of this equation are

Z(1)mn = eiγmnz , Z(2)mn = e−iγmnz ,

which are propagating if k2 ≥ m2 + n2. With the convention of Table 1.1,
we find that the functions Z(1)mn represent waves that travel in the positive
z-direction (outgoing solutions), whereas functions Z(2)mn represent incoming
solutions.

2.1.2 Spherical Coordinates
Spherical Solutions:

Consider the Neumann problem in the exterior of a sphere of radius a. We
seek a function u(r, φ, θ) satisfying

∆u+ k2u = 0 , r > a , (2.1.5)
∂u

∂r
= w , r = a , (2.1.6)

∂u

∂r
− iku = o(r−1) , r → ∞ , (2.1.7)

where r =
√

x2 + y2 + z2, θ = arctan(
√

x2 + y2/z), φ = arctan(y/x) are
the spherical coordinates; see Fig. 2.2. We recall that solutions of exte-
rior Helmholtz problems that satisfy the Sommerfeld condition are called
radiating solutions.
The Laplacian in spherical coordinates has the form

∆u(r, θ, φ) =
1
r2

[
∂

∂r

(
r2

∂u

∂r

)
+

1
sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1
sin2 θ

∂2u

∂φ2

]
.

Looking for a solution u = f(r)g(θ)h(φ), we obtain the separated ordinary
differential equations

d

dr

(
r2

df(r)
dr

)
+ (k2r2 − λ)f(r) = 0 , (2.1.8)
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θ

ϕ

x

y

z

r

FIGURE 2.2. Spherical coordinates.

sin θ
d

dθ

(
sin θ

dg(θ)
dθ

)
+
(
λ sin2 θ − ν

)
g(θ) = 0 , (2.1.9)

d2h(φ)
dφ2

+ νh(φ) = 0, (2.1.10)

where λ and ν are constants. The function f is defined in the exterior
r > a, whereas the functions g, h are defined on S. Moreover, the function
f satisfies the Sommerfeld condition.
Since S is a closed surface, the function h is subject to the periodi-

city condition h(0) = h(2π). Equation (2.1.10) hence admits the solutions
sinmx, cosmx for ν = m2,m = 0, 1, 2, . . .
Equation (2.1.9) can be transformed via t := cos θ to

(1− t2)
d2g

dt2
− 2tdg

dt
+
(
λ − m2

1− t2

)
g(t) = 0 .

For λ = n(n + 1), n = 0, 1, . . ., this is Legendre’s equation. The solutions
are the associated Legendre functions

gmn(θ) = Pmn (cos θ), 0 ≤ m ≤ n .

These functions are defined from the Legendre polynomials by

Pmn (t) := (1− t2)m/2
dmPn(t)

dtm
, (2.1.11)

where the Legendre polynomials are defined by the recurrence relation

(n+ 1)Pn+1(t) = (2n+ 1)tPn(t)− nPn−1(t) ,
P1(t) = t , (2.1.12)
P0(t) = 1 .

Finally, for λ = n(n+1), equation (2.1.8) is Bessel’s differential equation.
For each n, this equation has the independent solutions

h(1)n (kr) = i−n−1 e
ikr

kr

n∑
j=0

(
n+

1
2
, j

)
(−2ikr)−j ,
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h(2)n (kr) = in+1
e−ikr

kr

n∑
j=0

(
n+

1
2
, j

)
(2ikr)−j ,

called spherical Hankel functions [1, 10.1.16–17]. We have used the notation(
n+

1
2
, j

)
=

(n+ j)!
j!(n − j)!

for integer n, j ≥ 0 [1, 10.1.9]. It is easy to see that in the far field (large
r) the Hankel functions depend on r as

h(1)n (kr) ∼
eikr

r
, h(2)n (kr) ∼

e−ikr

r
,

and hence the Hankel functions of the second kind represent incoming
waves, which are eliminated by the Sommerfeld condition. In the follo-
wing, we will omit the superscript where no confusion can arise, writing
hn(z) for the Hankel functions of the first kind h

(1)
n (z).

Collecting results, we can write the solution u as

u(r, θ, φ) =
∞∑
n=0

n∑
m=0

hn(kr)Pmn (cos θ)(Anm cos(mφ) +Bnm sin(mφ)) .

(2.1.13)
If u is a radiating solution of the Helmholtz equation in the domain exterior
to the spherical surface |x| = a, then the series (2.1.13) converges absolutely
and uniformly in every closed and bounded domain that is contained in
|x| > a (cf. Colton–Kress [39, p. 33]).

Spherical Harmonics:

Using the de Moivre identity, (2.1.13) is more compactly written as

u(r, θ, φ) =
∞∑
n=0

hn(kr)
n∑

m=−n
cmnymn(θ, φ) , (2.1.14)

where cmn are complex coefficients and

ymn(θ, φ) := P |m|
n (cos θ)eimφ, −n ≤ m ≤ n ,

are the spherical harmonics. From the construction outlined above, it is
clear that the spherical harmonics are eigenfunctions of the Laplace opera-
tor for r ≡ constant. The harmonics

y0n = Pn(cos θ)

do not depend on φ and thus represent the axisymmetric (with respect to
the z-axis) modes. Some important properties of the spherical harmonics
are listed below. For the proof, see, e.g., Colton–Kress [39, pp. 20–26].
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(1) For each n ≥ 0, there exist exactly 2n + 1 linearly independent
spherical harmonics ymn, m = −n, . . . , n.
(2) The spherical harmonics are orthogonal with respect to the inner

product (u, v)0 =
∫
S
uv̄dS, where S is the surface of the unit sphere. More

precisely, we have∫
S

ymnȳm′n′dS = 0 if m �= m′ or n �= n′ ,

and∫
S

|ymn|2dS =
∫ 2π

0
dφ

∫ π
0

|ymn|2 sin θdθ = 4π
(2n+ 1)

(n+ |m|)!
(n − |m|)! =: α

2
mn .

To have an orthonormal system, we redefine

Ymn :=
ymn
αmn

.

The orthonormalized harmonics Ymn satisfy∫
S

YmnYm′n′dS = δmm′δnn′ .

(3) Each square-integrable function f(θ, φ) (i.e. the integral
∫
S
|f |2dS exists

and is finite) can be expanded into a series of spherical polynomials

f(θ, φ) =
∞∑
n=0

n∑
m=−n

fmnYmn(θ, φ) , (2.1.15)

where

fmn =
∫
S

f(θ′, φ′)Ymn(θ′, φ′)dS′ . (2.1.16)

Solution of Boundary Value Problems:

Properties (2) and (3) are effectively used to determine the unknown co-
efficients cmn in (2.1.14) from the boundary condition (2.1.6). By (3), the
data can be expanded as

w(θ, φ) =
∞∑
n=0

n∑
m=−n

wmnYmn(θ, φ) ,

leading to the equality

∂u

∂r
|r=a =

∞∑
n=0

kh′
n(ka)

n∑
m=−n

cmnYmn(θ, φ) =
∞∑
n=0

n∑
m=−n

wmnYmn(θ, φ) .
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Multiplying this equation by Y mn and integrating over S, we get, by or-
thogonality,

cmn =
wmn

kh′
n(ka)

.

Similarly, the coefficients for the exterior Dirichlet problem are

cmn =
wmn

hn(ka)
.

Example 2.2. (Rigid Scattering from a Sphere) Assume that a plane
wave with amplitude P0 is incident in the z-direction on a sphere with
radius a. The incident pressure is written in spherical coordinates as

pinc(r, θ) = P0e
ikr cos θ. (2.1.17)

The exponential function in (2.1.17) can be expanded as [1, 10.1.47]

eikr cos θ =
∞∑
n=0

(2n+ 1)inPn(cos θ)jn(kr) .

Here jn(z) are the spherical Bessel functions of the first kind, which can
be defined by an ascending series as [1, 10.1.2]

jn(z) =
zn

1 · 3 · · · · · (2n+ 1)

(
1−

1
2z
2

1!(2n+ 3)
+

( 1
2z
2
)2

2!(2n+ 3)(2n+ 5)
− · · ·

)
.

The problem is symmetric with respect to the angular coordinate φ, and
hence only coefficients wn := wn0 need be computed in the expansion for
∂u/∂r. We compute the boundary data for the Neumann condition (2.1.6)
as

w(θ, φ) = −dpinc
dr

∣∣∣∣
r=a

= −kP0

∞∑
n=0

(2n+ 1)inPn(cos θ)j′
n(ka) .

Hence the coefficients in the data expansion are wn = −kP0(2n+1)inj′
n(ka),

and we readily compute

cn0 =: cn =
wn

kh′
n(ka)

= −P0i
n(2n+ 1)

j′
n(ka)

h′
n(ka)

.

The scattered wave is thus

ps∞(r, θ) = −P0

∞∑
n=0

in(2n+ 1)
j′
n(ka)

h′
n(ka)

Pn(cos θ)hn(kr) . (2.1.18)
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Example 2.3. (Elastic Scattering from a Thin Spherical Shell). As
in the case of vibrations in vacuo (Example 1.4), the stress field and dis-
placement field are computed from the potentials Φ and Ψ. The stress field
again satisfies homogeneous boundary conditions at the interior boundary.
A nonhomogeneous condition (cf. (1.3.8)) is given for the stress resultant
on the wet surface. Applying separation of variables and expansion into
spherical harmonics, the exact solution for the scattered pressure in terms
of the Kirchhoff–Love shell theory is found to be

pr(r, θ) = P0
ρfcf
(kro)2

∞∑
n=0

in
(2n+ 1)Pn(cos θ)hn(kr)
(h′
n(kro))2(Zn + zn)

, (2.1.19)

where we used notations cf , ρf , respectively, for the speed of sound and
density in the fluid, and ro for the outer radius of the shell (marking the
wet surface). As before, hn are the spherical Hankel functions of the first
kind.
The expression Zn is the modal mechanical impedance, defined as the

ratio of the nth pressure mode to the corresponding shell velocity mode,

Zn :=

∣∣∣∣ Ω2 − (1 + β2)(ν + λn − 1) −β2(ν + λn − 1)− (1 + ν)
−λn(β2(ν + λn − 1) + (1 + ν)) Ω2 − 2(1 + ν)− β2λn(ν + λn − 1)

∣∣∣∣
−iω

∣∣∣∣∣
Ω2 − (1 + β2)(ν + λn − 1) 0

−λn(β2(ν + λn − 1) + (1 + ν))
−a2(1− ν2)

Et

∣∣∣∣∣
,

(2.1.20)
where, as before, λn = n(n+ 1) and t denotes the thickness of the sphere.
Further, the modal specific acoustic impedance, defined as the ratio of

pressure to normal fluid particle velocity, is

zn = iρfcf
hn(kro)
h′
n(kro)

. (2.1.21)

The details of the solution procedure can be found, for example, in
Junger–Feit [81] or in Chang and Demkowicz [37].
Comparing to the case of vibrations in vacuo, we see that the modal me-

chanical impedance is zero at the eigenfrequencies of the elastic shell. Still,
no resonance of the coupled system fluid–solid occurs due to the imaginary
term zn. Thus the acoustic impedance represents the fluid damping of the
coupled system. The behavior of the system is close to resonance for small
zn. Note that zn = 0 for ρf = 0. This is the case of forced vibrations in
vacuo where resonance occurs at the eigenfrequencies of free vibration.

2.1.3 Cylindrical Coordinates
Certain problems of scattering from infinite cylinders can be reduced to
two-dimensional scattering from a “circle.” We then seek radiating solutions
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to the Helmholtz equation in polar coordinates. Separation of variables
leads to

u(r, φ) =
∞∑
n=0

Hn(kr)(An cos(nφ) +Bn sin(nφ)) ,

where Hn(z) =: H
(1)
n (z) are the cylindrical Hankel functions of the first

kind. These functions are defined as

Hn(z) = Jn(z) + iYn(z) ,

where

Jn(z) =
(z
2

)n ∞∑
j=1

(
− z2

4

)j
j!(n+ j)!

are the cylindrical Bessel functions of the first kind and Yn(z) are the
cylindrical Bessel functions of the second kind.2 By identifying H−n =
Hn, n = 1, 2, . . ., this can formally also be written as

u(r, φ) =
∞∑

n=−∞
unHn(kr)einφ . (2.1.22)

For the solution of boundary value problems, the same procedure as in three
dimensions applies, but the expansion into spherical harmonics is replaced
by Fourier expansion around the unit circle. Hence,

un =
1
2π

∫ 2π

0
u(φ)e−inφ dφ .

Example 2.4. (Rigid Scattering of a Plane Wave). We assume an
incident plane wave as in (2.1.17). Using an addition theorem [1, 9.1.44–
45], we decompose

pinc(r, θ) = P0e
ikr cos(θ)

= 2P0
∞∑
n=0

′
inJn(kr) cos(nθ) , (2.1.23)

where the ′ after the sum symbolizes the rule that the term corresponding
to n = 0 is multiplied by the factor 1/2. The scattered pressure is then
computed as

ps∞(r, θ) = −2P0
∞∑
n=0

′
in

J ′
n(ka)Hn(kr)

H ′
n(ka)

cos(nθ) , (2.1.24)

2The definition of these functions is beyond the scope of this book. For a detailed
introduction to Bessel functions, see [29].
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and the total pressure field on the wet surface is

p(a, θ) = pinc + ps∞ = 2P0
∞∑
n=0

′
in
(
Jn(ka)− J ′

n(ka)Hn(ka)
H ′
n(ka)

)
cos(nθ) .

2.1.4 Atkinson–Wilcox Expansion
Using the integral representation of radiating solutions, Wilcox [119] shows
that any vector field A(r) satisfying for r = |r| > c the vector Helmholtz
equation (1.4.1) and the Silver–Müller radiation condition (1.4.2) can be
expanded as a function of r in the series

A(r) =
eikr

r

∞∑
n=0

An(θ, φ)
rn

, (2.1.25)

where r, θ, φ are the spherical coordinates of r. The series converges abso-
lutely and uniformly in the parameters r, θ, φ in any region r ≥ c+ ε > c.
The series is differentiable with respect to all coordinates any number of
times, and the derivatives have the same convergence properties as the
original expansion.
For a scalar field satisfying the Helmholtz equation and the Sommerfeld

radiation condition, it is shown that similarly

u(r) =
eikr

r

∞∑
n=0

un(θ, φ)
rn

, (2.1.26)

with the same convergence properties as in the vector case.
The expansion theorems are proven without an assumption on the decay

character of the solution. Hence the fact that

|u| = O(r−1)

asymptotically for large r follows from the theorem, which assumes only
that u is a radiating solution (cf. the discussion in Section 1.1.3).
For the two-dimensional case in polar coordinates, similar expansions

were given by Karp [82]. He proves that for each outgoing wave function
the expansion

u(kr) = H
(1)
0 (kr)

∞∑
n=0

fn(θ)
rn

+H
(1)
1 (kr)

∞∑
n=0

gn(θ)
rn

(2.1.27)

converges absolutely and uniformly for r > a > 0. Also, this representation
can be differentiated any number of times to yield again a convergent series.
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2.1.5 Far-Field Pattern
For large r, the Atkinson–Wilcox expansion leads to the asymptotic equa-
lity

u(r) � eikr

r
F (θ, φ) ,

disregarding terms of order O(r2). The function F (θ, φ), which describes
the angular behavior of u at a large distance from the origin, is called the
far-field pattern of u. It can be equivalently defined as

F
(r
r

)
� u(r) r e−ikr , r → ∞ . (2.1.28)

The integral representation can be used to compute the far-field pat-
tern of a radiating solution. The radius R = |r− r′| can for r � r′ be
approximated as

R = r

(
1 +
(
r′

r

)2
− 2 r′

r
cos(r, r′)

)1/2

� r (1− r′

r
cos(r, r′) ) = r − r · r′

r
,

where we have neglected the square of r′/r and introduced a first order ap-
proximation for the square root. Inserting this approximation into (1.1.16),
we obtain

g(r, r′) � 1
4π

eikr

r
exp
(
−ik

r · r′

r

)
.

We can assume without loss of generality that r′ lies on the unit sphere S0.
Hence we write r′ = n′ to obtain the asymptotic expression

g(r,n′) � 1
4π

eikr

r
exp (−ik(n · n′)) , (2.1.29)

where n = r/r. Introducing this expression into the Helmholtz integral
equation (1.1.18), we arrive at the asymptotic (for large r) formula for the
computation of the far-field pattern:

F
(r
r

)
� − 1

4π

∫
S0

(
ik (n · n′)u(n′) +

∂

∂n′ u(n
′)
)

e−ik(n·n′) dS . (2.1.30)

2.1.6 Computational Aspects
The series in expansions (2.1.15) or (2.1.22), respectively, must be truncated
for numerical evaluation. Thus, instead of the exact solution uex, one really
computes a truncated solution uN =

∑N
n=0 · · · . Computational experience
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shows that there is a connection between the critical truncation parameter
N (i.e., N such that some norm of the error u − uN is smaller than some
tolerance ε) and the argument ka of the Hankel functions. Let us illustrate
this issue with computational experiments for cylindrical scattering.
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FIGURE 2.3. Approximation of plane wave by truncated series along circle r ≡ 1.
Truncation error for k = 20.

We evaluate first the series expansion of the incident signal (2.1.23).
The implementation uses the routine bessjy from [100, Section 6.7]. We
compute the exact plane wave eikx = eik(r cos θ) =: p(kr, θ) and its truncated
series

pN :=
N∑
n=0

′

inJn(kr) cos(nθ) . (2.1.31)

We evaluate both functions at nres points (parameter of graphical resolu-
tion), first on the interval θ ∈ [0, π] with r ≡ a = 1 (wet surface). The error
is computed in the discrete l2-norm

e(N, k) =
1
n


 n∑
j=1

|[p − pN ](krj , θj)|2


1/2

at n = 50 uniformly distributed control points.
In Fig. 2.3, we show the error in the l2-norm as a function of N , for k =

20. We observe a dropping of the error around k = N . Similar observations
can be made if one computes the error along a radial line θ ≡ constant. In
Fig. 2.4, we show the error of the total solution p = pinc + ps∞. The values
for the “exact solution” are obtained here with truncation N = 100.
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FIGURE 2.4. Approximation of the total solution by a truncated series along the
wet surface r ≡ 1: Truncation error as a function of N for k = 20.

The above results are representative of a number of similar experiments,
from which we conclude the truncation rule

N ≈ 2k . (2.1.32)

In the following, we give a heuristic outline for the decay of Bessel func-
tions Jn(x) as the index n grows for fixed x. We will see that the result
corresponds well to numerical observations.

Analytical Outline of a Truncation Rule:

Returning to the expansion (2.1.23), we are interested in a truncation rule
for the sum (2.1.31). Since | cos(nθ)| is bounded independently of n, we
seek a bound for |Jn(kr)| as a function of x = kr and n.
Consider Kapteyn’s inequality (cf. Olver [103, p. 426]; we thank Markus

Melenk for suggesting this reference),

|Jn(x)| ≤
(x
n

)n
∣∣∣∣∣∣∣∣
exp(

√
n2 − x2)(

1 +
√
1− x

n
2
)n
∣∣∣∣∣∣∣∣
. (2.1.33)

Assuming n ≥ x > 0, the roots are real, and the absolute value signs on
the right can be omitted. Using further n2 − x2 ≤ n2, we get

|Jn(x)| ≤

 e

(
x
n

)
1 +
√
1− x

n
2



n

.
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Hence, for fixed x the functions Jn(x) are small if the expression within the
parantheses is smaller than 1. It is easy to see that this expression decreases
as (xn−1) decreases. Solving the inequality

e
(
x
n

)
1 +
√
1− x

n
2
< 1

for (xn−1) yields

n >
e2 + 1
2e

x ≈ 1.543x .

Replacing x with kr, we conclude that for fixed values of kr, the contribu-
tions of the Jn(kr) decay quickly with increasing n once

n > 1.6kr . (2.1.34)

2.2 References from Functional Analysis

Modern numerical methods are based on the variational or weak formu-
lations of boundary value problems. The natural function spaces for weak
forms of differential operators are the Sobolev spaces. If the operators are
linear, these spaces are also Hilbert spaces. We give the basic definitions in
this section.

2.2.1 Norm and Scalar Product
Let V be a complex linear space. V is called a normed space if any element
v ∈ V is uniquely mapped to a real number ‖v‖ ≥ 0 with the properties

‖v‖ = 0 ⇒ v = 0 ,
‖u+ v‖ ≤ ‖u‖+ ‖v‖ , ∀u, v ∈ V , (2.2.1)

‖αv‖ = |α|‖v‖ , ∀v ∈ V, α ∈ C .

A space V is equipped with a scalar product if a map V ×V → C with the
properties

(v, v) ≥ 0 , (v, v) = 0 ⇒ v = 0 ,
(αu+ v, w) = α(u,w) + (v, w) , ∀u, v, w ∈ V, α ∈ C , (2.2.2)

(u, v) = (v, u) , ∀u, v ∈ V

is defined on V . If a scalar product is defined on a linear space V , then V

is normed by the induced norm ‖ · ‖V = (·, ·)1/2V .
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A sequence {vn} ⊂ V in a normed linear space V is called a Cauchy
sequence if

sup
m,n≥k

‖vn − vm‖V → 0 for k → ∞ .

A normed linear space V is called complete if any Cauchy sequence {vn} ⊂
V converges to an element v ∈ V ; i.e., if there exists an element v ∈ V such
that limn→∞ ‖v − vn‖V = 0.
We will frequently use the Cauchy–Schwarz inequality. Let V be a linear

space equipped with a scalar product. Then any u, v ∈ V satisfy

|(u, v)| ≤ ‖u‖‖v‖ , (2.2.3)

where ‖ · ‖ is the norm that is induced by the scalar product. Indeed,
consider

0 ≤ (αu+ βv, αu+ βv)
= |α|2‖u‖2 + αβ̄(u, v) + βᾱ(v, u) + |β|2‖v‖2

and take

α = − (u, v)‖u‖ , β = ‖u‖ ,

assuming that u �= 0 (the statement is straightforward for u = 0). Thus
0 ≤ −|(u, v)|2 + ‖u‖2‖v‖2 ,

which is equivalent to (2.2.3).

2.2.2 Hilbert Spaces
A linear space V is called a Hilbert space if it is equipped with a scalar
product (·, ·)V and is complete with respect to the induced norm ‖ · ‖V .

Example 2.5. Consider the interval (0, 1) ⊂ R and define the space

L2(0, 1) := {f : (0, 1)→ C,

∫ 1

0
|f(x)|2dx < ∞} (2.2.4)

of square-integrable functions. For example, the function f = x lies in
L2(0, 1), whereas g = x−1 does not. The operation

(f, g) :=
∫ 1

0
f(x)g(x)dx

defines a scalar product. In fact, L2(0, 1) is a Hilbert space3 with the norm

‖f‖ =
(∫ 1

0
|f(x)|2 dx

)1/2
.

3Completeness is proven in the Fiszer–Riesz theorem; cf. [105, 28].
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For integer m > 0, define the subspace

Hm(0, 1) :=
{
f ∈ L2(0, 1) : ∂if ∈ L2(0, 1), i = 0, 1, . . . ,m

}
, (2.2.5)

where ∂if are the weak derivatives of the function f . A function f ′ = ∂f
is called the weak derivative of f if∫ ∞

−∞
f ′(x)ϕ(x)dx =

∫ ∞

−∞
f(x)ϕ′(x)dx

for all test functions ϕ that are differentiable in the classical sense and
vanish, together with all their derivatives, at ±∞. The higher derivatives
∂i, i ≥ 2, are defined similarly, the derivative for i = 0 is formally identified
with the function f itself. One easily verifies that a scalar product on Hm

is defined by

(f, g)m =
m∑
i=0

∫ 1

0
∂if(x)∂ig(x)dx ,

inducing the norm ‖f‖m = (f, f)1/2m . The subspaces Hm(0, 1) ⊂ L2(0, 1)
are again Hilbert spaces. They are also Sobolev spaces, namely, the special
case p = 2 of the general Sobolev spaces Wm,p. In particular, the Sobolev
space H0(0, 1) is identical with L2(0, 1).
For f ∈ Hm(0, 1), we will also work with the seminorm

|f |m :=
(∫ 1

0
|∂mf(x)|2dx

)1/2
.

Seminorms are linear maps that satisfy (2.2.1)2,3 but do not, in general,
satisfy (2.2.1)1. For example, consider H1(0, 1) � f ≡ 1. Then |f |1 = 0 but
f �= 0.

Remark 2.6. The definitions that have been given here for a one-dimen-
sional interval can be generalized to domains Ω ⊂ Rn. This generalization
requires a detailed discussion of the regularity of the domain, which depends
on the smoothness of its boundary. For a rigorous and systematic treatment
of these points, we refer to Hackbusch [62, Section 6.2]. In our present ap-
plications, we deal with regular domains only.4 In our review of the theory,
we will frequently use the expression “sufficiently regular domain”, which
means that the assumptions of the fundamental trace theorem (see the
reference at the end of this section) are satisfied. Convex domains with
piecewise smooth boundaries (curvilinear polygons) are an example. A do-
main Ω is called convex if for any x1, x2 ∈ Ω also Ω � x(t) = x1+ t(x2−x1)
for all t ∈ (0, 1).

4The behavior of solutions to the Maxwell equation in domains with singularities has
been discussed recently in [40].
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2.2.3 Sesquilinear Forms and Linear Operators
We will write the variational (weak) formulation of a boundary value pro-
blem in the form {

Find u ∈ V1 :
b(u, v) = f(v) , ∀v ∈ V2 ,

(2.2.6)

where ∀means “for all,” V1, V2 are normed linear spaces (called the trial and
the test space, respectively), b is a bilinear (or sesquilinear) form V1×V2 →
C, and f is a linear (or antilinear) functional V2 → C. We give the precise
definitions in the remainder of this section.
The map b(·, ·) is called a bilinear form if it is linear in both arguments.

If the form b(·, ·) is linear in the first and antilinear in the second argument,
namely if

b(α(u1 + u2), v) = α(b(u1, v) + b(u2, v)) ,
b(u, α(v1 + v2) = ᾱ(b(u, v1) + b(u, v2)) ,

then it is called sesquilinear. The adjoint form b∗ of a sesquilinear form
b : V × V → C is defined as

b∗(u, v) := b(v, u) ∀u, v ∈ V . (2.2.7)

The form b : V × V → C is called self-adjoint if b(·, ·) = b∗(·, ·).
A sesquilinear form b : V1 × V2 → C is called bounded if there exists a

constant M such that

|b(u, v)| ≤ M‖u‖V1‖v‖V2

for all {u, v} ∈ V1 × V2.
Let V1, V2 be normed linear spaces. A map A : V1 → V2 is called a linear

operator if

A(αu+ βv) = αAu+ βAv, ∀u, v ∈ V1, α, β ∈ C .

The linear operators V1 → V2 form the linear space L(V1, V2). The operator
A is bounded if there exists a real constant M such that

‖A(u)‖V2 ≤ M‖u‖V1 (2.2.8)

for all u ∈ V1. The smallest of the possible bounds is called the norm
of the operator A. The bounded operators form a normed linear space
B(V1, V2) ⊂ L(V1, V2). A linear operator is bounded if and only if it is
continuous; hence both notions can be used equivalently.
In the special case that V2 is the real or complex number space, the

operators are called functionals. The set of bounded linear functionals on
a normed space V forms the dual space V ′ equipped with the norm

‖f‖V ′ := sup
‖u‖=1

|f(u)| = sup
0
=u∈V

|f(u)|
‖u‖V . (2.2.9)
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In our applications, we will work with the space V ∗ of antilinear functionals
with the property f(αu) = ᾱf(u). The norm is defined as in (2.2.9). The
complex conjugation f → f̄ establishes a one-to-one map V ′ ↔ V ∗. Let
f ∈ V ∗, u ∈ V . The complex number f(u) can be equivalently written in
the form of the dual product 〈f, u〉V ∗×V . For example, the scalar product in
a complex-valued Hilbert space is a sesquilinear form, and for any fixed u ∈
V the map v → (u, v) defines an antilinear functional fu ∈ V ∗. Conversely,
any functional f ∈ V ∗ can be uniquely mapped to some uf ∈ V . By the
Riesz representation theorem (cf., e.g., Yosida [120, p. 90]), there exists for
any Hilbert space V a one-to-one correspondence V ∗ ↔ V mapping each
functional f ∈ V ∗ to a uf ∈ V such that f(v) = (uf , v), v ∈ V . The Riesz
map R : f → uf is a linear operator.
The dual spaces (Hm)∗ to the Sobolev spaces Hm are also denoted by

H−m. Since Hm ⊂ L2, any functional that is defined on L2 is automatically
defined also on Hm for m ≥ 0 (and hence lies in H−m). Therefore we have

Hm(Ω) ⊂ L2(Ω) ≡ (L2(Ω))∗ ⊂ H−m(Ω) ,

where we have identified L2(Ω) ≡ (L2(Ω))∗ by the Riesz map. This relation
is called a Gelfand triple (cf. Hackbusch [62, Section 6.3.3.]). One can show
that the embeddings are continuous and dense and that the inner product
(·, ·)L2 is a continuous extension of the dual product 〈·, ·〉H−m×Hm [62,
Section 6.3]. Therefore, in a Gelfand triple, instead of the dual pairing
f(v) = 〈f, v〉H−m×Hm we can write equivalently (f, v)L2 .

2.2.4 Trace of a Function
For the precise treatment of boundary value problems in Hilbert spaces one
needs the notion of the trace of a function. Let Ω be a bounded domain with
boundary Γ. If a function u is continuous on the closed domain Ω = Ω ∪ Γ
then the restriction u|Γ (called the trace of u on Γ) is well-defined. However,
the Sobolev spaces are defined on open domains and the functions in these
spaces are, in general, not continuous. In this case, the trace of a function
is defined as a linear map from the Sobolev space on the domain Ω to a
Sobolev space on the boundary Γ.
Considering the Sobolev space Hm(Ω), m ≥ 1, we define the trace γu of

u ∈ Hm(Ω) on Γ as a linear operator

γ : Hm(Ω)→ Hm−1/2(Γ) .

This operator is defined in such a way that γu = u|Γ for all u ∈ Hm(Ω) ∩
C0(Ω). Note that m − 1/2 is not an integer. For the definition of Sobolev
spaces Hs with index s ∈ R, see Hackbusch [62, Section 6.2.4]. The trace
theorem (see Hackbusch [62, Theorem 6.2.40]) states that, provided certain
assumptions on the regularity of the domain Ω are satisfied, γ is a bounded
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operator. This is expressed by the trace inequality

‖γu‖Hm−1/2(Γ) ≤ Cγ‖u‖Hm(Ω) , (2.2.10)

where (cf. (2.2.8))

Cγ = ‖γ‖B(Hm(Ω),Hm−1/2(Γ)) .

Furthermore, the operator γ is surjective. Any w ∈ Hm−1/2(Γ) can be
extended onto the domain Ω, and the extension operator (“lifting”) is also
bounded.

2.3 Variational Formulation of Helmholtz Problems

2.3.1 Helmholtz Problems on Bounded Domains
For Helmholtz problems given on a bounded domain Ω, the natural trial
and test spaces are the Sobolev spaces

H1(Ω) = {v ∣∣ ‖∇v‖2 + ‖v‖2 < ∞} ,

where ‖ · ‖ is the L2-norm. As an example, consider the mixed boundary
value problem

−∆u − k2u = 0 in Ω ,
∂νu+ βu = g on Γ ,

(2.3.1)

where β is a complex constant and ∂ν denotes the exterior normal deriva-
tive. We derive a weak formulation by the method of weighted residuals.
For some function u ∈ H1(Ω), we call H−1(Ω) � rΩ(u) := −∆u − k2u
the domain residual and H−1/2(Γ) � rΓ(u) := ∂νu + βu − g (here u is
understood in the sense of trace) the boundary residual. Let v ∈ H1(Ω) be
an arbitrary test function and w ∈ H1/2(Γ) its trace. We demand that the
sum of the weighted residuals vanish:

〈rΩ(u), v〉H−1×H1 + 〈rΓ(u), w〉H−1/2×H1/2 = 0 .

Identifying the dual pairings with the L2 inner products and integrating
by parts, we arrive at the variational problem:{

Find u ∈ H1(Ω) :
b(u, v) = (g, v)L2(Γ) , ∀v ∈ H1(Ω) , (2.3.2)

with
b(u, v) =

∫
Ω
(∇u∇v̄ − k2uv̄) dV + β

∫
Γ
uv̄ dS (2.3.3)

and
(g, v)L2(Γ) =

∫
Γ
gv̄ dS . (2.3.4)
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Alternatively, one can use the test function v̄ to obtain the bilinear form

b̃(u, v) =
∫
Ω
(∇u∇v − k2uv)dV + β

∫
Γ
uv dS .

If a solution of the variational problem (2.3.2) exists, we say that the pro-
blem is weakly solvable and call the solution u a variational or weak solution
of the boundary value problem (2.3.1).

2.3.2 Helmholtz Problems on Unbounded Domains
For the exterior problem, the appropriate choice of test and trial spaces in
the weak formulation is less obvious since integration is carried out over the
unbounded domain Ω+ (exterior of the scatterer Ω). Assume for simplicity
that we are computing the rigid scattering of a wave from the unit sphere.
Then the normal derivative of the pressure is prescribed on the boundary
Γ = {r ≡ 1, θ, φ}: we seek radiating solutions p(r, θ, φ) of the Helmholtz
equation satisfying a Neumann boundary condition

∂p

∂r
(1, θ, φ) = g(θ, φ) .

The Sommerfeld condition is given on a sphere SR with radius R → ∞.
Multiplying the Helmholtz equation in the bounded domain ΩS := {1 ≤
r ≤ R, θ, φ} with a test function q, we obtain as before

b(p, q) :=
∫
ΩS

(∇p∇q̄ − k2pq̄)dV − ik

∫
SR

pq̄dS =
∫
Γ
gq̄dS .

From the Atkinson–Wilcox expansion, we expect that the solution depends
asymptotically on r as

p � eikr

r
:= f(r) .

Hence one naturally requires that the function f be in the trial space.
However, the L2 inner product

(f, f) =
∫
Ω+

eikr

r

e−ikr

r
dV = 4π

∫ ∞

1

1
r2

r2dr

is not finite.
One way to circumvent this problem is to measure the trial functions in

weighted norms. Defining the weighted inner product

(p, q)w =
∫
Ω+

w pq̄ dV , w := r−2 , (2.3.5)

one easily confirms that both (f, f)w and (f,r , f,r )w exist. Accordingly, we
demand that the trial functions satisfy

‖p‖1,w := ((p, p)w + (∇p,∇p)w)
1/2

< ∞ . (2.3.6)
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Now, if the trial functions satisfy (2.3.6), then the integrals
∫
pq̄ and

∫ ∇p∇q̄
are well defined if test functions q are such that

(q, q)w∗, (∇q,∇q)w∗ < ∞
with the inner product

(p, q)w∗ :=
∫
Ω+

w∗pq̄ dV , w∗ := r2 . (2.3.7)

Indeed, by the Cauchy–Schwarz inequality,∣∣∣∣
∫
Ω+

pq̄ dV

∣∣∣∣ =
∣∣∣∣
∫
Ω+
(w

1
2 p) (w∗ 1

2 q̄) dV
∣∣∣∣ ≤ (p, p)1/2w (q, q)1/2w∗ < ∞ .

Thus the trial and test functions, respectively, lie in the weighted Sobolev
spaces

H1
w(Ω

+) = {u : ‖u‖1,w < ∞} , H1
w∗(Ω

+) = {u : ‖u‖1,w∗ < ∞} ,

where the norm ‖·‖1,w∗ is defined using the inner product (·, ·)w∗ in (2.3.6).
Note that the trial and test spaces are not identical. The functions in the
trial space are of order r−1 (or lower), whereas the functions in the test
space are at most of order r−3.
This property of the test functions does, however, prohibit inclusion of

the Sommerfeld condition into the variational formulation. Indeed, one ea-
sily confirms that for arbitrary p ∈ H1

w(Ω
+), q ∈ H1

w∗(Ω
+), the integral∫

SR
pq̄dS approaches zero as R → ∞. Hence, in the present setting, one

cannot test whether or not a trial function satisfies the Sommerfeld con-
dition. However, the far-field term in the variational formulation is crucial
for well-posedness of the weak formulation (cf. Example 2.23 below). This
obstacle is overcome by including the Sommerfeld condition into the de-
finition of the trial space, thus excluding the eigenfunctions as possible
solutions. Following Leis [87, Section 4.4], one redefines the trial space as

H1+
w (Ω+) =

{
p : ‖p‖+1,w < ∞} , (2.3.8)

with the norm

‖p‖+1,w :=
(

‖p‖21,w +
∫
Ω+

∣∣∣∣∂p∂r − ikp

∣∣∣∣
2

dV

)1/2
. (2.3.9)

Remark 2.7. The precise definition of the spaces introduced by Leis in-
volves the notion of completion, which we have not introduced here. For
instance, the space H1+

w (Ω+) is really the completion of the space H1
w(Ω

+)
in the norm ‖ · ‖+1,w.
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With these preliminaries, weak radiating solutions of the exterior Neu-
mann problem are sought from the variational problem:

Find p ∈ H1+

w (Ω+) :∫
Ω+
(∇p · ∇q − k2 p q) dV = (g, q) , ∀q ∈ H1

w∗(Ω+) ,
(2.3.10)

where (g, q) denotes the L2 inner product on the wet surface Γ. The varia-
tional problem (2.3.10) is of the form (2.2.6), where V1 = Vρ and V2 = Vρ∗

are different weighted Sobolev spaces with weights ρ, ρ∗, respectively.

Remark 2.8. Due to the different weighting of test and trial functions,
numerical methods based on Leis’ variational formulation lead to non-
symmetric systems of algebraic equations. For the purpose of numerical
computations, it is also possible to state on finite-dimensional spaces va-
riational principles with equal weights in such a way that integration in
the corresponding variational forms is well-defined on Ω+. We will return
to this topic in the context of infinite elements in Section 3.5.

2.3.3 Weak Formulation for Solid–Fluid Interaction

Γ

Γ

Ω

i

s

FIGURE 2.5. Solid domain.

Assume that the obstacle is a solid Ωs, possibly with a traction-free interior
boundary Γi, see Fig. 2.5. To obtain a variational expression in the solid,
we test equations (1.2.1) with the complex conjugate of a vector-function
v and integrate to get

−
∫
Ωs

(∇ · σ + ρsω
2u) · v̄dV =

∫
Ωs

f · v̄dV . (2.3.11)

In expanded form, the integral on the left reads

−
∫
Ωs

((σxx,x+σxy,y +σxz,z ) v̄x + (σyx,x+σyy,y +σyz,z ) v̄y

+ (σzx,x+σzy,y +σzz,z )v̄z + ρsω
2 (uxv̄x + uy v̄y + uz v̄z)

)
dV .
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To the components in the first part we apply the identity (with the
summation convention, cf. Section 1.2.)

(divσi)v̄i = div(σiv̄i)− σi · ∇v̄i ,

where the components of the stress tensor are denoted by

σi = {σix, σiy, σiz} , i = x, y, z .

By the Gauss theorem,∫
Ωs

div(σiv̄i) =
∫
Γ
(σiv̄i) · n dS =

∫
Γ
(σi · n)v̄idS .

For equilibrium on Γ, the stress resultants σi · n must be equal to the
components of the exterior traction vector T. Inserting the results into
(2.3.11) yields∫

Ωs

(
σi · ∇v̄i − ρsω

2u · v̄) dV =
∫
Γ
T · v̄ dS +

∫
Ωs

f · v̄dV . (2.3.12)

The scalar product T · v̄ is invariant with respect to orthogonal transforms,
and hence∫

Γ
(Txv̄x + Ty v̄y + Tz v̄z) dS =

∫
Γ
(Tnv̄n + Tt1 v̄t1 + Tz v̄t2) dS , (2.3.13)

where {n, t1, t2} is the local coordinate system shown in Fig. 1.5. From the
equilibrium conditions (1.3.2) and (1.3.3), we have T · v̄ = −(p + pinc)vn.
We thus finally arrive at∫

Ωs

(
σi · ∇v̄i − ρsω

2u · v̄) dV + ∫
Γ
p(v̄ · n)dS =

−
∫
Γ
pinc(v̄ · n)dS +

∫
Ωs

f · v̄ dV . (2.3.14)

Similarly, multiplying the fluid equation (1.3.9) by a test function q̄ and
integrating by parts, we obtain

0 = −
∫
Ω+
(∆p+ k2p)q̄dV =

∫
Ω+
(∇p∇q̄ − k2pq̄)dV +

∫
Γ

∂p

∂n
q̄dS ,

where we have taken into account that the exterior solid normal points into
the fluid region. Inserting the coupling condition (1.3.7) now leads to∫

Ω+
(∇p∇q̄ − k2pq̄) dV + ρfω

2
∫
Γ
(u · n)q̄dS =

∫
Γ

∂pinc
∂n

q̄dS . (2.3.15)
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Finally, equations (2.3.14) and (2.3.15) can be added up (after scaling
(2.3.14) for symmetry) to give the coupled equation∫

Ω+
(∇p · ∇q − k2 p q) dV

+ ρfω
2
(∫

Γ
(u · n) q̄ dS +

∫
Γ
p(v̄ · n) dS

)

+ ρfω
2
∫
Ωs

[
σi · ∇v̄i − ρsω

2u · v̄] dV
= ρfω

2
(
−
∫
Γ
pinc(v̄ · n) dS +

∫
Ωs

f · v̄dV
)

+
∫
Γ

∂pinc
∂n

q̄dS .

(2.3.16)

We now define the Sobolev spacesH = H1(Ωs)×H1+
w (Ω+),H∗ = H1(Ωs)×

H1
w∗(Ω+). Then we pose the variational problem{

Find U := (u, p) ∈ H :
B(U ,V) = (F ,V) , ∀V := (v, q) ∈ H∗ ,

(2.3.17)

where the form B and the right-hand side are given by (2.3.16).

Example 2.9. Let us outline the weak formulation for the one-dimensional
problem introduced in Example 1.6. Assuming that the radiation condition
is imposed at x0 > l, we have Ωs = (0, l) and Ω+ = (l, x0). Then one solves
b(u, v) = ρfω

2(f, v) with

b({u, p}, {v, q}) = ρfω
2
∫ l
0

(
E

du

dx

dv̄

dx
− ρsω

2uv̄

)
dx

+ρfω
2 (p(l)v̄(l) + u(l)q̄(l))

+
∫ x0

l

(
dp

dx

dq̄

dx
− k2pq̄

)
dx − ikp(x0)q̄(x0) ,

and

(f, v) =
∫ l
0

fv̄dx .

Equivalently, one may just solve b0(u, v) = (f, v) with

b0(u, v) =
∫ l
0

(
E

du

dx

dv̄

dx
− ρsω

2uv̄

)
dx − ikρfc

2u(l)v̄(l) ,

imposing weakly the Robin boundary condition (1.3.12).
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2.4 Well-Posedness of Variational Problems

A boundary value problem is called well-posed if, for a given class of data,
the solution exists, is unique, and depends continuously on the data (i.e.,
if it is stable). Since the FEM is based on the variational formulation of
boundary value problems, it is of fundamental importance to know whether
the problem is weakly solvable and if the solution is unique. Stability is
crucial for the numerical solution of a variational problem. For if a small
error in the data can cause a large error in the solution, a numerical method
may converge very slowly or not at all.
We address these fundamental questions for the variational forms that

arise from the Helmholtz equation. These forms are, in general, not positive
definite. Existence and uniqueness can be concluded alternatively from two
generalizations of the positive definite case, namely, the existence theory
for forms that satisfy an inf–sup condition or the theory for forms that
satisfy a G̊arding inequality. We therefore first discuss the positive definite
(V -elliptic) case and then proceed to the generalization for indefinite forms.

2.4.1 Positive Definite Forms
A sesquilinear form a : V ×V → C on a Hilbert space V is called V -elliptic
(positive definite) if there exists α > 0 such that

|a(u, u)| ≥ α‖u‖2V
for all u ∈ V . Existence and uniqueness of solutions for positive definite
problems is established by the Lax–Milgram theorem.

Theorem 2.10.(Lax–Milgram). Assume that a sesquilinear form a :
V × V → C, defined on a Hilbert space V , satisfies

1. Continuity:

∃M > 0 : |a(u, v)| ≤ M‖u‖V ‖v‖V , ∀u, v ∈ V , (2.4.1)

2. V -Ellipticity:

∃α > 0 : α‖u‖2V ≤ |a(u, u)|, ∀u ∈ V , (2.4.2)

and let f be a bounded linear functional defined on V . Then there exists a
unique element u0 ∈ V such that

a(v, u0) = (v, f), ∀v ∈ V . (2.4.3)

For the proof, see Yosida [120, p. 92].
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Remark 2.11. Note that now f is associated with a linear functional (·, f).
Equivalently (just take the conjugate on both sides of (2.4.3)), one can state
that the dual problem

a∗(u, v) = (f, v)

has a unique solution. The problem a(u, v) = (f, v) has a unique solution
for all antilinear functionals f ∈ V ∗.

The ellipticity condition (2.4.2) implies immediately that the solution u0
is bounded by the data f , measured in the norm of the dual space V ∗.
Indeed,

‖f‖V ∗ = sup
0
=v∈V

|f(v)|
‖v‖V = sup

0
=v∈V

|a(u0, v)|
‖v‖V ≥ |a(u0, u0)|

‖u0‖V ≥ α‖u0‖V ,

and hence

‖u0‖V ≤ 1
α
‖f‖V ∗ . (2.4.4)

Further, letting v = u in the continuity condition, we get

α‖u‖2V ≤ |a(u, u)| ≤ M‖u‖2V ∀u ∈ V . (2.4.5)

Thus the energy norm
|||u||| := (|a(u, u)|)1/2 (2.4.6)

induced by the V -elliptic form a(·, ·) is equivalent to the norm ‖ · ‖V .

Remark 2.12. If the form a is self-adjoint, then a(u, u) is real, and the
absolute values in (2.4.2) and (2.4.5) can be omitted.

Example 2.13. (Poisson equation). Let Ω be a bounded convex domain
with a piecewise smooth boundary Γ and consider the Poisson equation
with Dirichlet boundary conditions

∆u = f on Ω ,

u = 0 on Γ ,

where f is a complex-valued function. The corresponding sesquilinear form

a(u, v) =
∫
Ω

∇u∇v̄dV

is defined on the Hilbert subspace V = H1
0 (Ω) ⊂ H1(Ω) containing all H1-

functions that vanish on Γ. For these functions, one can show the Poincaré
inequality

‖u‖ ≤ C‖∇u‖ , (2.4.7)
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where C is a positive constant and ‖ · ‖ denotes the L2-norm. V -ellipticity
then easily follows with

a(u, u) ≥ 1
1 + C2

‖u‖21 ,

where ‖u‖1 is the norm of the Sobolev space H1(Ω).

Example 2.14. (Elasticity). Let Ω be as in the previous example and
consider the bilinear form, cf. (2.3.12),

a(u,v) =
∫
Ω
σi · ∇vidV .

Introducing the material law (1.2.3) in the general form

σij = Eijklekl

and using the strain–displacement relations (1.2.2), we can write equiva-
lently

a(u,v) =
∫
Ω
Eijkleij(u)ekl(v)dV =

∫
Ω
Eijkl

∂ui
∂xj

∂vk
xl

dV .

The form a(·, ·) is V -elliptic on the subspace V ⊂ [H1(Ω)
]d of all functions

satisfying a Dirichlet condition on a nonempty part ΓD ⊂ Γ,

V =
{
u ∈ [H1(Ω)

]d
, u = 0 onΓD ⊂ Γ

}
.

The proof of the corresponding relation

|a(u,u)| ≥ α‖u‖2H1(Ω) ∀u ∈ V,

for some α > 0, is based on the Korn inequality∫
Ω
eij(u)eij(u)dV +

∫
Ω
uiuidV ≥ γ‖u‖2H1(Ω) ,

with γ > 0. For details see, e.g., Sanchez Hubert–Sanchez Palencia [107].

2.4.2 The inf–sup Condition
Generally, the Helmholtz problem for large k is indefinite. Consider, as an
example, the one-dimensional case with Dirichlet conditions. For u, v ∈
H1
0 (0, 1), the form

b(u, v) =
∫ 1

0

(
u′v′ − k2uv

)
dx (2.4.8)
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is H1
0 -elliptic only if k is smaller than the minimal positive eigenvalue of

the Laplace equation with Dirichlet boundary conditions, i.e., if k < π.
The following generalization of the Lax–Milgram theorem was shown by

Babuška [7, p. 112].

Theorem 2.15. (Babuška). Assume that a sesquilinear form b : V1×V2 →
C on Hilbert spaces V1, V2 satisfies

1. Continuity:

∃M > 0 : |b(u, v)| ≤ M‖u‖V1‖v‖V2 , ∀u ∈ V1, v ∈ V2 ,
(2.4.9)

2. inf–sup Condition:

∃β > 0 : β ≤ sup
0
=v∈V2

|b(u, v)|
‖u‖V1‖v‖V2

, ∀0 �= u ∈ V1 , (2.4.10)

3. “Transposed” inf–sup Condition:

sup
0
=u∈V1

|b(u, v)| > 0, ∀0 �= v ∈ V2 , (2.4.11)

and let f : V2 → C be an antilinear bounded functional defined on V2. Then
there exists a unique element u0 ∈ V1 such that

b(u0, v) = f(v), ∀v ∈ V2 .

The solution u0 satisfies the bound

‖u0‖V1 ≤ 1
β
‖f‖V ∗

2
. (2.4.12)

Remark 2.16. Condition (2.4.10) is also called the Babuška–Brezzi con-
dition. It is fundamental for a large class of indefinite problems, especially
saddle-point problems, arising in mixed or hybrid FEM; see, e.g., Braess
[30], Carey and Oden [33]. The real number

β = inf
0
=u∈V1

sup
0
=v∈V2

|b(u, v)|
‖u‖‖v‖

is called the inf–sup constant.

Remark 2.17. The Babuška theorem covers the case V1 �= V2 and does
not assume definiteness. If V1 = V2, we can compare the inf–sup constant
β to the ellipticity constant α of the Lax–Milgram theorem by writing

α = inf
u∈V

|a(u, u)|
‖u‖2 . (2.4.13)
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Obviously, since α is computed by taking the infimum also over the second
argument, whereas for β the supremum is taken over this argument, we
have always α ≤ β. This is also seen from

α‖u‖ ≤ |a(u, u)|
‖u‖ ≤ sup

v∈V
|a(u, v)|

‖v‖ , ∀u .

Since this holds for all u ∈ V , we have

α ≤ inf
u∈V

sup
v∈V

|b(u, v)|
‖u‖‖v‖ = β .

In particular, it can occur that α = 0 but still β > 0, i.e., a form may
be not elliptic but satisfy the inf–sup condition. In fact, we will show in
Chapter 4 that the Helmholtz variational forms of one-dimensional model
problems satisfy the inf–sup condition with β = Ck−1 > 0.

Remark 2.18. Both α and β depend on the norm of the space V . For
instance, considering a V -elliptic sesquilinear form a(·, ·), trivially α = 1
in the energy norm |||u||| = √a(u, u). Also, β = 1 in this norm. Indeed,
applying the Cauchy–Schwarz inequality, we have

|a(u, v)| ≤
√

|a(u, u))|
√

|(a(v, v)| ,
whence

sup
0
=v∈V

|a(u, v)|
|||v||| ≤ |||u||| .

Since equality holds for v = u, the supremum is exactly |||u|||. Thus

β = inf
u∈V

|||u|||
|||u||| = 1 .

Remark 2.19. As already mentioned, the question of existence and uni-
queness is always related to certain function spaces. In (conforming) FEM,
the solution is sought on a finite-dimensional subspace Vh ⊂ V . Let us
note here an important difference between definite and indefinite forms:
The ellipticity property carries over from V to Vh, whereas the inf–sup pro-
perty does not. Indeed, the infimum in condition (2.4.13) cannot decrease
if it is taken on a subspace, whereas the supremum involved in the inf–sup
constant, in general, decreases on a subspace. Consequently, the inf–sup
condition may not be satisfied on the subspace.

Remark 2.20. Similar to the Lax–Milgram theorem, the Babuška theo-
rem implies stability, and hence well-posedness. Conversely, requiring stable
dependence

‖u‖V1 ≤ C‖f‖V ∗
2

(2.4.14)
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leads in a natural way to the inf–sup condition as follows. Assume that
for some fixed f ∈ V ∗

2 we have obtained a solution u0 �= 0. Then, by the
definition of the dual norm, (2.4.14) can be written as

1
C
=: β ≤ ‖f‖V ∗

2

‖u0‖V1

= sup
0
=v∈V2

|f(v)|
‖u0‖V1‖v‖V2

= sup
0
=v∈V2

|a(u0, v)|
‖u0‖V1‖v‖V2

.

This leads directly to the inf–sup condition if we now require that (2.4.14),
and hence the above inequality, hold for all possible data f ∈ V ∗

2 (or, equi-
valently, for all u ∈ V1).

2.4.3 Coercive Forms
Let Ω be a bounded domain and consider the Hilbert space V = H1(Ω). A
sesquilinear form b : V × V → C is called V -coercive if it satisfies for all
u ∈ V the G̊arding inequality∣∣∣ b(u, u) + C‖u‖2L2(Ω)

∣∣∣ ≥ α‖u‖2H1(Ω) (2.4.15)

with positive constants C,α.

Remark 2.21. We specify here the general definition of V -coercivity for
a Gelfand triple V ⊂ H ⊂ V ′ (see Hackbusch [62, Section 6.5.13]) to the
special case H1(Ω) ⊂ L2(Ω) ⊂ H−1(Ω).

Remark 2.22.We can interpret (2.4.15) as a V -ellipticity property of the
form a(u, v) := b(u, v) + C(u, v)L2(Ω).

Consider the general variational problem (2.2.6) with V1 = V2 = H1(Ω)
and assume that the sesquilinear form b(u, v) is H1-coercive. For a suf-
ficiently regular domain5 Ω, the embedding H1(Ω) ⊂ L2(Ω) is compact.
Then it can be shown (cf. Hackbusch [62, Theorem 6.5.15]) that the pro-
blem satisfies the Fredholm alternative: either equation (2.2.6) has a so-
lution u ∈ H1(Ω) for all f or there exists a nontrivial solution of the
homogeneous problem (with f ≡ 0). Hence the existence of the solution
follows if we can show uniqueness. We illustrate this in the following ex-
ample of a one-dimensional Helmholtz problem.

Example 2.23. Let Ω = (0, 1) and let f ∈ L2(0, 1) be given. Consider the
boundary value problem6

−u′′ − k2u = f on Ω = (0, 1) ,

5see Remark 2.6.
6to be precise, this problem is well-defined in the classical sense for functions f ∈

C0[0, 1], u ∈ C2(0, 1) ∩ C0[0, 1].



52 2. Analytical and Variational Solutions of Helmholtz Problems

u(0) = 0 , (2.4.16)
u′(1)− iα(k)u(1) = 0 ,

with some R � α(k) > 0. The corresponding sesquilinear form is

b(u, v) =
∫ 1

0

(
u′v̄′ − k2uv̄

)
dx − iαu(1)v̄(1) . (2.4.17)

The test and trial spaces are V1 = V2 = H1
(0(0, 1), where

H1
(0(0, 1) :=

{
u ∈ H1(0, 1); u(0) = 0

}
(2.4.18)

is the subspace of all functions that satisfy the Dirichlet condition u(0) = 0.
Obviously, the real part of the Helmholtz variational form (2.4.17) with

v = u satisfies the G̊arding inequality (with C = k2). To show the unique-
ness of the solution, suppose that there are two solutions u1, u2. Then their
difference w = u1 − u2 satisfies the homogeneous equality b(w, v) = 0 for
all v. Taking v = w, we get∫

(|w′|2 − k2|w|2) = iα|w(1)|2.

The left-hand side of this equation is real, and the right-hand side is ima-
ginary. Hence for α �= 0, equality can hold only if w(1) = 0. Then, by
(2.4.16)3 also7 w′(1) = 0, and we are given a homogeneous initial value
problem that has the unique solution w ≡ 0. Hence u1 = u2, showing uni-
queness. Existence then follows from the Fredholm alternative.

Note that the nonvanishing imaginary boundary term was essential for
the proof of uniqueness. In the case that α = 0, the problem (2.4.17) reduces
to the equation for forced vibrations of a slab. The homogeneous equation
then has nontrivial solutions (the eigenmodes) for k = π/2 + nπ. At these
frequencies, the inhomogeneous problem is no longer uniquely solvable.
Similarly, in two and three dimensions, interior problems for the Helm-

holtz equation generally have eigenvalues at which there is no unique so-
lution. However, the interior problem has, in general, a unique solution if
the vibrations are damped. Since damping is proportional to the velocity,
the wave number in that case is complex.
Exterior (Dirichlet or Neumann) problems with a radiation condition are

uniquely solvable for all real wave numbers k; cf. Sanchez Hubert–Sanchez
Palencia [107, Chapter VIII, Sections 3–4].

7Here we assume that the variational formulation and the original boundary value
problem are equivalent, i.e., u has a second derivative in the weak sense. This is true for
f ∈ L2(0, 1). A more general argument for f ∈ H−1(0, 1) is given in [72].
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2.4.4 Regularity and Stability
We have seen (cf. (2.4.12) that stable dependence of the solution on the
data follows, in general, from the inf–sup condition. Consider again the one-
dimensional model problem (2.4.16) and assume for simplicity that α = k.
We can show (cf. Theorem 4.1.) that β = O(k−1). Thus the problem to
find u ∈ V such that b(u, v) = (f, v), v ∈ V , has a unique solution u that
satisfies the stability estimate (cf. (2.4.12))

‖u‖H1 ≤ Ck ‖f‖H−1 . (2.4.19)

The dual space in this case is the space of distributions H−1(0, 1). However,
the data f may lie in the space of square-integrable functions L2(0, 1) or
be even smoother. Hence the stability estimates are closely related to the
regularity of the solution. The question is, if a boundary value problem is
weakly solvable, in what space is the solution contained. In the context of
Sobolev spaces Hs(Ω), we seek max{s : u ∈ Hs(Ω)}. The answer depends
not only on the data and the properties of the differential operator, but
also on the regularity of the domain Ω. Here, we consider only the case that
Ω is a convex domain8. Then the following proposition holds.

Proposition 2.24. Let Ω ∈ Rn, n = 2, 3, be a convex domain and assume
that u is a solution of the variational problem


Find u ∈ H1

0 (Ω) :∫
Ω
(∇u∇v̄ − k2uv̄) dV = (f, v) , ∀v ∈ H1

0 (Ω) .

Then u ∈ H2(Ω) ∩ H1
0 (Ω) if f ∈ L2(Ω).

Since the differential operator of the Helmholtz equation has constant co-
efficients, and the corresponding sesquilinear form is H1

0 (Ω)-coercive, this
proposition is a corollary from a well-known regularity theorem; cf. Hack-
busch [62, Theorem 9.1.22].

2.5 Variational Methods

2.5.1 Galerkin Method and Ritz Method
Let V1, V2 be Hilbert spaces. Consider the general variational problem
(2.2.6) with a sesquilinear form b : V1×V2 → C and an antilinear functional
f ∈ V ∗

2 , and assume that there exists a unique solution u ∈ V1. We seek an

8cf. Remark 2.6.
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approximate solution uN of the form

uN =
N∑
j=1

ujφj ,

where the φj are linearly independent elements of the space V1, and uj are
unknown complex coefficients. The linear span of the basis functions φj
forms the finite-dimensional subspace V N1 ⊂ V1. In general, the space V1
is infinite-dimensional, and V N1 is a proper subspace. Similarly, we define
a test space V N2 ⊂ V2 as the linear span of basis functions ψi ∈ V2 for
i = 1, . . . , N .
A function uN ∈ V N1 is called the Galerkin solution of the variational

problem (2.2.6) if it satisfies the variational equality for all test functions
v ∈ V N2 . Equivalently, one requires that the variational equality hold for
each of the basis functions of the test space V N2 ,

b(uN , ψi) = (f, ψi) , i = 1, . . . , N . (2.5.1)

The coefficients uj are thus determined from the linear system of equations

Au = f , (2.5.2)

where

[A]ij = b(φj , ψi), [f ]i = (f, ψi), i, j = 1, . . . , N . (2.5.3)

This general case of the Galerkin method, where V N1 �= V N2 , is also called
the Petrov–Galerkin method. If V N1 = V N2 , one speaks of the Bubnov–
Galerkin method.
A similar system of equations is obtained from the Ritz method. Let V

be a Hilbert space and consider the variational equality

a(u, v) = (f, v) , ∀v ∈ V , (2.5.4)

for a V -elliptic self-adjoint form a : V × V → C. By the Lax–Milgram
theorem, the form a can be uniquely associated with a self-adjoint positive
definite operator A : V → V such that

a(u, v) = (Au, v)V

for all v ∈ V , where (·, ·)V denotes the scalar product on the Hilbert space
V . Let V N ⊂ V be a finite-dimensional subspace. With the Ritz method,
one seeks the function uN ∈ V N ⊂ V that minimizes the energy functional

J(u) := (Au, u)− 2(f, u)
in V N .
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The Ritz method is a special case of the Galerkin method. Indeed, since
uN is minimizing,

(AuN , uN )− 2(f, uN ) ≤ (A(uN + τv), uN + τv)− 2(f, uN + τv)
= (AuN , uN )− 2(f, uN ) + 2τ [ (AuN , v)− (f, v) ]+ τ2(Av, v)

must hold for arbitrary v ∈ V N and τ ∈ R, and hence the term in the
square brackets must vanish. Replacing again (AuN , v) = a(uN , v), we
obtain (2.5.4).

2.5.2 Convergence Results
Convergence of the Ritz method is assured if the basis functions φj are
complete in V with respect to the energy norm |||u||| := |a(u, u)|1/2. The
system {φj}∞

1 is called complete if for any function u ∈ V and arbitrarily
small ε > 0 one can find a number N and coefficients αj such that

|||u −
N∑
j=1

ajφj ||| ≤ ε .

This condition is satisfied if the system {φj}∞
1 represents the union of the

basis functions of an infinite sequence

V 1 ⊂ V 2 ⊂ · · · ⊂ V N ⊂ · · · ⊂ V (2.5.5)

of finite-dimensional subspaces with the property

inf
v∈V N

|||u − v||| → 0 for N → ∞ , ∀u ∈ V . (2.5.6)

For fixed N , the infimum in (2.5.6) is called the error of best approximation
(of an element u ∈ V by elements v ∈ V N ) in the energy norm. If the form
a is V -elliptic, the Ritz solution uN ∈ V N is the best approximation (in
the energy norm) of the exact solution u ∈ V .
Indeed, a(u, v) = a(uN , v) = (f, v) holds for all v ∈ V N . Thus the error

u − uN is orthogonal to V N : a(u − uN , v) = 0, v ∈ V N . Hence

|||u − uN |||2 = a(u − uN , u − uN ) = a(u − uN , u − v) ≤ |||u − uN ||||||u − v|||

for all v ∈ V N (we applied the Cauchy–Schwarz inequality in the last
step). Canceling the error norm on both sides, we have proved the claim.
Therefore, the rate of convergence of the Ritz method on the subspaces
(2.5.5) is completely determined by the convergence rate in (2.5.6).
We recall that the property of V -ellipticity carries over to the subspaces

in (2.5.5). Furthermore, the energy norm is equivalent to the norm of the
space V . Thus an error estimate in the norm ‖ · ‖V follows directly from
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the equivalence relation (2.4.5). We have shown the following proposition.

Theorem 2.25. Let a : V ×V → C be a V -elliptic continuous sesquilinear
form. For some f ∈ V ∗, let u ∈ V be the exact solution and let uN ∈ V N ⊂
V be the Ritz solution of the variational equality (2.5.4). Then

‖u − uN‖V ≤ M

α
inf
v∈V N

‖u − v‖V , (2.5.7)

where α,M are the ellipticity and continuity constants of the form a, re-
spectively.

This theorem is known under the name Céa’s lemma. As a direct corol-
lary, we see that condition (2.5.6) is sufficient for convergence of the Ritz
solutions on the sequence of subspaces V N .
In the general case of an indefinite form, problem (2.2.6) is uniquely sol-

vable if the continuous form b(·, ·) satisfies the “discrete” inf–sup condition

∃βN > 0 : βN ≤ sup
0
=v∈V N

2

|b(u, v)|
‖u‖V1‖v‖V2

, ∀0 �= u ∈ V N1 , (2.5.8)

and the discrete transposed condition

sup
u∈V N

1

|b(u, v)| > 0, ∀0 �= v ∈ V N2 . (2.5.9)

Note that the discrete inf–sup condition does not follow from the “conti-
nuous condition” (2.4.10) on V1× V2. Hence, in general, (2.5.8) has also to
be proven separately if the continuous condition (2.4.10) is known to hold.
Let us estimate the error u−uN . Trivially, for any v ∈ V N1 , ‖u−uN‖V1 ≤

‖u−v‖V1+‖uN−v‖V1 holds by the triangle inequality. We apply the discrete
inf–sup condition to the second term on the right:

‖u − uN‖V1 ≤ ‖u − v‖V1 +
1
βN

sup
0
=w∈V N

2

|b(uN − v, w)|
‖w‖V2

≤ ‖u − v‖V1 +
1
βN

sup
0
=w∈V N

2

|b(u − v, w)|
‖w‖V2

.

The second line is obtained from the first by adding and subtracting u in
b(uN−v, w) and using the orthogonality relation b(u−uN , w) = 0, w ∈ V N2 .
Applying the continuity condition |b(u − v, w)| ≤ M‖u − v‖V1‖w‖V2 and
taking the infimum over v ∈ V N1 , we have shown the following theorem; cf.
Babuška [7, Chapter 6].

Theorem 2.26. Let V1, V2 be Hilbert spaces. Consider a sesquilinear form
b : V1 × V2 → C that satisfies the assumptions of Theorem 2.15 as well
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as (2.5.8) and (2.5.9). Let u ∈ V1 and uN ∈ V N1 ⊂ V1 be the exact and
approximate solutions, respectively, of the variational problem (2.2.6). Then
the error u − uN satisfies

‖u − uN‖V1 ≤
(
1 +

M

βN

)
inf
v∈V N

1

‖u − v‖V1 . (2.5.10)

With the notations introduced in (2.5.5) and (2.5.6) we can also formu-
late a sufficient condition of convergence for the Bubnov-Galerkin method
for H1-coercive forms. We consider the problem (2.2.6) with V1 = V2 =
H1(Ω). Then the following theorem holds.

Theorem 2.27. Let Ω be a bounded domain and let b(·, ·) be a V -coercive
sesquilinear form on V = H1(Ω), i.e., b satisfies the G̊arding inequality
(2.4.15). Consider a sequence of subspaces satisfiying (2.5.5) and (2.5.6).

There exists a number N0 such that the variational problem (2.2.6) has
unique solutions uN ∈ V N for all N ≥ N0 and ‖uN −u‖1 → 0 as N → ∞.

The proof can be found in Hackbusch [62, Section 8.2.2]. Comparing the
statement of the theorem to the convergence statement for Ritz solutions,
we may predict a different convergence behavior as follows. Ritz solutions
(of positive definite problems) will typically begin to converge from the
start (with N = 1), whereas Galerkin solutions for indefinite but coercive
forms may behave erratically for small N and start to display a convergence
pattern only if the number of degrees of freedom in the discrete model has
passed the critical number N0.

2.5.3 Conclusions for Helmholtz Problems
We consider the Helmholtz variational form on a bounded domain Ω,

B(u, v) =
∫
Ω
(∇u∇v̄ − k2uv̄)dV ,

neglecting the boundary terms in the present discussion. The form B is,
in general, not H1-elliptic, and hence the Ritz method cannot be applied.
However, B(u, v) is H1-coercive. Therefore Galerkin methods can be em-
ployed for the numerical solution.
Finite element methods are Galerkin methods with piecewise polyno-

mials as trial and test functions. Thus the result of Theorem 2.27 can be
used to establish the asymptotic convergence of finite element solutions to
Helmholtz problems. In applied computations with large wave number k,
the crucial point is the relation between the wave number and the critical
dimension N0 of the finite element subspaces. We will return to this topic
in Chapter 4.
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2.6 Summary

Radiating solutions of the Helmholtz equation can be written in the form
of an infinite series (obtained by separation of variables) or as an integral
representation (using the free space Green’s function). One can say that
the Green’s function “maps” the analytical information from the exterior
(in particular, the far-field behavior) onto the wet surface. The integral re-
presentation is more general than the series representation, since it can be
written for an arbitrary boundary. It forms the analytical basis for boun-
dary element methods. In connection with FEM, we will construct absor-
bing boundary conditions or infinite elements that are based on the series
representation of the exact solution. The FEM is applied to the variational
formulation of the governing equations. We outline this formulation and
review the theory on existence and uniqueness of solutions to variational
problems, as well as the theory of variational numerical methods. The ses-
quilinear forms for Helmholtz problems are, in general, indefinite, but they
satisfy a G̊arding inequality.

2.7 Bibliographical Remarks

The method of separation of variables is described in textbooks on solution
methods for PDE. The peculiar part in the application of this method to
the Helmholtz equation is the proof that the separation constant λ must
be of the form λ = n(n + 1) with integer n. This is often given just as a
fact. A rigorous justification can be found, e.g., in the treatise of Morse
and Feshbach [95, Chapters 5,10].
On the topic of integral solution representations, as well as on methods

for integral equations, see Colton and Kress [39]. The book on integral
equations of Kress [85], in particular, Chapters 1–4, is also recommended
for further reading on the topics of functional analysis that have been only
briefly introduced in this chapter. A broader introduction to functional
analysis with an emphasis on applications is given in the recent book by
Oden and Demkowicz [102]. For an introduction to the variational formu-
lation of PDE and corresponding solution methods, see, e.g., Michlin [94]
or Hackbusch [62]. The first volume of the treatise by Dautray and Lions
[41] is an encyclopedic reference on the mathematical modeling of applied
problems that lead to the wave and the Helmholtz equations. The methods
of solution and many fundamental theoretical results are also covered. The
essential results of the mathematical analysis of the wave and Helmholtz
equations in exterior domains, especially in the nonclassical weak formu-
lation, are reviewed by Leis [87]. A compact outline of the mathematical
theory for exterior Helmholtz problems, including a spectral analysis of
the Laplace operator in exterior domains and the investigation of scatte-
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ring frequencies, is given by Sanchez Hubert and Sanchez Palencia [107,
Chapter VIII]. Roughly speaking, the scattering frequencies are resonant
frequencies of Helmholtz problems with radiation damping. Resonance can
occur only if Im k < 0 [107, p. 348]. We do not elaborate here on this issue
since we assumed that k ∈ R.
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3
Discretization Methods for Exterior
Helmholtz Problems

The finite element method (FEM) is a well-established method for the nu-
merical solution of boundary value problems on bounded domains. The
application of this method on unbounded exterior domains usually invol-
ves a decomposition of the exterior. In scattering problems, the obstacle is
enclosed by an artificial boundary. The FEM is used for discretization of
the bounded domain between the obstacle and the artificial boundary. On
the artificial boundary, one can prescribe absorbing boundary conditions
(ABC) that incorporate (exactly or approximately) the far-field behavior
into the finite element model. In this chapter, we review some popular
ABC, namely, the truncated Dirichlet-to-Neumann (DtN) map after Feng
and Keller–Givoli, the recursion in the Atkinson–Wilcox expansion after
Bayliss et al., the localization of a pseudodifferential operator by Padé ap-
proximation of its dispersion relation after Enquist and Majda, and the
recent perfectly matched layer approach after Bérenger. We start with the
outline of the domain decomposition approach and the spherical DtN ope-
rator, which exactly maps a radiating exterior solution to the radial deri-
vative of its trace on a coupling sphere (Sections 3.1 and 3.2, respectively).
The various ABC are reviewed in Section 3.3. In Section 3.4, we describe
the finite element discretization of the near field. The discretization of the
far field with infinite elements after Burnett and Demkowicz–Gerdes is in-
vestigated in Section 3.5.
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3.1 Decomposition of Exterior Domains

A first natural domain decomposition for the coupled fluid–structure pro-
blem is suggested by the presence of two media. The elastic structure is
discretized with finite elements. Let us assume for convenience that the
elastic response is given as a Neumann boundary condition for the exterior
problem. We will now describe a decomposition of the exterior into a near
field and a far field by the introduction of an artificial boundary enclosing
the obstacle.

3.1.1 Introduction of an Artificial Boundary

Ω

Γ Γ

Ω 

a

Ω

a
+

a

FIGURE 3.1. Scatterer and artificial boundary.

As before, let Ω ⊂ R3 be a sufficiently regular domain1 and denote by
Ω+ := R3 \Ω the exterior. Consider the Neumann boundary value problem

−∆u − k2u = 0 in Ω+ ,

∂nu = g on Γ := ∂Ω , (3.1.1)
∂u

∂R
− iku = o(R−1), R → ∞ ,

where ∂n denotes the derivative in exterior normal direction on Γ. A na-
tural way of discretizing this exterior problem is to introduce boundary
elements on Γ. These boundary elements are generally based on an inte-
gral representation of the exact solution in the exterior.2 If the free space
Green’s function is used in the kernels, the method of boundary elements
(BEM) is theoretically applicable for an arbitrary shape of the obstacle.
The Sommerfeld condition is automatically satisfied. It is, in general, not
necessary to introduce an artificial boundary Γa ⊂ Ω+ along which finite
elements are coupled with boundary elements. Still, a decomposition as de-
picted in Fig. 3.1 is also an option here (for example, it could be motivated

1cf. Remark 2.6.
2Some authors also refer to Dirichlet-to-Neumann maps with non-singular kernels as

BEM.
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by a complicated shape of the wet surface Γ); cf. Hsiao [69]. The BEM for
Helmholtz equations is well-researched, and results are available in several
monographs. Here we focus on different methods of numerical far-field re-
solution that are based on the solution by separation of variables. These
methods require the introduction of an artificial boundary that is defined
on coordinate lines. For instance, in cartesian coordinates the boundary Γa
is a rectangle given by equations x = ±a, y = ±b, whereas Γa is a spherical
surface in spherical coordinates.

3.1.2 Dirichlet-to-Neumann Operators
Assuming that the obstacle Ω is enclosed by a smooth artificial boundary
Γa ⊂ Ω+, let Ωa denote the annular domain between Γ and Γa, and let Ω+a
denote the reduced exterior domain; cf. Fig. 3.1. Problem (3.1.1) is then
equivalently replaced by the coupled problem (cf. Johnson and Nedelec
[78])

−∆u− − k2u− = 0 in Ωa ,
∂νu− = g on Γ ,

u− = u+ on Γa ,
∂νu− = ∂νu+ on Γa , (3.1.2)

−∆u+ − k2u+ = 0 in Ω+a ,

∂u+
∂R

− iku+ = o(R−1), R → ∞ .

Suppose u− = u+ is given on Γa and we can solve analytically the exterior
Dirichlet problem for u+ in Ω+a . Having u+, we can compute ∂νu+ on Γa.
Thus we have constructed a mapping

G : u+|Γa → ∂νu+|Γa . (3.1.3)

Since all the problems are linear, G is a linear operator G : H1/2(Γa) →
H−1/2(Γa). This operator is called the Dirichlet-to-Neumann (DtN) ope-
rator. By (3.1.2)3,4, the operator G equivalently maps u−|Γa → ∂νu−|Γa

.

Remark 3.1. One can use both the integral or the series representation
of the exact solution for the construction of the DtN operator. In the first
case, the operator is also known as the Poincaré–Steklov operator. We will
focus on the second case and consider only DtN operators from the series
representation.

Using the DtN operator (3.1.3), the coupled problem (3.1.2) is equiva-
lently replaced by the reduced problem

−∆u − k2u = 0 on Ωa ,
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∂νu = g on Γ , (3.1.4)
∂νu = Gu on Γa .

Since we are now solving a problem on the bounded domain Ωa, the question
of well-posedness arises naturally.

3.1.3 Well-Posedness
Let us establish a sufficient condition for well-posedness of the reduced
boundary value problem (3.1.4). We consider the weak formulation{

Find u ∈ H1(Ωa) :
b(u, v) := B(u, v)− 〈Gu, v〉Γa = 〈g, v〉Γ , ∀v ∈ H1(Ωa) ,

(3.1.5)
with

B(u, v) =
∫
Ωa

(∇u∇v − k2uv
)
dV

and (we again identify the dual pairings with the L2 inner products)

〈Gu, v〉Γa =
∫
Γa

Guv dS

and
〈g, v〉Γ =

∫
Γ
gv dS .

From here on, we omit the subscripts in the notation of the dual pairings.
We assume that the form b(·, ·) satisfies a G̊arding inequality, hence exi-
stence of a solution to (3.1.5) follows from uniqueness of the adjoint pro-
blem. The following proposition was shown by Grote and Keller [58].

Theorem 3.2. A solution of (3.1.5) is unique if

Im 〈Gu, u〉 < 0 (or > 0) (3.1.6)

holds for all u ∈ H1/2(Γa), u �= 0.

Indeed, let u be a solution of (3.1.5) with g ≡ 0. Then b(u, u) = B(u, u)−
〈Gu, u〉 = 0. Note that B(u, u) is real; hence Im b(u, u) = Im 〈Gu, u〉 = 0.
By (3.1.6), u vanishes on Γa. Then also3 ∂νu ≡ 0 on Γ. We continue function
u by zero into the exterior to get a function û ≡ 0 that is “locally H2”;
i.e., u ∈ H2(D) for each closed and bounded subdomain D ⊂ Ω+a . From
the regularity theory for the Helmholtz operator (cf. Proposition 2.24 and
Hackbusch [62, Chapter 9]) it follows that û is analytic. Then we can apply

3This follows strongly just from (3.1.4)3, but it can also be shown weakly.
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the analytic continuation principle to find 0 ≡ û ≡ u in Ωa. This proves
the theorem.
For the numerical solution, the operator G must be replaced by a trun-

cated DtN operator GN and, instead of (3.1.4), one solves

−∆uN − k2uN = 0 on Ωa ,
∂νu

N = g on Γ , (3.1.7)
∂νu

N = GNuN on Γa .

In general, uN �= u is some approximation of u. To establish well-posedness,
one uses Theorem 3.2, replacing the exact operator G with the approximate
operator GN .
Problem (3.1.7) can be solved by the finite element method (FEM) in

the standard way. If uNh denotes the finite element solution of (3.1.7), we
have, by the triangle inequality

‖u − uNh ‖ ≤ ‖u − uN‖+ ‖uN − uNh ‖ . (3.1.8)

In general, both errors occur, but (3.1.8) allows us to analyze the con-
vergence of the FEM and the error of the DtN operator separately. The
analysis of the finite element error will be the topic of Chapter 4. In the pre-
sent chapter, we review various methods for the discretization of exterior
Helmholtz problems in Ω+a

3.2 The Dirichlet-to-Neumann Operator and
Numerical Applications

We assume in the following that the coupling surface Γa is a sphere of
radius r = a. Though a spherical domain may not be the best choice in
applications (e.g., the scattering from elongated obstacles), we prefer this
simple case for the presentation of the principal ideas.

3.2.1 The Exact DtN Operator
The general construction principle for a DtN operator was described in
Section 3.1. Suppose that the Dirichlet datum u− is given on the sphere.
We expand u− into spherical harmonics (cf. Section 2.1.2) as

u−(θ, φ) = a2
∞∑
n=0

n∑
m=−n

umnYmn(θ, φ)

with
umn =

∫
S0

u(a, θ′, φ′)Ymn(θ′, φ′) dS′ ,
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where S0 is the unit sphere. The radiating solution u+ = u is given on
Ω+a by (2.1.14). In our present case, the constants cmn are found from the
Dirichlet condition to be

cmn =
umn

hn(ka)
.

Thus

u(r, θ, φ) =
∞∑
n=0

hn(kr)
hn(ka)

n∑
m=−n

umnYmn(θ, φ) . (3.2.1)

Differentiating in the radial direction and setting r = a finally leads to

Gu(θ, φ) := −∂u

∂r
(a, θ, φ)

= −
∞∑
n=0

k
h′
n(ka)

hn(ka)

n∑
m=−n

umnYmn(θ, φ) . (3.2.2)

Here the negative sign is taken since the outward normal of the exterior
region Ω+a points in the negative radial direction. A more compact notation
for (3.2.2) is

Gu =
∞∑
n=0

αnun ,

where

αn = −k
h′
n(ka)

hn(ka)
(3.2.3)

and

un(θ, φ) =
n∑

m=−n
umnYmn(θ, φ) .

By the orthogonality of the spherical harmonics,

〈Gu, u〉 =
∞∑
n=0

αn

n∑
m=−n

|umn|2

for u ∈ L2(Γa). We will characterize the spectral properties of operator G
in the next paragraph.
The DtN operator defines an exact nonreflecting condition on the artifi-

cial boundary; i.e., there are no spurious reflections introduced at Γa. The
near field of the original exterior problem can be then exactly computed
from the reduced problem (3.1.4). The operator G is nonlocal since one
integrates over the whole surface to compute the coefficients umn. Thus
the coupling matrix is dense, similar to the FEM–BEM coupling.
In cylindrical coordinates, one obtains by a similar procedure the DtN-

condition

−∂u

∂r
(a, θ, φ) = − 1

2π

∞∑
n=−∞

k
H ′
n(ka)

Hn(ka)
einφ

∫ 2π

0
u(a, φ′)e−inφ′

dφ′ . (3.2.4)
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3.2.2 Spectral Characterization of the DtN-Operator
The following proposition is shown in [45].

Lemma 3.3. Let αn, n = 0, 1, 2, . . ., be the complex sequence defined in
(3.2.3). Then, for all n,

Imαn < 0; Imαn → −0 as n → ∞ (3.2.5)

and
max(

1
a
,
n+ 1

a
− k) ≤ Reαn ≤ n+ 1

a
+ k . (3.2.6)

That is, the imaginary parts of all the αn are negative whereas the real
parts are bounded from below and asymptotically behave like (n+ 1)a−1.

Let us first show (3.2.5). The spherical Hankel function of the first kind
can be written as a complex sum of Bessel functions and Weber functions,
cf. [1, 10.1.1]. Thus

αn := −k
j′
n(ka) + iy′

n(ka)
jn(ka) + iyn(ka)

Hence, with ka := x,

Imαn = − k

j2n + y2n

∣∣∣∣ j′
n(x) y′

n(x)
jn(x) yn(x)

∣∣∣∣ .
By [1, 10.1.6], the Wronskian is x−2, hence

Imαn = − k

|hn(x)|2x2 .

This shows that Imαn < 0 for all n. Now we replace the modulus of the
Hankel functions, using [1, 10.1.27],

|hn(x)|2 = x−2Sn(x) , (3.2.7)

with

Sn(x) =
n∑
k=0

(2n − k)![2(n − k)]!
k![(n − k)!]2

(2x)2k−2n . (3.2.8)

We first note that x2 in the expression for Imα cancels with that in (3.2.7).
Further, rewriting the members of the sum above as

snk =
(2n − k)!

n!
· [2(n − k)]!
(n − k)!

· n!
k!(n − k)!

(2x)2k−2n

we immediately see that

snk ≥
(

n
k

)
(2x)2k−2n
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for all n, k. Hence

Sn ≥
n∑
k=0

(
n
k

)
1k
(

1
(2x)2

)n−k
=
(
1 +

1
(2x)2

)n

and therefore the imaginary part vanishes asymptotically.
Now turn to the investigation of the real part

Reαn = −k
j′
n(x)jn(x) + y′

n(x)yn(x)
|hn(x)|2 . (3.2.9)

By direct computation,

Reα0 =
1
a
.

For n ≥ 1, we replace j′
n and y′

n, using the relation [1, 10.1.21],

f ′
n = fn−1 − n+ 1

x
fn ,

which holds for f = j or f = y, to get

k−1Reαn =
n+ 1
x

− rn(x) (3.2.10)

with

rn(x) :=
jn−1(x)jn(x) + yn−1(x)yn(x)

|hn(x)|2 .

We claim that |rn| < 1. Indeed, using the expressions for the modulus and
phase of the Bessel functions [1, 10.1.26], we can write

rn(x) =
π
2xMn− 1

2
(x)Mn+ 1

2
(x)(cos θn− 1

2
cos θn+ 1

2
+ sin θn− 1

2
sin θn+ 1

2
)

π
2xM

2
n+ 1

2
(x)

,

where Mn+1/2(x) =
√
2x/π |hn(x)|. Hence

r2n(x) ≤
|h2n−1(x)|2
|h2n(x)|2

=
Sn−1(x)
Sn(x)

,

where we used again (3.2.7). With the index transformations l = n− 1− k
and l = n − k, respectively, we get

Sn−1(x) =
n−1∑
l=0

(n − 1 + l)!(2l)!
(n − 1− l)!(l!)2

(2x)−2l ,

Sn(x) =
n∑
l=0

(n+ l)!(2l)!
(n − l)!(l!)2

(2x)−2l .
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We write the second sum in the form

Sn(x) =
n−1∑
l=0

al
n+ l

n − l
(2x)−2l + sn(2x)−2n ,

where al are the coefficients of Sn−1(x). Now it is easy to see that

Sn(x) ≥ Sn−1(x) + sn(2x)−2n .

It follows that |rn(x)| ≤ 1 as claimed. Then it follows from (3.2.10) that

n+ 1
x

− 1 ≤ k−1Reαn ≤ n+ 1
x

+ 1 . (3.2.11)

To complete the proof of (3.2.6), observe that (3.2.9) is equivalently written
as

Reαn = −k
(|hn(x)|2)′
2|hn(x)|2 =

|hn(x)|′
|hn(x)| .

Inserting |hn(x)| = x−1√Sn(x) we get

Reαn = k
1− x

S′
n(x)

2Sn(x)

x
.

By direct computation, it is easily checked that −xS′
n(x)/Sn(x) ≥ 0. Re-

placing x = ka above and in (3.2.11), the lower bound of (3.2.5) readily
follows. The lemma is proved.

3.2.3 Truncation of the DtN Operator
Since the exact DtN operator involves an infinite series, the computation
has to be truncated in practice, replacing G with

GN =
N∑
n=0

αnun . (3.2.12)

Now, the problem is well-posed only for the lower-order spherical har-
monics. Indeed, GNun = 0 if n > N . Hence GNf = 0 for any function f
that is expanded into higher-order harmonics only. Then the ABC (3.1.4)
reduces to the Neumann condition ∂νf = 0. The Neumann eigenvalue pro-
blem for the Laplace operator on a bounded domain has real eigenvalues
(cf. [87, Sections 2.4, 4.1]), and hence there exist, in general, wave numbers
k for which the reduced problem (3.1.4) is not uniquely solvable.
This problem is circumvented if one uses the modified truncated DtN

operator (Grote and Keller [58])

G∗ = (GN − BN ) +B , (3.2.13)
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where B is any computationally efficient DtN operator with the property
(3.1.6), and (GN − BN ) is the truncation of G − B to the first N + 1
modes. For example, one can simply take the so-called Sommerfeld opera-
tor B = ik. Grote and Keller [58] prove that the modified DtN condition
renders well-posed problems for all u ∈ H1(Ωa). They also show in nume-
rical experiments that the error ‖u − uN‖ (in maximum norm on Ωa) is
small also for N ' ka. For the truncated DtN condition (3.2.12), Harari
and Hughes [66] had proposed the rule

N ≥ ka ,

based on numerical experiments.

3.2.4 Localizations of the Truncated DtN Operator
We review the approach for the two-dimensional case from Feng [54]. The
key is to replace the eigenvalues of the DtN operator (3.2.4) by the asymp-
totic expansion (for large a)

k
H ′
n(ka)

Hn(ka)
� ik

∞∑
m=0

(
i

2ka

)m
cm(n2) . (3.2.14)

The coefficients cm are defined recursively. The first four coefficients are of
low order in n2:

c0 = c1 = 1, c2 = 2(1− n2

2
), c3 = −4(1− n2

4
) .

Inserting into (3.2.4) and interchanging the order of summation, we get

∂u

∂n
(a, φ) � ik

∞∑
n=0

(
i

2ka

)n ∞∑
m=−∞

cn(m2)umeimφ .

Now the sum over m can be interpreted as the action of the differential
operator

cn

(
− ∂2

∂φ2

)

on the function u =
∑
m umeimφ. Then, by truncating the DtN operator

to N terms, we obtain a local ABC,

GN = ik

N∑
n=0

(
i

2ka

)n
cn

(
− ∂2

∂φ2

)
. (3.2.15)

The first four operators contain only lower derivatives (up to the second)
with respect to φ. Since the coefficients cn are written in even powers of
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∂/∂φ only, the resulting ABC are symmetric in φ. By its construction,
this DtN operator reproduces any solution that can be written as a linear
combination of the first N Fourier modes on the circle S under the condi-
tion that a is sufficiently large (since the asymptotic expansion in r is used).

Remark 3.4. The expansion (3.2.14) is obtained from the expansion (cf.
[1, 9.2.7-10])

H(1)
n (x) =

√
2
πx

ei(x−( 12+ 1
4 )π)

∞∑
m=0

(
i

2x

)m
(n,m)

where (n,m) is an even polynomial of n.

Givoli and Keller [60] propose an idea that is similar to Feng’s, except
that the DtN condition is constructed in such a way that the first N Fourier
modes are matched exactly by the numerical solution. This is achieved by
first truncating the exact DtN condition and then expanding the finite sum
into powers ofm2. To find the expansion, we require that the N+1 complex
numbers

λn = −k
H ′
n(ka)

Hn(ka)
, n = 0, 1, . . . , N ,

be written as a linear combination of the form

zn =
N∑
m=0

cmn2m .

Now the unknown complex coefficients cm can be computed from the linear
system 


00 02 04 · · · 0N

10 12 14 · · · 1N
...

N0 N2 N4 · · · NN






c0
c1
...

cN



=




λ0
λ1
...

λN




.

The solutions for N = 0, 1 are trivially c0 = λ0, c1 = λ1 − λ0.

3.3 Absorbing Boundary Conditions

We are interested in absorbing boundary conditions (ABC) that are pre-
scribed on Γ to replace the Sommerfeld condition. We distinguish between
global (integral) and local (differential) ABC. Assuming that some dis-
cretization of the boundary is given and a set of nodal points Xn := {xj}n1
defined on Γa, we call an operator global if at any point of interest x ∈ Xn
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Local

a

supp G

x0

Γ

Nonlocal

Γa

supp G x0

FIGURE 3.2. Local and nonlocal boundary operators.

it acts over all nodal points from Xn; see Fig. 3.2. On the other hand, for
some x0 ∈ Xn a local operator on u(x) acts only on a subset of M nodal
points adjacent to x0 wherem is a fixed number that does not depend on n.
We already discussed integral ABC with regular kernels obtained by trun-
cation of the exact DtN map, as well as their localizations. In this section,
we review some other popular local ABC. All local operators are differential
operators, which are in practice implemented as difference operators.

3.3.1 Recursion in the Atkinson–Wilcox Expansion
We start from the time-dependent case. Assume that P (x, t), x ∈ Ω+, is a
solution of the scaled wave equation

∆P − ∂2P

∂t2
= 0 (3.3.1)

in the exterior domain Ω+. We define an approximate solution PN by im-
posing the condition

BNPN = 0 (3.3.2)

on the coupling surface Γa, where the linear operators BN are defined as
follows.

B1 = L+
1
r
, B2 =

(
L+

3
r

)(
L+

1
r

)
,

...

BN =
(
L+

2N − 1
r

)
BN−1 , (3.3.3)

with

L =
(

∂

∂t
+

∂

∂r

)
.

By the Atkinson–Wilcox expansion (2.1.26),

P (r, θ, φ, t) =
eik(r−t)

r

∞∑
n=0

pn(θ, φ)
rn

(3.3.4)
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holds in the exterior of any sphere enclosing the obstacle. It is easy to show
by inductive argument that

BNP =
∞∑
n=1

aNn
Pn

rn+N
, N = 1, 2, . . . , (3.3.5)

where Pn := eik(r−t)pn−1 and

aNn = (−1)N (n − 1)(n − 2) · · · (n − N) . (3.3.6)

Thus operatorBN annihilates (“absorbs”) the firstN terms of the Atkinson–
Wilcox expansion of any propagating wave given in the form (3.3.4), and
we have the residual condition

BNP = O
(
r−(2N+1)

)
.

We can obtain time-harmonic variants of the operators BN by replacing
each time differentiation with the operator −ik in the frequency domain.
The corresponding time-harmonic solution is denoted by pN . From (3.3.5),
(3.3.6), and (3.3.2) we see that any radiating solution p satisfies the residual
relation

BN (pN − p) = BNp =
∞∑

n=N+1

aNn
pn

rn+N
.

This residual relation shows, in particular, that the ABC will be more exact
the larger the radius of the artificial boundary.
In cylindrical coordinates, similar considerations lead to the operator

BNp =
∞∑
n=1

aNn
pn

rn+N− 1
2
, N = 1, 2, . . . (3.3.7)

with aNn as in (3.3.6). This formula is developed from the expansion

p =

√
2

πkr
ei(kr−

π
2 )

∞∑
j=0

fj(φ)
rj

,

which in turn follows from (2.1.27), using [1, 9.2.3].
A DtN operator GN is defined from BN by setting

GN := −BN +
∂

∂n
. (3.3.8)

In practice, one usually employs only the first two approximate conditions.
We consider here the spherical conditions for the case of axial symmetry
(no dependence on φ) [20]. From

B1 =
∂

∂r
− ik +

1
r
,

B2 =
∂2

∂r2
+
(
4
r

− 2ik
)
+
(
2
r

− 4ik
)
1
r

− k2
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we obtain, using the Bessel equation (2.1.8) to eliminate ∂2/∂r2,

G1 = ik − 1
r
, (3.3.9)

G2 = ik − 1
r
+

∂

∂θ

(
sin θ

∂

∂θ

)

2r2
(
1
r

− ik

)
sin θ

. (3.3.10)

3.3.2 Localization of a Pseudodifferential Operator
We first consider cartesian coordinates in R2. Let the solution be given in
the form of a wave packet (cf. (2.1.3)),

p(x, y) =
∫ ∞

−∞
p(α)ei(αx+βy)dα ,

with the dispersion relation

α = k
√
1− σ2, σ =

β

k
, (3.3.11)

characterizing an outgoing solution. We seek an ABC at the boundary x =
constant in two dimensions. If we could transform the dispersion relation
exactly into an ABC then all wave packets would pass the boundary without
reflection. However, this is not possible if we look for a DtN condition in the
form of a local differential operator. Since (3.3.11) is a nonrational expres-
sion, it represents a pseudodifferential rather than a differential operator.4

To obtain local operators, we approximate the nonrational relation by ra-
tional functions. Then we deduce the approximate DtN conditions from
those differential operators that are the preimages of the approximate Fou-
rier symbols. Enquist and Majda [52] show that the Padé approximations5

lead to stable and well-posed formulations. In Table 3.1, we list the Padé
approximations with residual orders (in σ), the corresponding differential
operators for N = 0, 1, 2, and the resulting DtN operators for the scaled
wave equation (3.3.1). As an example, let us outline the operator for N = 1:

p,x= iαp � ik

(
1− σ2

2

)
p =

(
ik +

i(iβ)2

2k

)
p =

(
ik +

i

2k
∂2

∂y2

)
p .

4Here it suffices to say that the Fourier symbol of a differential operator is always a
polynomial. Conversely, only polynomials can be symbols of differential operators. The
theory of pseudodifferential operators allows for more general Fourier symbols and is
thus applicable also to integral operators.

5We review the basic ideas of Padé approximation in the appendix to this chapter.
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TABLE 3.1. Padé approximations and differential operators at x = 0.

Order N Approximation Residual Boundary operator

0 1 O(σ2) ik

1 1− 1
2
σ2 O(σ4) ik +

i

2k
∂2

∂y2

2
1− 3

4
σ2

1− 1
4
σ2

O(σ6) ik +
3i
4k

∂2

∂y2
− 1
4k3

∂2

∂x∂y2

We see that the first two Padé expansions are just the Taylor expansions.
The approximation for N = 2 is the ratio of quadratic polynomials. For
N ≥ 3, the expansions involve higher-order polynomials and consequently
lead to higher-order differential operators.
Enquist and Majda also develop boundary conditions in polar coordina-

tes; cf. Section 3.3.3.
Unlike the previous approaches, Enquist and Majda do not attempt mo-

dal annihilation. The quality of the ABC is assessed from the amplitude
reduction in the reflected modes. A plane wave Pinc hitting the boundary
x = 0 at angle θ produces a spurious reflection Pref ; see Fig. 3.3. Consi-
dering again the scaled wave equation (3.3.1), we write the incoming wave
as

Pinc = eik(x cos θ+y sin θ−t) .

Then
Pref = R0e

ik(−x cos θ+y sin θ−t) .

θ
x

y

p

p
ref

inc

FIGURE 3.3. Reflection of a plane wave at an artificial boundary x = 0.
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The reflection coefficient R0 is computed from the zero-order boundary
condition (pinc + pref),x−ik(pinc + pref) = 0 at x = 0 as

R0 =
cos θ − 1
cos θ + 1

. (3.3.12)

Hence any plane wave incident in the normal direction is completely ab-
sorbed, whereas spurious reflections occur for θ �= 0. One can show [52]
that

|RN | =
∣∣∣∣cos θ − 1
cos θ + 1

∣∣∣∣
(N+1)

holds for the higher-order approximations. The amplitude of the spurious
reflections decreases with the order N .

3.3.3 Comparison of ABC
In Table 3.2 we list the different two-dimensional DtN operators in polar
coordinates, supposing that the artificial surface is a sphere of radius a.

TABLE 3.2. DtN conditions in polar coordinates. The abbreviations in the first
column stand, respectively, for “Bayliss–Gunzburger–Turkel”, “Enquist–Majda”,
and “Feng”.

DtN conditions GN

Authors N = 0 N = 1 N = 2

BGT − ik − 1
2a

−2k2 − 3ik
a
+

3
4a2 +

1
a2

∂2

∂θ2

2
(
ik − 1

a

)

EM − ik − 1
2a

ik − 1
2a
+

1
2k2a2

(
ik +

1
a

)
∂2

∂θ2

F ik ik − 1
2a

ik − 1
2a
− i

8ka2 −
i

2ka2

∂2

∂θ2

Remark 3.5. The Sommerfeld operator ik is formally obtained for the
approximation order N = 0 only by the approach of Feng.

The corresponding expressions from the Givoli–Keller approach are

k
H ′
o(ka)

Ho(ka)
, k

[
H ′
o(ka)

Ho(ka)
−
(
H ′
1(ka)

H1(ka)
− H ′

o(ka)
Ho(ka)

)
∂2

∂θ2

]
,
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for N = 1 or N = 2, respectively (the expression for N = 3 involves the
fourth derivative in θ). We observe:

1. All conditions are essentially equal for N = 1.6 The condition (3.1.6)
for well-posedness is satisfied.

2. For N = 2, the expressions differ. However, all conditions, except
those of Enquist and Majda, are based on the annihilation of the
first three modes in the exterior expansion. Hence one expects similar
approximation errors if the radius of the artificial sphere is sufficiently
large (recall that Feng uses an expansion that is exactly annihilating
only asymptotically). The same applies to the satisfaction of condition
(3.1.6). For sufficiently large radius a, all conditions are dominated
by the positive definite Sommerfeld operator ik.

3. Feng’s as well as Enquist’s and Majda’s conditions always lead to
symmetric (in θ) DtN operators whereas the Bayliss–Gunzburger–
Turkel approach does not. In our evaluation, this is visible for N = 2.

4. The wave number enters the higher-order operators with inverse power.
Thus the improvement in accuracy by higher N is expected to de-
crease with growing k.

The various ABC have been compared in numerical experiments by Shirron
[110]. The accuracy of the conditions is assessed by defining and solving
“canonical problems” for rigid scattering from the unit circle; see Fig. 3.4.

���� ������
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������
������
������

������
������
������
������
��������

��
��
��

a=1
λ

P Γ
Γa

FIGURE 3.4. Cylindrical scatterer and artificial boundary.

Shirron isolates modal information by assuming that the cylinder is sub-
ject to a signal consisting of the nth mode only (this is the nth canonical
problem). Then the scattered signal also consists of that mode only. The
first 30 canonical problems are solved by FEM in the annular domain, im-
posing the various ABC with orders N = 0, 1, 2. The approximation error

6A simple calculation shows that

k
H′

0(ka)
H0(ka)

� ik − 1
2a

for large ka.
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is measured at a point P on the wet surface, and the artificial surface Γa is
a circle located at the distance λ from Γ. The computations are done for
wave numbers k = 1, 5, 10, 20. From the numerical data in [110], we draw
here two conclusions for N = 2.
First, the Bayliss–Gunzburger–Turkel conditions are the most accurate

ones, especially for the lower modes. In Shirron’s computations, the ar-
tificial boundary is very close to the scatterer, i.e., not in an asymptotic
range of the radius. Recall that Feng’s condition is based on the asymptotic
expansion with respect to the radius.

TABLE 3.3. Comparison of relative errors in the first- (BGT1) and second-order
(BGT2) ABC after Bayliss–Gunzburger–Turkel for different k. The first column
shows the ratio of the errors.

k BGT1/BGT2 BGT2
1 177 3e-05
5 22 4.3e-03
10 8 2.1e-02
20 4 7.3e-02

Second, the maximal error for each k occurs for n ≈ k [110, p. 27]. While
the error grows with k, the improvement in N = 2 compared to N = 1
decreases; see Table 3.3 (data from [110, pp. 28–30]). Consequently, since
the maximal error for larger k is contributed by higher modes, the advan-
tage of the Bayliss–Gunzburger–Turkel condition with respect to Feng’s
and Enquist’s and Majda’s conditions becomes insignificant in that case.
Resuming our evaluation, we note that the ABC discussed here are qua-

litatively equivalent. The differences are negligible except for small radius
and low wave number. Thus the choice of the “best” ABC can be based on
practical considerations, such as symmetry of the resulting DtN operator
or the order of the derivatives involved.

3.3.4 The PML Method
A new method for the construction of ABC has been recently proposed by
Bérenger [22, 23]. The idea is to introduce an exterior layer at the artificial
boundary in such a way that all plane waves are totally absorbed. This
means that no reflection occurs for an arbitrary angle of incidence, and the
transmitted wave vanishes at infinity, whence the name perfectly matched
layer (PML) method. In practice, the computation is truncated at some
finite distance within the layer. But the resulting artificial reflections are
small, due to the exponential decay.
The idea originated from electromagnetic compuations. Here we out-

line the method for the acoustic equations in R2. We consider the artificial
boundary x = 0 in cartesian coordinates, assuming that the standard acou-
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stic equations hold in the domain Ω− = {x ≤ 0} and the infinite layer is
Ω+ = {x ≥ 0}.
We start from the linearized continuity equation (1.1.2)

∂ρ

∂t
+ ρ0divV = 0 ,

which we rewrite as a system

∂ρx
∂t

= −ρ0Vx,x ,
∂ρy
∂t

= −ρ0Vy,y

ρx + ρy = ρ .

Here ρx, ρy are just formal variables with no physical meaning. We further
recall the linearized Euler equation (1.1.3), which we write componentwise
in the form

∂Vx
∂t

= − 1
ρ0

∂P

∂x
,

∂Vy
∂t

= − 1
ρ0

∂P

∂y
.

Finally, the pressure and density are coupled by the material law

P = c2ρ .

In the PML Ω+, we reformulate those equations that contain a derivative
orthogonal to the boundary (here, the x-direction). In these equations we
add an absorption term. For our example, the modified equations read

∂ρx
∂t

+ σ(x)ρx = −ρ0Vx,x ,
∂Vx
∂t

+ σ(x)Vx = − 1
ρ0

∂P

∂x
.

The homogeneous solutions of these equations are of the formA exp(−σ(x)t),
and hence we require σ(x) ≥ 0 for x ≥ 0 to assure decay. Further, we require
that σ ≡ 0 for x ≤ 0 and that σ(x) ∈ C1(R).
We are ready to deduce the modified time-harmonic equation for p. Re-

placing the time-derivatives with −iω, we obtain

ρx = − ρ0
σ − iω

vx,x=
1

σ − iω

∂

∂x

(
1

σ − iω

∂p

∂x

)

ρy = − 1
ω2

∂2p

∂y2
.

Writing the material law in the form c−2p = ρx + ρy and inserting the
relations above, we finally arrive at

iω

σ − iω

∂

∂x

(
iω

σ − iω

∂p

∂x

)
+

∂2p

∂y2
+ k2p = 0 . (3.3.13)

For x ≤ 0, we have σ = 0 and (3.3.13) reduces to the Helmholtz equation.
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Let now x ≥ 0. Looking at the first term in (3.3.13), it is natural to
introduce a new coordinate x′ such that

∂x′

∂x
=

iω

σ − iω
.

With the transformation

x′ = x+
i

ω

∫ x
0

σ(ξ) dξ , (3.3.14)

we thus formally recover the Helmholtz equation in the (x′, y) coordinate
system. We can write normalized solutions of this equation in the form of
a wave packet

p(x′, y) =
∫ ∞

−∞
ei(αx

′+βy)dα , α2 + β2 = k2 .

Then, for an arbitrarily fixed α = kx, we have

eikxx
′
= eikxx exp

(
−kx

∫ x
0

σ(ξ)
ω

dξ

)
,

and hence the wave is decaying in the positive x-direction (recall that σ >
0). No spurious reflection occurs at x = 0, since there is no jump in the
material properties between the acoustic medium and the PML.
Consider now the practical case that the layer is truncated by a Dirichlet

condition at x = δ > 0. Then reflection occurs. Writing, respectively, pinc =
ei(kxx

′+kyy) , pref = Rei(−kxx
′+kyy) for the incoming and reflected waves

and setting pinc + pref = 0 at x = δ, we see that the the amplitude of the
reflected wave is

R = − exp
(
2ikx

∫ δ
0
1 +

iσ(ξ)
ω

dξ

)
. (3.3.15)

Remark 3.6. The introduction of the damping factor σ has no physical
significance. It is a mathematical transformation which in effect is an ana-
lytical continuation of the elementary solutions into the complex plane; cf.
Collino and Monk [38].

3.4 The Finite Element Method in the Near Field

We consider the reduced boundary value problem (3.1.4) and review the
main steps of its solution with finite element methods. We consider here
only the case of a p-uniform regular mesh. Adjacent elements either share
a vertex or a common edge (there are no “hanging nodes”), and the poly-
nomial degree is constant throughout the mesh. The finite element method
is applied to the weak formulation (3.1.5). We assume that g and G are
such that the problem is well posed.
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3.4.1 Finite Element Technology
The numerical solution of (3.1.5) by the FEM involves the following steps
(we consider a two-dimensional domain for simplicity).

(1) Triangulation of the Domain:

Domain Ωa is divided into quadrilaterals and/or triangles τi (with straight
or curvilinear boundaries) — the finite elements. The set of all elements is
called the triangulation

T = {τi, i = 1, . . . , N} .

We assume the ideal case that

Ωa =
N⋃
i=1

τi ;

that is, the finite elements are an exact partition of Ωa. Then∫
Ωa

(∇u∇v̄ − k2uv̄) dV =
N∑
i=1

bi(u, v) ,

where
bi(u, v) =

∫
τi
(∇u∇v̄ − k2uv̄) dV

is the restriction of the form b(u, v) to the element τi.
Prescribing some measure function that maps each element to its size hi

(for example, one can take the radius of the inscribed circle for straight-
lined triangles), one defines the mesh size

h = max
i

hi

of the triangulation T .

(2) Mapping from Master Elements:

Each of the elements τi is mapped from master elements by a transform

(x, y) = Q(ξ, η) , (3.4.1)

where ξ, η are defined either on a master square (e.g., −1 ≤ ξ, η ≤ 1) or on
a master triangle (e.g., 0 ≤ ξ ≤ 1, 0 ≤ η ≤ ξ); see Fig. 3.5. For example, a
straight-lined quadrilateral is mapped from the square master element by
the linear map

x =
1
4
(X1(1− ξ)(1− η) +X2(1 + ξ)(1− η)

+ X3(1 + ξ)(1 + η) +X4(1− ξ)(1 + η)) ,

y =
1
4
(Y1(1− ξ)(1− η) + Y2(1 + ξ)(1− η)

+ Y3(1 + ξ)(1 + η) + Y4(1− ξ)(1 + η)) ,
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where (Xi, Yi) are the coordinates of the element corners in the global x, y
coordinate system. In general, the map Q is nonlinear.

ξ

x

y

ξ

Q Q
η

η

FIGURE 3.5. Triangulation of domain Ω and mapping from master elements.

The local forms bi are computed on the master elements A as

bi =
∫
A

(
J−1∇ξηu(Q(ξ, η))

)T (
J−1∇ξη v̄(Q(ξ, η))

)
detJ dξdη

−k2
∫
A

u(Q(ξ, η))v̄(Q(ξ, η)) detJ dξdη ,

where the gradients are computed in local coordinates (ξ, η), and J is the
Jacobian matrix

J =

[
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]
.

The design of the mesh has to be such that J−1 exists for each element.

(3) Approximation:

The trial functions u and test functions v are approximated in local coor-
dinates ξ, η by the linear combination

uh(ξ, η) =
n(p)∑
i=1

aiNi(ξ, η) , (3.4.2)

where the ai are unknown complex coefficients and Ni are polynomials of
maximal degree p. Each of the coefficients ai corresponds to a degree of free-
dom (DOF) of the element τi. The functions Ni are called shape functions.
In a quadrilateral element, the first four DOF are identified with the nodal
values of the unknown function uh at the corners of the element. The first
four shape functions N1, . . . , N4 are the bilinear (nodal) shape functions
1
4 (1±ξ)(1±η). In the hierarchical concept of hp-approximation, we further
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2(p-1)1 1

1 1

2(p-1)

(p-2)(p-3)/2

2(p-1)

2(p-1)

FIGURE 3.6. Degrees of freedom in square element with hierarchical basis: ✷,
nodal DOF; 	, edge DOF; © – internal DOF.

have 4(p − 1) edge modes and (p − 2)(p − 3)/2 internal modes (“bubble
functions”); see Fig. 3.6. Here, p is the maximal degree of the polynomial
shape functions. Edge modes arise for p ≥ 2, and internal modes arise
only for p ≥ 4. The mapping Q transforms the elemental shape functions
into element-level basis functions for approximation in global coordinates.
The quality of the FE approximation depends on the mesh design (i.e.,
the size and shape of the elements), the degree of approximation inside the
elements, and also on the choice of the transform Q.
The local shape functions form the linear polynomial spaces Sp(✷) or

Sp((), respectively. For the square master elements, the space Sp(✷) con-
sists of all polynomials that can be written as a linear combination of
monomials ξiηj , 0 ≤ i, j ≤ p, i+ j ≤ p, plus the monomial ξη for p = 1 or
the monomials ξpη, ξηp for p > 1, respectively. As an example, see below

ξ
4

1

1

2

2

4 3

3

η

FIGURE 3.7. Square master element.

the hierarchical shape functions (cf. Szabó and Babuška [112, Chapter 6])
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for a square master element with node and edge numbering as depicted in
Fig. 3.7.

1. Nodal modes:

N1(ξ, η) =
1
4
(1− ξ)(1− η) ,

N2(ξ, η) =
1
4
(1 + ξ)(1− η) ,

N3(ξ, η) =
1
4
(1 + ξ)(1 + η) ,

N4(ξ, η) =
1
4
(1− ξ)(1 + η) .

2. Edge modes: The edge modes associated with edge 1 are

N
(1)
i =

1
2
(1− η)φi(ξ), i = 2, . . . , p ,

with

φi(ξ) =

√
2i − 1
2

∫ ξ
−1

Pi−1(t)dt , (3.4.3)

where Pi−1(t) are the Legendre polynomials given in (2.1.12). Simi-
larly, the edge modes on edge 2 are

N
(2)
i =

1
2
(1 + ξ)φi(η), i = 2, . . . , p ,

etc.

3. Internal modes: If p ≥ 4, then there are (p− 2)(p− 3) internal modes

N
(0)
1 (ξ, η) = φ2(ξ)φ2(η) ,

N
(0)
2 (ξ, η) = φ3(ξ)φ2(η) ,

N
(0)
3 (ξ, η) = φ2(ξ)φ3(η),

...

Remark 3.7. It is possible to choose other polynomials than those defined
in (3.4.3). For fixed degree of approximation p, the choice of the polynomial
shape functions does not influence the quality of approximation. Different
shape functions just form different bases of the same space Sp, which de-
termines the degree of local approximation. The elemental shape functions
can thus be chosen by practical aspects of the FEM technology such as
geometrical approximation of the domain, method of mesh refinement and
enrichment, efficient coding and data storage. For instance, the new basis
in a p-enrichment step is an extension of the previous basis if hierarchical
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shape functions are used; otherwise, a whole new basis has to be intro-
duced if p is changed locally. Considerations of the optimal choice of basis
functions for the FEM can be found in [10]. A performance analysis of dif-
ferent hierarchical square elements of order p in the example of the Laplace
equation with h-uniform mesh is given in [9]. The choice of basis functions
influences the conditioning of the global stiffness matrix. This aspect is of
particular importance for very large problems where iterative solvers with
preconditioning are used; cf. Babuška et al. [8]. A performance analysis
of different hierarchical square elements of order p in the example of the
Laplace equation with h-uniform mesh is given in [9].

(4) Computation of Local Stiffness and Mass Matrices:

On each element, the local form bi(u, v) is computed, where u, v are written
on the master element as

∑
j ajNj ,

∑
i biNi, respectively. Carrying out the

integrations (in general, by Gaussian quadrature), one obtains the local
matrix

Aloc = Kloc − k2Mloc ,

with

[Kloc]ij =
∫
A

(
J−1∇Nj(ξ, η)

)T (
J−1∇Ni(ξ, η)

)
detJ dξdη ,

[Mloc]ij =
∫
A

Nj(ξ, η)Ni(ξ, η) detJ dξdη .

(5) Assembly of Global Matrices:

On the global level, we look for an approximate solution uh(x, y) that is
continuous across element junctions. Thus the DOF associated with the
nodal and edge modes on neighboring elements have to be identified; see
Fig. 3.8. The global stiffness matrix is obtained by summing up the contri-

FIGURE 3.8. Identification of modes in assembly.

butions of local stiffness matrices for all elements that contain the vertex
or edge under consideration. The internal modes are not connected across
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element edges and can be eliminated prior to the assembly by static con-
densation. After assembly, we obtain the linear system

Au = g , (3.4.4)

where the system matrix
A = K− k2M (3.4.5)

is a linear combination of the stiffness matrix K and the mass matrix M,
and the vector g has been assembled from the discretization of the right-
hand side. Provided that the bubble modes have been condensed, the vector
u contains all DOF associated with the nodal and edge modes of the global
mesh.

3.4.2 Identification of the FEM as a Galerkin Method
In the assembly procedure, one effectively constructs continuous basis func-
tions Φl(x, y) over patches Pl =

⋃
τj of adjacent elements. In Fig. 3.9a) we

show the nodal basis function on a patch consisting of four quadrilaterals.
Similarly, one obtains p − 1 edge basis functions on patches consisting of
two adjacent elements; see Fig. 3.9b). Finally, the internal modes lead to
global basis functions that are supported on one element only.

(a) Nodal basis function (b) Edge basis function

FIGURE 3.9. Global basis functions.

Since all basis functions vanish at the patch boundaries, they can be
continuously extended by zero onto the whole domain. The trial function
uh is then written as the linear combination

uh(x, y) =
Nglob∑
l=1

ulΦl(x, y) ,

with unknown coefficients ul. The global basis functions Φl(x, y) reduce on
every element τi to polynomials Φ

(i)
l (ξ(x, y), η(x, y)) in local coordinates.

The linear span of these basis functions forms the finite-dimensional space
Sph(Ωa). By definition, S

p
h(Ωa) is a subspace of the space H1(Ωa) in which

we seek the exact solution; hence the FEM is conforming.
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The finite element solution is found from the variational problem:{
Find uh ∈ Sph(Ωa) :

b(uh, v) = 〈g, v〉Γ , ∀v ∈ Sph(Ωa) .
(3.4.6)

Equivalently, the testing is performed succesively with all the basis functi-
ons Φl, l = 1 . . . Nglob.

3.4.3 The h-Version and the hp-Version of the FEM
The FEM is a numerical method for the solution of boundary value pro-
blems. We suppose that a unique solution exists and demand that the nu-
merical solution converges to the exact solution. In practice, convergence
is either achieved by refining the mesh, letting the mesh size h approach
zero asymptotically, or by increasing the degree of polynomial approxima-
tion p on a fixed mesh. The first procedure is called h-refinement, whereas
the second procedure is called p-enrichment. Correspondingly, one speaks
of the h-version and the p-version of the FEM. If convergence is achie-
ved by a combination of h-refinement and p-enrichment, one speaks of the
hp-version; see Szabó and Babuška [112].
We will investigate the convergence of the FEM for Helmholtz problems.

In this context, we will use the name h-version to refer to the standard pro-
cedure of h-refinement with piecewise linear basis functions. If also higher-
order polynomials are used in the approximation, we will speak of the hp-
version. In our applied computations, we will concurrently use h-refinement
and p-enrichment to achieve convergence.

3.5 Infinite Elements and Coupled Finite–Infinite
Element Discretization

In Sections 3.2 and 3.3, we reviewed some numerical approaches in which
the exterior domain Ω+a outside the artificial boundary Γa was truncated.
Alternatively, one can partition Ω+a into so-called infinite elements. In this
section, we review the infinite elements based on the radial expansion of
Wilcox (cf. Section 2.1.4) after Burnett [32].
We first define infinite elements for the exterior of the unit sphere and

then consider different variational formulations that lead to Petrov–Galerkin
or Bubnov–Galerkin methods.

3.5.1 Infinite Elements from Radial Expansion
Consider the domain decomposition of the exterior as described in Sec-
tion 3.1. Assume that the annular subdomain Ωa is partitioned into finite
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elements and a subspace Sph(Ωa) ⊂ H1(Ωa), based on conforming finite
elements, is defined. This naturally induces a finite element partition and
a finite element space Sph(Γa) on the artificial boundary Γa. Assume fur-
ther that the finite elements are coupled to infinite elements that form a
partition of the exterior domain Ω+a , as sketched in Fig. 3.10.

ξ

x

y

ξ

Q Q
η

η

ξ

η

FIGURE 3.10. Partition of the exterior into finite and infinite elements.

In the general case, one assumes that Γa is described by a system of
coordinates in such a way that the normal at any point of Γa is tangential
to a coordinate line which goes out from Γa to infinity. One can imagine
each infinite element bounded by those coordinate lines. Infinite elements
based on prolate or oblate spheroids have been described by Burnett [32].
These infinite elements are of practical value if one computes the scattering
of waves from elongated or flat obstacles, since they allow to fit the obstacle
closely, keeping the finite element region small. If the artificial surface is a
sphere, we use spherical coordinates and the coordinate lines are the radial
lines.
In the following, we outline the basic ideas of the infinite element dis-

cretization for the most simple case that Γa is the surface of the unit sphere.
The infinite element is a semianalytical construction that reduces to a finite
element on the coupling surface. In addition, a finite number of analytical
“shape functions” is defined in the radial direction. Thus the IE shape
functions are obtained as a tensor product of the FE shape functions and
the radial functions. That means, it is assumed that separation of variables
can be applied in the exterior of the artificial boundary.
We seek a numerical solution uNh that in Ω+a = {r > 1} can be written

in the form

uNh (r, θ, φ) = UN (r)uh(θ, φ) , uh ∈ Sph(Γa) , (3.5.1)

with

UN (r) =
N∑
j=1

ajϕj(r) ,
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where the radial “shape functions” are the first N members of the radial
expansion (2.1.26),

ϕj(r) =
eikr

rj
, j = 1, . . . , N , (3.5.2)

and the aj are unknown complex coefficients; see also Fig. 3.11.

eikr

r
,
eikr

r2 , . . .

FIGURE 3.11. Infinite element.

The only nodes of the infinite elements are the FE corner nodes on the
coupling surface. Similar to the edge and bubble modes in the hierarchical
finite element approximation (see, e.g., Szabó and Babuška [112]), the radial
degrees of freedom aj need not be associated with physical locations.

3.5.2 Variational Formulations
A Petrov–Galerkin Formulation:

Let us first consider the variational formulation (2.3.10) with the weighted
Sobolev spaces after Leis [87], as introduced in Section 2.3.2. The trial func-
tions uNh defined in (3.5.1) lie in the space H1+

w (Ω+a ). Indeed, the functions
always satisfy the Sommerfeld condition by the choice of the radial basis
functions, and it can be easily checked that ‖uNh ‖1,w < ∞. Hence the trial
space

V1 :=
{
u ; u|Ωa ∈ Sph(Ωa) andu|Ω+

a
∈ SpNh,w(Ω

+
a )
}

, (3.5.3)

where SpNh,w(Ω
+
a ) denotes the linear span of the trial functions (3.5.1), is

a finite-dimensional subspace of the space H1+
w (Ω+). Each function in the

trial space reduces on Γa to a finite element function uh ∈ Sph(Γa), whereas
in radial direction it lies in the linear span of the shape functions (3.5.2).
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The test functions v have to be defined in such a way that the test space
V2 is a subspace of the weighted Sobolev space H1

w∗(Ω+). This condition is
satisfied if v = O(r−3), r → ∞. Defining the radial basis functions

ψj(r) =
eikr

rj
, j = 3, . . . , N + 2 , (3.5.4)

we can write the test functions in the form

v = vNh (r, θ, φ) = VN (r)vh(θ, φ) , (3.5.5)

with vh ∈ Sph(Γa) and

VN (r) =
N∑
j=1

bjψj(r) .

The test space for the coupled finite–infinite element method is thus

V2 :=
{
v ∈ H1

w∗(Ω
+
a ) ; v|Ωa ∈ Sph(Ωa) , v|Ω+

a
∈ SpNh,w∗(Ω

+
a )
}

.

where SpNh,w∗(Ω+a ) ⊂ H1+
w∗ (Ω+a ) is the linear span of (3.5.5). Hence the trial

and test functions of the coupled finite–infinite element discretization are
continuous functions on Ω+ = Ωa∪Ω+a that reduce to piecewise polynomial
functions on Ωa and to semianalytical infinite element functions on Ω+a .
With these notations, the variational problem is posed as{

Find uNh ∈ V1 :
B(uNh , v) = 〈g, v〉Γ, ∀v ∈ V2 ,

(3.5.6)

where
B(u, v) =

∫
Ω+
(∇u∇v̄ − k2uv̄) dV . (3.5.7)

Separation of variables under the integral:

Let us write the test and trial functions in the form

u = U(r)Φ(θ, φ) , v = V (r)Ψ(θ, φ) .

Then

B(u, v) =
∫ ∞

1
r2dr

∫
S0

[∇(ΦU)∇(ΨV )− k2UV ΦΨ] dS ,

where S0 denotes the surface of the unit sphere, and dS = sin θ dφ dθ.
Writing out the gradient in spherical coordinates as

∇ =
∂

∂r
er +

1
r
∇S , with ∇S = ∂

∂θ
eθ +

1
sin θ

∂

∂φ
eφ ,
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we arrive at the separated form

B(u, v) =
∫ ∞

1
r2
(
U,r V ,r −k2UV

)
dr

∫
S0

ΦΨ dS

+
∫ ∞

1
UV dr

∫
S0

∇SΦ∇SΨ dS . (3.5.8)

Bubnov–Galerkin Formulations:

Let us now consider variational formulations where the trial and test spaces
are identical. This is possible if the spaces are finite-dimensional and the
integration in the exterior is understood in the sense of the Cauchy principal
value. We disregard the FE region Ωa, considering only the infinite element
discretization of Ω+a here. The infinite elements are defined as in Section
3.5.1, but now we seek the discrete solution uNh from the variational problem{

Find uNh ∈ V1 :
bc(uNh , v) = 〈g, v〉Γ, ∀v ∈ V1 ,

(3.5.9)

where V1 is the space defined in (3.5.3), and the variational form is

bc(u, v) := lim
R→∞

(∫
ΩR

(∇u∇v̄ − k2uv̄) dV − ik

∫
SR

uv̄ dS

)
. (3.5.10)

Here, as before, SR denotes the surface of a large sphere with radius R that
is concentric with Γa, whereas ΩR is the annual domain between the Γa
and SR. Unlike the form B(u, v) in (3.5.7), the sesquilinear form bc(u, v)
contains a surface integral in the far field. As previously mentioned, this
integral always vanishes in the limit R → ∞ for test functions that are
O(r−3) and, therefore, it is not included in (3.5.7).
The following verification of the integration in (3.5.10) is given after

Gerdes [55]. We rewrite the trial and test functions in the form

u =
exp(ikr)

rm
fm , v =

exp(ikr)
rn

fn , (3.5.11)

where the coefficients fm and fn are functions of the angular coordinates,
and the summation convention applies over the range 1, . . . , N of the in-
dices. Substituting (3.5.11) into the sesquilinear form (3.5.10) and taking
into account (3.5.8), we obtain

bc(u, v) = lim
R→∞

{∫ R
1

r2

[
∂

∂r

(
exp(ikr)

rm

)
∂

∂r

(
exp(ikr)

rn

)

− k2

rm+n

]
dr

∫
S0

fmf̄n dS

+
∫ R
1

dr

rm+n

∫
S0

∇Sfm∇S f̄n dS − ik
R2

Rm+n

∫
S0

fmf̄n dS

}
,



92 3. Discretization Methods for Exterior Helmholtz Problems

where we have used the trivial relation(
exp(ikr)

rm

)(
exp(ikr)

rn

)
=

1
rm+n

.

Carrrying out the differentiation in r and cancelling powers of r leads to

bc(u, v) = lim
R→∞

{∫ R
1

[
k2

rm+n−2 +
ik(m − n)
rm+n−1 +

nm

rn+m

− k2

rm+n−2

]
dr

∫
S0

fmf̄n dS

+
∫ R
1

1
rm+n

dr

∫
S0

∇Sfm∇S f̄n dS − ik

∫
S0

R2

Rm+n
fmf̄n dS

}
.

The integration above is well-defined since the terms k2/rm+n−2 (which are
singular for m + n ≤ 3) cancel, and the term ik(m − n)/rm+n−1 vanishes
for m = n = 1. For the remaining terms, the integrals in radial direction
exist and can be easily computed. The surface integral is evaluated to be

lim
R→∞

1
Rm+n−2

∫
S0

fmf̄n dS =




0, n+m > 2∫
S0

|f1|2 dS n = m = 1 .

It is also possible to formulate a variational problem, using a bilinear
form instead of the sesquilinear form bc. We define the variational form buc
(“unconjugated”) in the same way as bc (“conjugated”), but without the
complex conjugation of the test functions:

buc(u, v) := lim
R→∞

(∫
ΩR

(∇u∇v − k2uv) dV − ik

∫
SR

uv dS

)
. (3.5.12)

The corresponding variational problem is obtained by replacing bc with buc
in (3.5.9).
Let us verify the integration in this case. Writing out the trial and test

functions, we now obtain

buc(u, v) = lim
R→∞

{
Imn

∫ R
1

r2
[
∂

∂r

(
exp(ikr)

rn

)
∂

∂r

(
exp(ikr)

rm

)

− k2
exp(2ikr)

rm+n

]
dr

+ Jmn

∫ R
1

exp(2ikr)
rm+n

dr − ik
exp(2ikR)
Rm+n−2 Imn

}
,



3.5 Infinite Elements and Coupled Finite–Infinite Element Discretization 93

where we have denoted the surface integrals as

Imn :=
∫
S0

fmfn dS , Jmn :=
∫
S0

∇Sfm∇Sfn dS .

Carrying out the differentiation in r and cancelling powers of r, we now
obtain

buc(u, v) = lim
R→∞

{
Imn

∫ R
1

exp(2ikr)
rm+n

[−2(kr)2 − i(n+m)kr + nm
]
dr

+ Jmn

∫ R
1

exp(2ikr)
rm+n

dr − ik
exp(2ikR)
Rm+n−2 Imn

}
.

The integrals of the form
∫ R
1

exp(2ikr)
rj

dr, j ≥ 1

can be computed, using the sine and cosine integrals [1, Chapter 5]. For
details, we refer to Burnett [32].
It remains to consider the limit (for m = n = 1)

L := lim
R→∞

(∫ R
1

−2k2 exp(2ikr)dr − ik exp(2ikR)

)∫
S0

f21 dS .

Performing the integration in radial direction, we observe that the R-
dependent terms within the parantheses cancel and the limit is simply

L = −ik exp(2ik)
∫
S0

f21 dS .

3.5.3 Remarks on the Analysis of the Finite–Infinite Element
Method

The numerical analysis of the infinite element discretizations is a matter
of ongoing research. Computational tests on various model problems have
been reported by Shirron [110] and Gerdes [55]. Let us collect some ob-
servations here. For brevity, we will refer to the different formulations as
PG, BGC, and BGU (Petrov–Galerkin, Bubnov–Galerkin conjugated, and
Bubnov–Galerkin unconjugated, respectively).
In practice, one is not necessarily interested in computing the far-field

results directly from the discrete model. Rather, one may use the coupled
finite–infinite element discretization to obtain an approximate solution of
the near field problem in Ωa only. In the second step, one then computes
the far-field pattern from the Helmholtz integral equation (1.1.18), using
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the numerical solution on a “collection surface” in the near field. If such
an approach is taken, the discretization with infinite elements is effectively
used for “mapping” numerically the far-field behavior onto the near field.
This interpretation reminds us of the numerical DtN operators discussed in
Section 3.2. Let us identify the DtN operator GN that corresponds to the
coupled finite–infinite element discretization. Consider the coupled equa-
tions (3.1.2). Assume, for the sake of argument, that we know the Dirichlet
datum u+. Then we can solve the exterior Dirichlet problem (3.1.2)3,5,6
with an “infinite element method” based on the Petrov–Galerkin formula-
tion (3.5.6). Taking the normal derivative of the solution on the artificial
surface Γa, we have constructed an approximate DtN operator GN .
We now give a more precise definition of the DtN operators G and

GN . Let us write the exterior Dirichlet problem (3.1.2)3,5,6 equivalently as
Bu+ = û, where û ∈ H1/2(Γa) is the trace of u on Γa, and B : H1+

w (Ωa)→
H1/2(Γa) is a linear operator. This problem is uniquely solvable (cf., e.g.,
Leis [87, Section 4.4]); i.e., the operator B has a bounded inverse operator
B−1 : H1/2(Γa) → H1+

w (Ωa) such that u = B−1û. Identifying u with its
trace γu ∈ H1/2(Γa) and interpreting the normal derivative as a linear
operator ∂ν : H1/2(Γa)→ H−1/2(Γa), we finally see that G = ∂ν ◦γ ◦B−1.
Similarly, we write the Galerkin formulation of (3.1.2)3,5,6 as BNuN = û

where BN : V N1 ⊂ H1+
w (Ω+a ) → H1/2(Γa) is the linear operator associated

with the restriction to the finite-dimensional subspace. Assuming that this
problem is also well-posed, we follow the existence of a bounded inverse
B−1
N : H1/2(Γa) → H1+

w (Ω+a ). Concluding similarly as above, we find that
GN = ∂ν ◦ γ ◦ B−1

N .
Let us now deduce a sufficient condition for convergence of uN → u,

where uN , u are, respectively, the solutions of (3.1.4) or (3.1.7). With the
definitions of G,GN as above, we seek the exact solution u from{

Find u ∈ H1(Ωa) :
b(u, v) = B(u, v) + (Gu, v) = (g, v) , ∀v ∈ H1(Ωa) ,

(3.5.13)

whereas the approximate solution uN is obtained from{
Find uN ∈ H1(Ωa) :

bN (uN , v) = B(uN , v) + (GNuN , v) = (g, v) , ∀v ∈ H1(Ωa) .
(3.5.14)

We see that bN (uN , v) = b(u, v) holds for all v ∈ H1(Ωa). The following
theorem is shown in [45].

Theorem 3.8. Suppose that the variational problem (3.1.4) or, equiva-
lently, (3.5.13), has a unique solution u ∈ H1(Ωa) with the trace û ∈
Hα(Γa), α ≥ 1/2. Assume further that the discrete problem(3.1.7) satisfies
the inf–sup condition with βN > 0, and let uN be the solution of (3.5.14).
Then the error u − uN is bounded as

‖u − uN‖1 ≤ C(α,Γa, u)β−1
N ‖G − GN‖L(Hα,H−1/2) .
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Hence uN converges to u if

β−1
N ‖G − GN‖L(Hα,H−1/2) → 0 , N → ∞ .

For the proof, observe that

|bN (u − uN , v)| = |bN (u, v)− b(u, v) + b(u, v)− bN (uN , v)|
= |b(u, v)− bN (u, v)|
= |〈(G − GN )u, v〉| , ∀v ∈ H1(Ωa) .

Then, by the discrete inf–sup condition,

βN‖u − uN‖1 ≤ sup
0
=v∈H1(Ωa)

|bN (u − uN , v)|
‖v‖1

= sup
0
=v∈H1(Ωa)

|〈(G − GN )u, v〉|
‖v‖1

≤ Cγ‖G − GN‖L(Hα,H−1/2)‖û‖Hα(Γa) ,

where Cγ is the trace constant. Hence

‖u − uN‖1 ≤ Cγβ
−1
N ‖G − GN‖L(Hα,H−1/2) ‖û‖Hα(Γa) ,

yielding the statement with C = Cγ ‖û‖Hα(Γa).

Remark 3.9. In essence, Theorem 3.8 states a specialization of the well-
known fact that convergence follows from stability and approximability.
Here, stability is shown if β−1

N < ∞; whereas approximability is measured
in the distance ‖G−GN‖. Note that we use the space Hα instead of H1/2.
As usual, the speed of convergence depends on the regularity of the solu-
tion. At this point, we require just the minimal regularity α = 1/2, which
is naturally satisfied, since u ∈ H1.

The theorem holds for any shape of the artificial boundary. If Γa is a
sphere, we expand the trial and test functions into spherical harmonics. As
has been shown for the exact DtN operator in Section 3.2, we then find
complex numbers αNn , n = 1, 2, . . ., such that

〈GNu, u〉 =
∞∑
n=0

αNn

n∑
m=−n

|umn|2, u ∈ H1/2(Γa) . (3.5.15)

The αNn can be determined numerically by solving modal problems. The
following lemma is related to the approximability of the exact solution on
the coupling surface.
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Lemma 3.10. Let αNn , αn, respectively, be the coefficients in the spherical
expansions (3.5.15) and (3.2.2), (3.2.3). Then for integer N ≥ 1

αNn = αn, n = 0, 1, . . . , N (3.5.16)

holds.

To show (3.5.16), we recall (cf. Section 2.1.2) that the exact solution u
of the exterior Dirichlet problem with boundary data û is

u(r, θ, φ) =
∞∑
n=0

hn(kr)
hn(ka)

un(θ, φ) ,

with

un =
n∑

m=−n
ûmnYmn .

It is well-known (cf. [1, 10.1.16]) that the Hankel functions hn(kr) can be
expressed as a finite sum of n functions ϕj(r) from the infinite element
approximation (3.5.2). Hence selecting the Dirichlet data in such a way
that ûmn ≡ 0 for n > N , the exact solution lies in the trial space of the
Galerkin method for the computation of the discrete eigenvalues. Therefore,
the exact solution, and hence the exact eigenvalues of the DtN operator,
are reproduced for all spherical modes with n ≤ N .
Using the lemma, one can show that the approximation error ‖G−GN‖

decays exponentially as N is increased [45]. Recall that convergence de-
pends on approximability and stability, as expressed in the error estimate
(2.5.10). Approximability is quantified by the infχ∈V N

1
‖u − χ‖V1 ; i.e., it

depends only on the choice of the trial space V1. Now, all three methods
use the same finite-dimensional trial space V1 ⊂ H1+

w (Ω+a ). Thus all formu-
lations have the same approximability in the exterior Sobolev norm. The
approximation error decays exponentially (the typical behavior for spectral
approximation). Differences in the convergence behavior must then result
from different stability properties. A measure for the stability is given by
the discrete inf–sup constant βN , as discussed in Chapter 2 (see Theorem
2.26). The three forms used for PG, BGC, and BGU, respectively, obviously
satisfy the same continuity condition. Thus the specific convergence beha-
vior of each formulation is determined by its inf–sup constant only.
Shirron [110] computes the constants βBGCN and βBGUN for a model pro-

blem. His results suggest that the BGC constants approach zero with alge-
braic rate,

βBGCN = O(N−2) ,

whereas the BGU constants decay exponentially. We therefore expect that
the BGC converges everywhere in the exterior, since the exponential rate
of approximability is asymptotically stronger than the algebraic rate of the
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stability loss. On the other hand, the BGU formulation does not, in general,
converge in the exterior.
Things look different if we restrict ourselves to convergence on the ar-

tificial boundary only. Shirron [110] and Gerdes [55] measure the error in
maximum norm

‖e‖∞ = max
x∈Γa

|u(x)− uG(x)| ,

where uG is the Galerkin solution. Shirron considers a sequence of modal
equations that is deduced from the cylindrical scattering problem. Gerdes
computes the solutions for rigid scattering from the unit sphere. Both au-
thors observe that all three formulations converge in the maximum norm
on Γa. Moreover, the BGU formulation converges much more quickly than
BGC and PG. For illustration, see results from Gerdes [55] in Table 3.4.

TABLE 3.4. Relative error ‖u−up
hN‖∞/‖u‖∞ on Γa, in percent, for the PG, BGC,

and BGU formulation. Comparison of results with N = 1, 3, 6 radial functions
and angular approximation p = 4 or p = 5.

p=4 p=5
N=1 N=3 N=6 N=1 N=3 N=6

PG 100 87.64 27.43 100 84.0 9.2
BGC 100 100 31.96 100 100 14.7
BGU 80.26 33.23 29.08 58.63 14.04 9.07

3.6 Summary

We have described different approaches to the finite-element analysis of ex-
terior problems. The decomposition of the exterior domain into a near field
(inside an artificial surface enclosing the obstacle) and a far field is common
to all the approaches. The bounded near-field domain is partitioned into
finite elements, whereas the far field is either partitioned into infinite ele-
ments, or it is truncated by applying absorbing boundary conditions to the
near-field problem. We have reviewed a number of those conditions, wri-
ting them in the form of approximate Dirichlet-to-Neumann conditions. We
then show that the infinite-element discretization can also be interpreted
as an approximate Dirichlet-to-Neumann condition. All the far-field appro-
ximations treated in this chapter are related to the series representation of
the exact solution, as discussed in Chapter 2.
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3.7 Bibliographical Remarks

Absorbing boundary conditions, in the context of the solution of the wave
equation by FEM, were first proposed by Enquist and Majda [52]. The work
on the other ABC and the DtN conditions originates in the early 1980s.
The article by Feng [54] is somewhat hard to locate. It also seems to contain
some misprints in the final formulae, which we have corrected here. The
pioneering work on infinite elements is due to Bettess and Zienkiewicz [24],
see also the monograph [25] of Bettess. A detailed overview of numerical
methods for exterior problems is given in Givoli’s monograph [60].
Our present review of approximation methods for the far field of the

exterior solution does not attempt to be complete. For example, we discuss
here only approaches that are based on the series representation of the
exact solution. This concerns, in particular, the infinite elements, where we
elaborate only on the spectral approximation based on radial expansion.
The original paper by Burnett [32] contains a detailed discussion of other
formulations. Burnett uses a bilinear form in his coupled finite–infinite-
element formulation. The mathematical formulation in weighted Sobolev
spaces was first introduced by Demkowicz and Gerdes [46]. It is closely
related to the “wave-envelope” formulation by Astley et al. [4].
The finite-element method is treated in a large number of textbooks. Our

outline mostly follows Szabó and Babuška [112].

Appendix: Padé Approximation

We seek an approximation of a smooth function f(x) by rational polynomials.
First the function f(x) is replaced by a power series expansion L(x), e.g., its
Taylor series. As an example, we consider f(x) = (1 + x)1/2. Then we have

f(x) = 1 +
x

2
− x2

8
+
3x3

48
+O(x4) := L(x) .

Now we look for a rational function

rmn(x) =
pm(x)
qn(x)

,

where pm, qn are polynomials of order m,n, respectively, such that the function
pm approximates the product Lqn with order O(xm+n+1). Let pm(x) = ao +
a1x + · · · + amx

m, qn(x) = b0 + b1x + · · · + bnx
n, and L(x) = cjx

j . Then the
function rmn has the required property if the equations

c0b0 = a0 ,

c1b0 + c0b1 = a1 ,

...

cmb0 + cm−1b1 + · · ·+ c0bm = am ,

and

cm+1b0 + cmb1 + · · · cm−n+1bn = 0 ,
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...

cm+nb0 + cm+n−1b1 + · · ·+ cmbn = 0

are satisfied. Functions rmn are called the Padé approximations of L(x) (or f(x)).
The table

roo ro1 ro2 . . .
r1o r11 r12 . . .
r2o r21 r22 . . .
...

...
...

. . .

is called the Padé table of L. As an example, we compute r11 for f(x) as given
above. The systems of equations are

c2b0 + c1b1 = 0 ,

c0b0 = a0 ,

c1b0 + c0b1 = a1 ,

with c0 = 1, c1 = 1/2, c2 = −1/8. Setting b0 = 1, we get b1 = 1/4, a0 = 1, and
a1 = 3/4, which gives

r11 =
1 + 3x

4

1 + x
4

.

This rational function approximates f(x) with order O(x3). For further informa-
tion, see Jones and Thron [80].
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4
Finite Element Error Analysis and
Control for Helmholtz Problems

This chapter is devoted to the finite element analysis of Helmholtz pro-
blems on bounded domains. Speaking of “Finite Element Analysis,” we
elaborate on the computational analysis with the FEM as well as on the
numerical analysis of the FEM. We will use the abbreviation “FE” for
“finite element,” as in “FE mesh,” “FE solution” etc.
We assume throughout that we are solving a well-posed problem, one,

for example, that results from domain decomposition of an exterior domain
Ω+ = Ωa ∪ Ω+a as described in Section 3.1. In particular, we are interested
in the FE solution of the variational problem (3.1.5) in the bounded near-
field domain Ωa. The FE discretization of Ωa has been described in Section
3.4. Solving (3.1.5) on the finite-dimensional subspace Vh ∈ H1(Ωa), we
get the FE solution uh ∈ Vh. In general, uh �= u, and we wish to estimate
the error function e = u − uh. We distinguish two cases:

• First, a priori error estimation. The error function is estimated in a
suitable functional norm without quantitative input from the computed
solution. The estimates are based on the approximation properties
of the subspace where the numerical solution is sought and on the
stability properties of the differential operator or variational form.
The estimates are generally global; i.e., the error function is estimated
in an integral norm computed over the whole solution domain.

• Second, a posteriori error estimation. The error function is estimated
employing the computed solution of the discrete model as data for the
estimates. In practice, the estimates are usually part of an adaptive
mesh refinement methodology. For mesh refinement, one needs local
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information on the error. A posteriori error estimation should there-
fore be given in a norm that is defined on a single element or on a
patch of adjacent elements.

Since the FEM is a Galerkin method, the first natural step of error ana-
lysis is to specify the convergence results from Section 2.5 for the present
case. This will be our starting point. We give the basic definitions and re-
view the well-known FE convergence theory for positive definite forms. We
then turn to the convergence of the FEM for indefinite forms. In particular,
we will discuss the specializations of Theorems 2.26 (inf–sup condition) and
2.27 (asymptotic convergence for coercive forms) for Helmholtz problems.
Both theorems yield error estimates for the FE solution. However, the up-
per bound from the inf–sup condition is too crude if the wave number k is
large, whereas the asymptotic estimate from the G̊arding inequality holds
on very fine meshes only (again, if k is large).
The main purpose of this chapter is therefore the proof of so-called pre-

asymptotic estimates. We will show convergence theorems that hold on
meshes with the restriction kh < 1, which is a standard assumption in en-
gineering practice. The new error bounds contain a pollution term that is
related to the loss of stability with large wave numbers. We will give a pre-
cise description of this effect. The question arises of whether it is possible
to reduce the pollution effect. We first show that FEM with higher-order
polynomial approximation (the hp version of the FEM) work well towards
this goal. Then we review the so-called stabilized FEM, which attempt to
correct the loss of stability in the Helmholtz operator. Finally, we analyze
the problem of a posteriori error estimation and draw conclusions for prac-
tical computations. Most of the theorems in this chapter are given with
their proofs. Only in cases where proofs seemed too lengthy or technical,
we refer the reader to the literature for details.

4.1 Convergence of Galerkin FEM

The FEM is a Galerkin method with piecewise polynomial trial and test
functions. Hence the general theory of the Galerkin method applies, while
the specific ingredients are the approximation properties of the FE sub-
spaces. The size of the Galerkin subspaces VN is inversely proportional to
the mesh size h of the FE mesh and proportional to the degree of polyno-
mial approximation p. FE error estimates are therefore generally given as
a function of these two numerical parameters.
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4.1.1 Error Function and Residual
Let V be a Hilbert space, and let a sesquilinear form b : V × V → C be
given. Consider the abstract variational problem{

Find u ∈ V :
b(u, v) = f(v) , ∀v ∈ V ,

(4.1.1)

where f ∈ V ∗ is an antilinear functional. With the FEM, we solve instead{
Find uh ∈ Vh :

b(uh, v) = f(v) , ∀v ∈ Vh ,
(4.1.2)

where Vh ⊂ V is a proper subspace (conforming FEM). Assume that the
solutions u, uh exist. We call

e = u − uh (4.1.3)

the error function. Since Vh ⊂ V , we have the standard orthogonality
condition

b(e, v) = 0, ∀v ∈ Vh . (4.1.4)

The FE solution uh does not, in general, satisfy the original problem (4.1.1),
and we define the residual r ∈ V ∗ by

r(v) := f(v)− b(uh, v), v ∈ V . (4.1.5)

Replacing above f(v) = b(u, v), we see that the error function satisfies the
residual equation

b(e, v) = r(v), ∀v ∈ V . (4.1.6)

If the form b satisfies the assumptions of the Lax–Milgram theorem (or the
inf–sup condition), we immediately get the error estimate

‖e‖V ≤ C‖r‖V ∗ ,

where C is a stability constant. This type of residual estimate is usually
applied a posteriori, i.e., after uh has been computed.

4.1.2 Positive Definite Problems
We first consider a sesquilinear form a(u, v) : V ×V → C that satisfies the
assumptions of the Lax–Milgram theorem (Theorem 2.10). Then solutions
u, uh of (4.1.1) exist, and the error u−uh satisfies the error estimate (Céa’s
Lemma, cf. Theorem 2.25)

‖u − uh‖V ≤ M

α
inf
v∈Vh

‖u − v‖V , (4.1.7)

where α,M are, respectively, the ellipticity and the continuity constant.
This error estimate allows us to identify the two factors influencing the
convergence behavior of any FEM:
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• The infimum characterizes the approximability of the exact solution
in the subspace that is spanned by the FE shape functions. If the
infimum is reached on an element uba ∈ Vh, then this element is
the best approximation of u in the subspace Vh (in the norm of the
“full space” V ). Geometrically speaking, ‖u − uba‖V is the minimal
distance between u and Vh. Therefore, uba is also frequently called the
Vh-projection of u; see Fig. 4.1. The error of the best approximation,

V

V

u

fe

uu

 h

fe
ba

e

e

ba

FIGURE 4.1. Best approximation of a function.

u−uba, is therefore V -orthogonal to all functions from the subspace,

(u − uba, v)V = 0, ∀v ∈ Vh , (4.1.8)

where (·, ·)V is the scalar product of the space V . Thus uba can be
simply computed from the variational problem{

Find uba ∈ Vh :
(uba, v)V = (u, v)V , ∀v ∈ V ,

(4.1.9)

provided that the exact solution is known.

• The factor Mα−1 characterizes the stability of the problem. In po-
sitive definite problems, the stability constant is generally not large,
and thus approximability is the major factor influencing convergence.

Resuming, we can verbally express Céa’s lemma by the “equality”

Convergence = Approximability + Stability.

In general, even if the approximation error is small, stability problems may
lead to poor convergence.
The approximability by the FE shape functions can be related to the well-

known error of interpolation of a given function (here the exact solution)
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by piecewise polynomials of degree p. Let m = p+ 1 and let Ipu be a pth-
order interpolant of u (for example, the continuous, piecewise polynomial,
of degree p, Lagrangian interpolant within each element), and let h be the
FE mesh size. Then the estimate (cf. Brenner–Scott [31, p. 104])

‖u − Ipu‖Hs(Ω) ≤ Chm−s‖u‖Hm(Ω), 0 ≤ s ≤ m (4.1.10)

holds. It is supposed that the domain Ω and function u are such that the
norm on the right-hand side is well-defined. By definition, the error of best
approximation is smaller than or equal to the interpolation error; hence
the estimate (4.1.10) applies also for the best approximation. The constant
C depends, in general, on m,n as well as on the shape of the elements (as
characterized by its “chunkiness parameter” [31, p. 97]) and on the norm
of the local–global mapping.

4.1.3 Indefinite Problems
Discrete inf–sup Condition:

Unlike the coercivity condition, the inf–sup condition, if proven for the
“full space” V , does not automatically hold on the FE subspace Vh. Let a
sesquilinear form b : V1×V2 → C on Hilbert spaces V1, V2 be given. Assume
that the conditions of the Babuška theorem (Theorem 2.15) are satisfied on
V1×V2, and let W1 ⊂ V1,W2 ⊂ V2 be proper subspaces. If form b satisfies,
in addition,

(1) the discrete inf–sup condition

∃βh > 0 : βh ≤ sup
0
=v∈W2

|b(u, v)|
‖u‖‖v‖ , ∀0 �= u ∈ W1 , (4.1.11)

(2) the transposed condition

sup
0
=u∈W1

|b(u, v)| > 0, ∀0 �= v ∈ W2 , (4.1.12)

then there exists a unique element uh ∈ W1 such that

b(uh, v) = f(v), ∀v ∈ W2 .

As a corollary (cf. Theorem 2.26), we find that the error u − uh can be
estimated as

‖u − uh‖V1 ≤
(
1 +

M

βh

)
inf
v∈W1

‖u − v‖V1 . (4.1.13)
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Coercive Problems:

We consider a sesquilinear form b(·, ·) on H1(Ω), where Ω is a bounded
domain and assume that b satisfies the G̊arding inequality (2.4.15) as well
as the continuity condition |b(u, v)| ≤ M‖u‖H1(Ω)‖v‖H1(Ω). Assume fur-
ther that the continuous problem (4.1.1) is uniquely solvable, and let u be
the exact solution. As before, we denote by Vh the finite-dimensional FE
subspaces.
Let {uh ∈ Vh} denote the FE solutions on a sequence of meshes with

decreasing mesh size h (as obtained from successive mesh refinements).
On such a sequence, the assumptions of Theorem 2.27 apply. It follows1

that there exists a “threshold” value h0 such that the discrete variational
problem (4.1.2) has a unique solution uh for all h < h0, and the error u−uh
satisfies the estimate

‖u − uh‖V ≤ C inf
v∈Vh

‖u − v‖V , ∀h < h0 , (4.1.14)

where C is a constant not depending on h. Estimates of the form (4.1.14)
are called quasioptimal.

Remark 4.1. Observe that the error estimates for the indefinite forms are
formally similar to the positive definite case. However, the stability con-
stants in (4.1.7) and (4.1.13) are different (cf. the corresponding discussion
in Section 2.5; see Remark 2.17 in particular). Estimate (4.1.14) states that
the error of the coercive problem behaves asymptotically (practically spea-
king, on sufficiently fine meshes) as in the positive definite case. However,
we will see that the “asymptotic” meshes for Helmholtz forms do not, in
general, lie in the range of engineering applications.

4.2 Model Problems for the Helmholtz Equation

We will use three model problems for time-harmonic wave propagation,
each featuring essential properties of the general three-dimensional prob-
lem of elastic scattering. First, we consider the propagation of a plane wave
in a homogeneous exterior domain. The problem is one-dimensional, and
hence the unbounded domain can be truncated by imposing the Sommerfeld
condition at finite distance. This problem will be used to exemplify the
problem of FEM approximation at high wave numbers. In particular, we
will show preasymptotic a priori error estimates and discuss the pollution
effect.

1The corresponding theorem on convergence of the Galerkin FEM for coercive pro-
blems was proven by Schatz [108]. We reproduce this proof in its specialization to the
Helmholtz equation in Section 4.4.2.
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The second problem is a two-dimensional Helmholtz equation on a square.
Here we will address the dependence of error estimation on the direction
of the waves.
The third problem is again one-dimensional, describing the propagation

of a plane wave in an inhomogeneous medium. This will allow us to high-
light typical numerical effects in the solution of fluid–structure interaction
problems.

4.2.1 Model Problem I: Uniaxial Propagation of a Plane
Wave

λ

x

FIGURE 4.2. Uniaxial propagation of plane wave.

The propagation of a time-harmonic plane wave along the x-axis (Fig. 4.2)
leads to the boundary value problem that we already introduced in (2.4.16),

−u′′ − k2u = f on Ω = (0, 1) ,
u(0) = 0 , (4.2.1)

u′(1)− iku(1) = 0 ,

with the corresponding variational formulation{
Find u ∈ H1

(0(Ω) :
b(u, v) = (f, v), ∀v ∈ H1

(0(Ω) ,
(4.2.2)

where

b(u, v) =
∫ 1

0
u′v̄′ − k2

∫ 1

0
uv̄ − iku(1)v̄(1) , (4.2.3)

(f, v) =
∫ 1

0
f(x)v̄(x)dx ,

and H1
(0(Ω) has been defined in (2.4.18) as the subspace of all H

1-functions
that satisfy the Dirichlet condition u(0) = 0. For datum f ∈ L2(0, 1), the
solution of the boundary value problem (4.2.1) can be written in the form

u(x) =
∫ 1

0
G(x, s)f(s) ds , (4.2.4)
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using the Green’s function

G(x, s) =
1
k



sin(kx) eiks 0 ≤ x ≤ s ,

sin(ks) eikx s ≤ x ≤ 1 .
(4.2.5)

For the numerical solution with finite element methods, let a set of nodes

Xh := {xi; 0 = x0 < x1 < x2 < . . . < xN = 1} (4.2.6)

be given on Ω = (0, 1). We call Xh the FE mesh and

h = max
1≤i≤N

(xi − xi−1) (4.2.7)

the mesh size. The intervals τi = (xi−1, xi) are called finite elements. The
mesh is called uniform if all elements have the same size h = N−1.

4.2.2 Model Problem II: Propagation of Plane Waves with
Variable Direction

θ

y

x

h

(a) FE mesh (b) Plane wave in direc-
tion θ

FIGURE 4.3. Model Problem II: Domain, FE mesh, and exact solution

We solve the Helmholtz equation in two dimensions on the square Ω =
(0, 1) × (0, 1). Figure 4.3a shows the domain and a partition into finite
elements with uniform mesh size h. The problem is formulated as

−∆u − k2u = 0 in Ω ,

with boundary conditions

iku+
∂u

∂n
= g on Γ = ∂Ω ,
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where the function g is chosen such that the exact solution is a plane wave

uex = eik·x

propagating in direction θ; i.e., k = k{cos θ, sin θ}. The corresponding va-
riational formulation is{

Find u ∈ H1(Ω) :
b(u, v) = (g, v), ∀v ∈ H1(Ω) , (4.2.8)

where

b(u, v) =
∫
Ω

(∇u∇v̄ − k2uv̄
)
dxdy + ik

∫
Γ
uv̄ ds , (4.2.9)

and (g, v) =
∫
Γ gv̄ ds.

4.2.3 Model Problem III: Uniaxial Fluid–Solid Interaction

Ω Ω Ω
p,q u,v p,q

~ ~

0 x x L2
x

1 1 2 3

FIGURE 4.4. Fluid-solid interaction model.

The plot of Fig. 4.4 shows a simple case of one-dimensional acoustoelastic
fluid–solid interaction. The “fluid” regions Ω1,Ω3 have material properties
ρf (density) and cf (speed of sound in fluid). The “solid” region Ω2 has
properties E (Young’s modulus) and ρs, cs (density, speed of sound in solid).
The domain of computation is Ω = Ω1 ∪Ω2 ∪Ω3, where Ω1 = (0, x1), Ω2 =
(x1, x2), and Ω3 = (x2, L), 0 < x1 < x2 < L. The general physical relations
given in Chapter 1 are here specialized to the system of Helmholtz equations

p,xx+k2p = −g1 in Ω1 , (4.2.10)
au,xx+nk2u = −f in Ω2 , (4.2.11)

p̃,xx+k2p̃ = −g2 in Ω3 , (4.2.12)

with the boundary conditions

p,x (0) + ikp(0) = 0 , (4.2.13)
p̃,x (L)− ikp̃(L) = 0 , (4.2.14)

and the transmission conditions

p,x (x1)− k2u(x1) = 0 , (4.2.15)
p(x1) + au,x (x1) = 0 , (4.2.16)

p̃,x (x2)− k2u(x2) = 0 , (4.2.17)
p̃(x2) + au,x (x2) = 0 , (4.2.18)
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with the notations n = ρf/ρs and a = E/B, where B is the bulk modulus
of the fluid; cf. (1.2.9). The real parameter k = ω/cf , where ω is a given fre-
quency, is the wave number in the fluid. The pressures are nondimensional
(scaled by the bulk modulus).
The variational formulation is given on the (test and trial) space V =

H1(Ω1) × H1(Ω2) × H1(Ω3), where H1(Ωi) are the usual Sobolev spaces
on the subdomains. Let the trial functions be denoted by U = (p, u, p̃) and
consider the variational form

b(U ,V) = −ikp(0)q̄(0) +
∫
Ω1

p,x q̄,x dx − k2
∫
Ω1

pq̄dx

−k2u(x1)q̄(x1)− k2p(x1)v̄(x1)

+k2
(∫

Ω2

au,x v̄,x dx − nk2
∫
Ω2

uv̄dx

)
(4.2.19)

+k2p̃(x2)v̄(x2) + k2u(x2)¯̃q(x2)

+
∫
Ω3

p̃,x ¯̃q,x dx − k2
∫
Ω3

p̃¯̃qdx − ikp̃(L)¯̃q(L),

with trial functions V = (q, v, q̃). Defining the L2-type inner product on
space V by the weighted sum

(U ,V)0 = (p, q) + k2(u, v) + (p̃, q̃) , (4.2.20)

we seek the solution U that satisfies{
Find U ∈ V :

b(U ,V) = (F ,V)0, ∀V ∈ V ,
(4.2.21)

with F = (g1, f, g2).

4.3 Stability Estimates for Helmholtz Problems

Throughout this section, we consider Model Problem I.

4.3.1 The inf–sup Condition
Let us show that the inf–sup constant for the one-dimensional model pro-
blem is of order O(k−1).

Theorem 4.2. Let V = H1
(0(0, 1), and let b : V ×V → C be the sesquilinear

form defined in (4.2.3). Then the inf-sup constant

β = inf
0
=u∈V

sup
0
=v∈V

|b(u, v)|
|u|1|v|1
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satisfies
C1
k

≤ β ≤ C2
k

(4.3.1)

for constants C1, C2 not depending on k.

Let us first prove the left inequality of (4.3.1). We will show that for any
given u ∈ V there exists an element vu ∈ V such that

|b(u, vu)| ≥ C

k
|u|1 |vu|1 . (4.3.2)

Let u ∈ V be given. Define vu := u+ z, where z is a solution of the adjoint
variational problem

b(w, z) = k2(w, u), ∀w ∈ V . (4.3.3)

Furthermore, since u ∈ H1(0, 1) ⊂ L2(0, 1), the function z is also a solution
of the corresponding adjoint boundary value problem2 with datum k2u; cf.
the discussion of regularity in Section 2.5. Hence

z = k2
∫ 1

0
G(x, s)u(s) ds ,

with the Green’s function G(x, s) from (4.2.5). Then

|b(u, vu)| ≥ Re b(u, vu)
= Re (b(u, u) + b(u, z))
= Re

(
b(u, u) + b(u, z) + k2(u, u)− k2(u, u)

)
= Re b(u, u) + k2‖u‖2 = |u|21.

Now, if we show that

|u|1 ≥ C

k
|vu|1, (4.3.4)

we have proved (4.3.2) and the lower bound in (4.3.1) follows. To obtain
(4.3.4), we integrate by parts the Green’s function representation of z,

z(x) = k2
(
H(x, 1)u(1)−

∫ 1

0
H(x, s)u′(s)ds

)
,

where

H(x, s) :=
∫ s
0

G(x, t)dt.

2The adjoint problem to (4.2.1) is obtained by changing the sign in the Sommerfeld
condition.
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Differentiating this equation and taking absolute values, we get by the
triangle inequality

|z′(x)| ≤ k2
(
|H,x (x, 1)||u(1)|+

∫ 1

0
|H,x (x, s)u′(s)|ds

)
≤ k2 (|H,x (x, 1)|+ ‖H,x ‖) |u|1 .

By direct computation |H,x (x, 1)| ≤ k−1, ‖H,x ‖ ≤ k−1, and hence

|z|1 ≤ 2k|u|1 .
Consequently,

|vu|1 ≤ |u|1 + |z|1 ≤ (1 + 2k)|u|1 ,
which proves (4.3.4) for sufficiently large k.
To prove the upper bound of (4.3.1), it is sufficient to find an element

z0(x) ∈ V that satisfies

|b(z0, v)|
|z0|1 ≤ C

k
|v|1, ∀v ∈ V .

Consider the function
z0(x) = ϕ(x)

sin kx
k

,

where ϕ ∈ C∞(0, 1) is chosen in such a way that it does not depend on k
and

z0(0) = z0(1) = z′
0(0) = z′

0(1) = 0 (4.3.5)

holds. We further require that |z0|1 ≥ α for some α > 0 not depending on
k (take, for example, ϕ(x) = x(x − 1)2). Then it is easy to see that

b(z0, v) = −
∫ 1

0
(z′′
0 (x) + k2z0(x))v̄(x)dx

holds for all v ∈ V . Defining

u(x) :=
∫ x
0

(
z′′
0 (s) + k2z0(s)

)
ds , (4.3.6)

one easily derives the bound

|b(z0, v)| =
∣∣∣∣u(1)v̄(1)−

∫ 1

0
u(x)v̄′(x) dx

∣∣∣∣ ≤ (|u(1)|+ ‖u‖)|v|1.

On the other hand, integrating by parts in (4.3.6) and using the definition
of z0, we see that the terms in the right-hand side above can be estimated
as follows:

|u(1)| ≤ 1
k
‖ϕ′′‖∞
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and
‖u‖ ≤ 1

k
(‖ϕ′′‖∞ + 2‖ϕ′‖∞) .

Hence there exists a constant C1 such that

(|u(1)|+ ‖u‖) ≤ C1
k

holds. Collecting results, we can write

|b(z0, v)|
|z0|1 ≤ 1

α
|b(z0, v)| ≤ C

k
|v|1, ∀v ∈ V

with C = α−1C1, where α is by definition the lower bound of |z0|1. This
completes the proof of (4.3.1).

Now (2.4.12) immediately gives the following.

Corollary 4.3. Let V = H1
(0(0, 1) and u ∈ V be the solution of (4.2.2) for

data f ∈ V ∗ = H−1(0, 1). Then

‖u‖H1 ≤ Ck‖f‖H−1 . (4.3.7)

We remark that a similar result on the inf–sup constant holds on the
FE subspaces on uniform meshes with mesh size h, i.e., we can show that
the discrete inf–sup condition (4.1.11) holds with βh = O(k−1); see (4.5.7)
below.

4.3.2 Stability Estimates for Data of Higher Regularity
From the general regularity theory it follows that the variational problem
(4.2.2) yields solutions u ∈ Hs+1(0, 1) for data f ∈ Hs−1(0, 1). In the case
that s = 0, the corresponding stability estimate (4.3.7) has been obtained
as a corollary from the Babuška theorem. For our analysis of the h-version
and the hp-version of the FEM, we will also need stability estimates for
data f ∈ Hs(0, 1), s ≥ 0. We first treat the case s = 0.

Theorem 4.4. Let u ∈ H1
(0(0, 1) be the variational solution of (2.4.16). If

the data f ∈ L2(0, 1), then the solution u lies in the Sobolev space H2(Ω),
and the stability estimates

‖u‖ ≤ 1
k
‖f‖ , (4.3.8)

|u|1 ≤ ‖f‖ , (4.3.9)
|u|2 ≤ (1 + k)‖f‖ (4.3.10)
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hold.

Indeed, applying the Cauchy–Schwarz inequality to the integral repre-
sentation

u(x) =
∫ 1

0
G(x, s)f(s) ds ,

with G(x, s) from (4.2.5), we get

|u(x)| ≤
∫ 1

0
|G(x, s)| |f(s)| ds ≤ 1

k

∫ 1

0
|f(s)| ds ,

for all x ∈ (0, 1). The expression on the right can be written as the L2-inner
product (1, |f |), hence

|u(x)| ≤ ‖f‖ ,

again by the Cauchy–Schwarz inequality. Then (4.3.8) follows if one squares
both sides of the inequality and integrates over (0, 1).
The second bound (4.3.9) is obtained similarly if one first takes the de-

rivative in x on both sides of the integral representation. This operation is
well-defined since G,x (x, s) ∈ L2(0, 1).
Regarding (4.3.10), we first remark that u ∈ H2(0, 1) by Proposition

2.24. Hence u′′ = f − k2u holds, and (4.3.10) follows from the triangle
inequality and (4.3.8).

Remark 4.5. Similar stability estimates have been shown for Helmholtz
problems on convex domains Ω ∈ R2 by Melenk [91].

Remark 4.6. It is easy to show that the seminorm | · |1 = ‖u′‖ is a norm
on H1

(0(0, 1). Indeed, with u(0) = 0 we have u(x) =
∫ x
0 u′(t)dt, and then,

by the Cauchy–Schwarz inequality,

|u(x)| ≤
(∫ x

0
12dt

)1/2(∫ 1

0
|u′(t)|2dt

)1/2
,

whence

‖u‖2 =
∫ 1

0
|u(x)|2dx ≤

∫ 1

0
x dx |u|21 =

1
2
|u|21 .

We have proven a Poincaré inequality for u ∈ H1
(0(0, 1). Hence on H1

(0(0, 1),
the seminorm | · |1 is equivalent to the norm ‖u‖1; cf. Example 2.13.

The stability estimate of Theorem 4.4 can be generalized for s ≥ 0. It
follows from the regularity theory (cf. Hackbusch [62, Theorem 9.1.16.])
that data f ∈ Hs−1(0, 1) is mapped to a solution u ∈ Hs+1(0, 1). The
matter of interest here is the power to which the wave number k enters the
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stability constant.

Theorem 4.7. Let f be the data and u the solution of (4.2.2). Assume,
for l > 1, that f(x) ∈ H l−1(0, 1). Then u ∈ H l+1(0, 1), and

|u|l+1 ≤ Cs(l)kl−1‖f‖l−1 (4.3.11)

holds for a constant Cs(l) ≤ Dl, where D does not depend on k and l.

We give the proof for l = 2, showing |u|3 ≤ Ck‖f‖1. The solution u is
written as

u(x) =
∫ 1

0
G(x, s)f(s)ds , (4.3.12)

with the Green’s function G(x, s) from (4.2.5). By partial integration,

u(x) = [H(x, s)f(s)]s=1s=0 −
∫ 1

0
H(x, s)f ′(s)ds (4.3.13)

where

H(x, s) :=
∫

G(x, s)ds = − 1
k2




i sin(kx)eiks + 1, 0 ≤ x ≤ s,

cos(ks)eikx, s ≤ x ≤ 1 .
(4.3.14)

For any fixed s (or x, respectively), H(x, s) is an H2-function of x (or
s, respectively). In the boundary points, H(x, 0) and H(x, 1) are smooth
(C∞) functions. We now estimate

|u(x)| ≤ |H(x, 0)||f(0)|+ |H(x, 1)||f(1)|+ sup
x,s

|H(x, s)|‖f ′‖ .

From (4.3.14) we have directly

∀x, s : |H(x, s)| ≤ 2
k2

.

It is easy to show that

∀s : |f(s)| ≤
√
2‖f‖1 ,

whence
‖u‖ ≤ 2

k2

(
1 + 2

√
2
)
‖f‖1 . (4.3.15)

Next we want to estimate the derivatives of u. Differentiating in (4.3.13),
we obtain

u′(x) = [H,x (x, s)f(s)]
s=1
s=0 −

∫ 1

0
H,x (x, s)f ′(s)ds , (4.3.16)
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which leads directly to

|u|1 ≤ 1
k

(
1 + 2

√
2
)
‖f‖1. (4.3.17)

Similarly, since H(x, ·) ∈ H2(Ω), we obtain, differentiating in (4.3.16),

|u|2 ≤
(
1 + 2

√
2
)
‖f‖1. (4.3.18)

Finally, since u ∈ H3(Ω), the differential equation u′′′+k2u′ = f ′ holds (in
the weak sense). Hence

|u|23 ≤ k4|u|21 + 2k2|u|1|f |1 + |f |21 ,

and with (4.3.17) we obtain

|u|23 ≤ D2k2‖f‖21 + 2Dk‖f‖21 + ‖f‖21 ,

or, equivalently,
|u|3 ≤ C k ‖f‖1 , (4.3.19)

which proves the statement for l = 2. The argument for the higher deriva-
tives is similar; see [73] for details.

4.4 Quasioptimal Convergence of FE Solutions to
the Helmholtz Equation

Throughout this section, we consider Model Problem I of Section 4.2.1.
We denote by Sh(0, 1) ⊂ H1

(0(0, 1) the space of continuous piecewise linear
functions (with the nodal values in the points of the mesh Xh), satisfying
the Dirichlet condition at x = 0.

4.4.1 Approximation Rule and Interpolation Error
The functions sin(kx) and cos(kx) are elementary solutions of the Helm-
holtz equation in one dimension. These solutions are periodic with wave-
length λ = 2π/k. It is intuitively clear that a “rule of thumb”

nres =
λ

h
≈ constant (4.4.1)

should be applied in the design of the mesh for given k. The number nres
is called the resolution of the mesh – see Fig. 4.5. The choice nres = 10 is
usually recommended in practice. This rule leads to reliable results if we
interpolate an oscillatory function u.
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λ

Oscillatory Function

Piecewise Linear 
Interpolant

h

FIGURE 4.5. Resolution of a wave with nres = 8.

Indeed, the interpolation error satisfies the following well-known estima-
tes (see, e.g., Strang and Fix [111, p. 45]):

Lemma 4.8. Let u ∈ H2(0, 1), and let uI ∈ Sh(0, 1) be the piecewise linear
interpolant of u on a mesh with mesh size h. Then

‖u − uI‖ ≤
(
h

π

)2
|u|2 ,

|u − uI |1 ≤
(
h

π

)
|u|2 , (4.4.2)

‖u − uI‖ ≤
(
h

π

)
|u − uI |1 .

Now, assuming that u and u′ do not vanish identically, we can divide
on both sides of the first two estimates of (4.4.2) by the norms ‖u‖ and
|u|1, respectively, to obtain estimates for the relative error. In our one-
dimensional model, the solution u is a linear combination of the elementary
solutions sin(kx), cos(kx), and we therefore can find constants such that

|u|2
‖u‖ ≤ C1k

2,
|u|2
|u|1 ≤ C2k . (4.4.3)

Hence the relative errors of interpolation of an oscillatory solution u satisfy

‖u − uI‖
‖u‖ ≤ C1h

2k2 , (4.4.4)

|u − uI |1
|u|1 ≤ Chk . (4.4.5)

Since kh = nres/(2π), we conclude that the resolution rule (4.4.1) controls
the interpolation error.
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It is easy to see that in one dimension (we show it below for u ∈ H1(0, 1))
the nodal interpolant uI is the best approximation of a given function u in
the H1-seminorm; i.e.

|u − uI |1 = inf
v∈Sh(0,1)

|u − v|1 (4.4.6)

holds. Indeed, the best approximation satisfies

0 = ((u − uba)′, v′) =
∫ 1

0
(u − uba)′v̄′, ∀v ∈ Sh(0, 1) .

Then, splitting the integral and integrating by parts, we have

0 =
N∑
i=1

∫ xi

xi−1

(u − uba)′v̄′

=
N∑
i=1

[(u − uba) v̄′]xi

xi−1
−
∫ xi

xi−1

(u − uba)v̄′′, ∀v ∈ Vh .

The second member on the right vanishes since v′′ ≡ 0 in the element
interiors. Hence the first member must also be zero for all v ∈ Vh, which
can be true only if u = uba in all nodal points. Thus (4.4.6) holds.

0.0 0.2 0.4 0.6 0.8 1.0
-0.030

-0.020

-0.010

0.000

0.010

Finite element solution for hk=0.6
k=10, h=1/17

Real part
Imaginary part

x

(a) k = 10

0.50 0.60 0.70 0.80 0.90 1.00
x

-0.00030

-0.00020

-0.00010

0.00000

0.00010

Finite element solution for hk=0.6
k=100, h=1/167

Real part
Imaginary part

(b) k = 100

FIGURE 4.6. Finite element solution for different wave numbers.

We thus have shown that the error of the best approximation is con-
trolled by the “rule of thumb” (4.4.1). On the other hand, it is known
from computations that the FE error grows with the wave number also on
meshes where the rule of thumb is satisfied. In Fig. 4.6, we show the pie-
cewise linear finite element solution of Model Problem I for two different
wave numbers, k = 10 and k = 100. Both solutions are computed with
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nres = 10. The graphs of both FE solutions look fine in the “eyeball norm”:
both are oscillatory as expected. However, the error (in H1-seminorm) of
the first solution is 21%, while the error of the solution for k = 100 is larger
than 100%. This example illustrates the problem with the application of
the quasioptimal estimate (4.1.14) from the general convergence theory for
Galerkin methods. The error of best approximation is the same for both
wave numbers (18%), but the FE solution for k = 100 cannot be considered
a reliable approximation of the exact solution.
Resuming the discussion of this section, we can say that the estimates

(4.4.2) determine the size of the optimal error in the solution space of
the h-version of the FEM. This optimal error is bounded independently
of the wave number k if one applies the rule (4.4.1) for the mesh size h.
However, the optimal order of the error is not, in general, achieved in FE
computations.
We will now show that the condition k2h ' 1 is sufficient for quasiopti-

mality of the FE error.

4.4.2 An Asymptotic Error Estimate
The Helmholtz variational form (4.2.3) is H1

(0-coercive. Hence we can spe-
cify the quasioptimal estimate (4.1.14) for Model Problem I. We consider
here the case of piecewise linear approximation. The corresponding FE sub-
space is denoted by Sh(0, 1).

Theorem 4.9. Let f ∈ L2(0, 1), and let u ∈ V =: H2(0, 1)∩H1
(0(0, 1), uh ∈

Vh =: Sh(0, 1) be, respectively, the exact and the finite element solutions
of (4.2.2) . Assume that h and k are such that the denominators of the
constants in the following estimates are positive. Then

|u − uh|1 ≤ Cs inf
v∈Vh

|u − v|1 (4.4.7)

holds with the stability constant

Cs :=
2
(
1 +
(
hk
2π

)2) 1
2

( 1
2 − 6C21k2h2(1 + k)2

) 1
2
, (4.4.8)

where
C1 :=

2
(1− 2(1 + k)k2h2

π2 )π
.

To prove the statement, let z ∈ H1
(0(0, 1) be such that

b(v, z) = (v, e), ∀v ∈ H1
(0(0, 1) ,
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where we denote, as usual, e := u−uh. In particular, b(e, z) = (e, e). Then,
for all w ∈ Vh,

‖e‖2 = (e, e) = b(e, z − w)

=
∫

e′ (z − w)′ − k2
∫

e (z − w)− ike(1) (z(1)− w(1))

≤ ‖ (z − w)′‖ ‖e′‖+ k2‖z − w‖ ‖e‖+ k|z(1)− w(1)||e(1)| ,
where we use the orthogonality b(e, w) = 0, and the third line follows from
the second by the Cauchy–Schwarz inequality. To estimate the last term
above, we use the inequality |v(1)| ≤ √

2‖v‖ 1
2 ‖v′‖ 1

2 , which leads to

k|z(1)− w(1)||e(1)| ≤ 2k‖ (z − w)′‖ 1
2 ‖e′‖ 1

2 ‖z − w‖ 1
2 ‖e‖ 1

2

≤ k2‖z − w‖ ‖e‖+ ‖ (z − w)′‖ ‖e′‖ , (4.4.9)

where we have also applied the trivial inequality 2ab ≤ a2 + b2. Hence

‖e‖2 ≤ 2
(‖ (z − w)′‖ ‖e′‖+ k2‖z − w‖ ‖e‖)

holds for all w ∈ Vh. Choosing w = zI ∈ Vh (the piecewise linear interpolant
of z) and recalling that z by definition is the solution to the variational
problem with datum e (“Nitsche trick”), we can apply the approximation
properties of Lemma 4.2 and the stability conditions from Theorem 4.4, to
obtain

‖e‖2 ≤ (‖ (z − zI)′‖ ‖e′‖+ k2‖z − zI‖ ‖e‖)
≤ 2

(
(1 + k)

h

π
‖e′‖ ‖e‖+ k2

h2

π2
(1 + k) ‖e‖2

)
.

Dividing both sides of the inequality by the common factor ‖e‖, we see that
‖e‖ ≤ C1 (1 + k)h ‖e′‖ (4.4.10)

holds with
C1 :=

2
(1− 2(1 + k)k2h2

π2 )π

under the assumption that k, h are such that the denominator of C1 is
positive.
Let us now derive an estimate for |e|1. By the definition of the error func-

tion, the trivial identity b(e, e) = b(e, u−uh) holds. Using the orthogonality
property of the error, we can replace uh above with an arbitrary function
from the subspace: b(e, e) = b(e, u− v) ∀v ∈ Vh. Writing out this equation,
we have∫ 1

0
e′e′ − k2

∫ 1

0
ee − ik|e(1)|2 =

∫ 1

0
e′(u − v)′ − k2

∫ 1

0
e(u − v)− ike(1)(ū(1)− v̄(1)) ,
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and therefore

‖e′‖2 ≤ k2‖e‖2 + k|e(1)|2 + ‖e′‖ ‖(u − v)′‖
+ k2‖e‖ ‖u − v‖+ k|e(1)| |u(1)− v(1)|

≤ k2‖e‖2 + 2k‖e′‖ ‖e‖+ 2‖e′‖ ‖(u − v)′‖+ 2k2‖e‖ ‖u − v‖ ,

where the terms at x = 1 have been estimated as in (4.4.9). We now use
the so-called ε-inequality

2ab ≤ ε2a2 +
b2

ε2
, ε �= 0 ,

to get the estimates

2k ‖e′‖ ‖e‖ ≤ 1
4

‖e′‖2 + 4k2‖e‖2 ,

2 ‖e′‖ ‖(u − v)′‖ ≤ 1
4

‖e′‖2 + 4‖(u − v)′‖2 ,
2k2 ‖e‖ ‖u − v‖ ≤ k2 ‖e‖2 + k2‖u − v‖2.

Introducing these estimates into the previous inequality leads to

‖e′‖2 ≤ 6k2‖e‖2 + 1
2
‖e′‖2 + 4‖(u − v)′‖2 + k2‖u − v‖2 ,

which holds for all v ∈ Vh. Now we choose v = uI . Then, using (4.4.10)
and the approximation properties (4.4.2) we finally obtain

1
2
‖e′‖2 ≤ 6k2C21 (1 + k)2h2‖e′‖2 + 4|u − uI |21 + k2

(
h

π

)2
|u − uI |21 ,

and the statement of the theorem readily follows, completing the proof.

4.4.3 Conclusions
The constant Cs in (4.4.8) does not depend on h, k if h is small enough
that k2h ' 1. Thus (4.4.7) holds only under the condition that

h ' 1
k2

,

by which we have specified the size of the threshold value h0 (cf. Section
4.1.3) for the Helmholtz equation. Moreover, one can show (cf. Demkowicz
[42], see also Ihlenburg and Babuška [74]) that Cs = 1 asymptotically:

|u − uh|1 → inf
v∈Vh

|u − v|1, h → 0 .
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Practically speaking, the estimate (4.4.7) predicts that the convergence
of the FE error on very fine meshes is similar to that of the interpolation
error (and thus is controlled by the “rule of thumb”). However, for large
k, meshes of size h = O(k−2) are not used in practice. It is impossible to
determine from the asymptotic order of convergence the size of the actual
error on a mesh with h = O(k−1).
Further, in practice one is interested in a rule that keeps the error below

some tolerance level. However, a mesh design by hk2 ≤ α would lead to a
decreasing error for increasing k. Indeed,

ẽ1 =
|u − uh|1

|u|1 ≤ Cs
|u|1 infv∈Vh

|u − v|1 ≤ CsCh
|u|2
|u|1 ≤ Chk ≤ C

α

k
.

Hence, asymptotically (which means here: on meshes with k2h < α) the
FE errors tend towards 0 as k is increased. However, it is only required that
the error be bounded for all k.
Finally, we remark that Theorem 4.9 can be proven also for the hp-version

of the FEM; i.e., for Vh = Sph(0, 1), see Ihlenburg and Babuška [73].

4.5 Preasymptotic Error Estimates for the
h-Version of the FEM

We have seen that the asymptotic error estimate does not, in general, cha-
racterize the error behavior (of FE solutions to the Helmholtz equation) in
the range of engineering computations. In this section, we show estimates
that hold under the assumption kh < 1. We will find that the error of
Galerkin–FE solutions to Helmholtz problems always contains a so-called
pollution term that depends on the wave number. While this term is negli-
gible for low wave numbers or on extremely refined meshes, it does have a
major influence for large wave numbers with standard mesh resolution.

4.5.1 Dispersion Analysis of the FE Solution
We set out in search of new error estimates that hold under the assumption
kh < 1. We start from a spectral analysis of the stiffness matrix for Model
Problem I. On a uniform mesh, this matrix can be written as

K =




2S(kh) R(kh)
R(kh) 2S(kh) R(kh)

. . .
R(kh) 2S(kh) R(kh)

R(kh) S(kh)− ikh


 , (4.5.1)
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with

R(kh) = −1− (kh)2

6
, S(kh) = 1− (kh)2

3
.

Except for the first and last lines, each line of this tridiagonal matrix cor-
responds to the homogeneous difference equation

R(kh)(u(xi − h) + u(xi + h)) + 2S(kh)u(xi) = 0 . (4.5.2)

We seek a solution of this equation in the form

y(xh) = eik̃xh , xh ∈ Xh,

with unknown “discrete wave number” k̃. Then (4.5.2) transforms into the
algebraic equation

R(kh)λj−1 + 2S(kh)λj +R(kh)λj+1 = 0 ,

where
λ = eik̃h .

The solutions of this equation,

λ1,2 = −S(kh)
R(kh)

±
√

S2(kh)
R2(kh)

− 1 ,

are

(i) complex if
∣∣∣∣S(kh)R(kh)

∣∣∣∣ < 1 ,

(ii) real if
∣∣∣∣S(kh)R(kh)

∣∣∣∣ ≥ 1 .

From the definition of λ we see that k̃ is either real (in case (i)) or pure com-
plex (case (ii)). Thus case (i) describes a propagating wave, whereas case (ii)
describes an evanescent wave. Solving the inequality |S(kh)/R(kh)| < 1,
we see that the propagating case corresponds to the bound

h ≤
√
12
k

. (4.5.3)

Assuming that this inequality is satisfied, we can compute the discrete wave
number in terms of kh, setting

cos(k̃h) = −S(kh)
R(kh)

(4.5.4)

to obtain

k̃ =
1
h
arccos

(
−S(kh)

R(kh)

)
. (4.5.5)
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Writing the Taylor expansion of the right-hand side, we find that

k̃ = k − k3h2

24
+O(k5h4). (4.5.6)

Three conclusions can be made at this point:
(1) The discrete solutions are dispersive; i.e., their phase velocity depends

on the frequency ω (recall from the discussion in Section 1.1.2. that the
exact solution is nondispersive).
(2) The (piecewise linear) FE solution is a propagating wave, provided

that the minimal resolution condition (4.5.3) is satisfied. Since
√
12 ≈ π,

this condition means that a wavelength should be resolved by more than
two elements.
(3) If the discrete solution is a propagating wave, then the phase velocity

of this “numerical wave” differs from that of the exact wave. In our case,
the phase difference is characterized by (4.5.6).

4.5.2 The Discrete inf–sup Condition
We consider again Model Problem I. The discrete inf–sup constant is of the
same order O(k−1) as the continuous constant (cf. (4.3.1)).

Theorem 4.10. Let Vh = Sh(0, 1) ⊂ H1
(0(0, 1), and let b : Vh × Vh → C be

the sesquilinear form defined in (4.2.3). Then the inf-sup constant

βh = inf
0
=u∈Vh

sup
0
=v∈Vh

|b(u, v)|
|u|1|v|1

satisfies
C1
k

≤ βh ≤ C2
k

(4.5.7)

for constants C1, C2 not depending on k or h.

The proof is similar to that of the continuous case, using techniques from
the theory of finite difference methods. We refer to [72] for details.
Inserting βh = O(k−1) into the error estimate (4.1.13) and recalling that

the continuity constant M = O(k2), we obtain the bound

|u − uh|1 ≤ C(1 + k3)h |u|2 , (4.5.8)

with some constant C independent of h, k. Dividing by |u|1, we conclude
that the relative error is bounded as

ẽ :=
|u − uh|1

|u|1 ≤ C(1 + k3)kh . (4.5.9)

Here, we have assumed again that the solution is oscillatory in the sense of
(4.4.3); i.e., an extra power of k is introduced in each differentiation. The
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bound in estimate (4.5.9) consists of two terms. The first term is of order
hk, representing the interpolation error (cf. (4.4.5)). However, for k � 1,
the error bound is dominated by the second term of order O(k4h). This
term estimates the numerical pollution in the error. We will discuss this
issue in more detail in Section 4.6.
Computational experiments show that though the estimate (4.5.9) is too

pessimistic (with respect to the power to which the wave number k enters
the pollution term), it does reflect the nature of the error for Helmholtz
problems. Let us explain at this point why this estimate may well be too
pessimistic: In (4.5.9) we have used the stability constant Mβ−1

h , which is
obtained as the ratio of the continuity constant and the inf–sup constant.
Both these constants are independently valid for any function in the spaces
H1
(0(Ω) or Sh(0, 1), respectively.
Consider, for example, the linear function u = x ∈ H1

(0(Ω). The norm of
this function is

|u|1 =
(∫ 1

0
|u′|2 dx

)1/2
= 1 .

On the other hand, we have

|b(x, x)| =
∣∣∣∣
∫ 1

0
dx − k2

∫ 1

0
x2dx − ik

∣∣∣∣ =
√
9 + 3 k2 + k4

3
= O(k2) .

This shows that the continuity constant is, in general, no better than O(k2).
However, for error estimation we are not interested in a bound that holds
for all members of the Sobolev space H1

(0(Ω) at the same time. For instance,
the linear function of the example above is not a solution of the boundary
value problem (4.2.1). Quite to the contrary, the terms (u′, v′) − k2(u, v)
cancel for the solutions of this problem. Thus we can expect finer error
estimates from employing solution-specific stability constants such as those
derived in Theorem 4.4.

4.5.3 A Sharp Preasymptotic Error Estimate
Using the discrete wave number, we can construct a discrete Green’s func-
tion (cf., e.g., Samarski [106])

Gh(x, s) =
1

h sin k̃h



sin k̃x

(
A sin k̃s+ cos k̃s

)
, x ≤ s ,

sin k̃s(A sin k̃x+ cos k̃x) , s ≤ x ≤ 1 ,
(4.5.10)

where

A =
(kh)2 sin k̃ cos k̃ + i

√
12
√
12− (kh)2

12− (kh)2 cos2 k̃ .
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Obviously, |A| is bounded independently of k̃ if kh ≤ α <
√
12. Employing

the discrete Green’s function, the solution is now written as

uh(xi) =
n∑
j=1

Gh(xi, sj)rh(sj) , (4.5.11)

where the discrete right-hand side is computed in the standard way as the
scalar product of the data f and the nodal shape functions:

rh(sj) = h

∫ 1

0
f(s)φj(s) ds .

Remark 4.11. Relating (4.5.11) to the FE solution procedure, we see that

[ [Gh(xi, sj), j = 1, . . . , n], i = 1, . . . , n]

is precisely the inverse of the stiffness matrix K.

Using the discrete Green’s function, we can show the following estimate
(“discrete” stability).

Lemma 4.12. Let Vh := Sh(0, 1) be the space of piecewise linear functions
on a uniform partition of Ω = (0, 1) with mesh size h, and let uh ∈ Vh be the
FE solution to the variational problem (4.2.2) for given data f ∈ L2(0, 1).
Then, if hk ≤ 1, there exists a constant C not depending on h and k such
that

|uh|1 ≤ C‖f‖ (4.5.12)

holds.

The proof of this lemma employs some techniques from the finite diffe-
rence theory. Details can be found in [72].
Observe that (4.5.12) holds under the condition hk < 1. We will call

bounds with this constraint “preasymptotic”, distinguishing the results
from the asymptotic case k2h ' 1. Recall that the meshes designed by
the “rule of thumb” are in the preasymptotic range.
We are ready to derive an error estimate for the FE error u − uh. We

start from the trivial inequality

|u − uh|1 ≤ |u − uI |1 + |uI − uh|1 ,
where uI denotes again the piecewise linear nodal interpolant of u. Let us
show that z := uh − uI is the solution of the variational problem

b(z, v) = k2(u − uI , v), ∀v ∈ Vh . (4.5.13)

Indeed, adding and subtracting the exact solution, we get

b(z, v) = −b(u − uh, v) + b(u − uI , v) = b(u − uI , v)
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by the b-orthogonality of u − uh. The right-hand side is

b(u − uI , v) =
∫ 1

0
(u − uI)′v̄′ − k2

∫ 1

0
(u − uI)v̄ − ik(u(1)− uI(1))v̄(1)

The boundary term on the right is zero since u = uI at all nodes (in
particular, at the node x = 1). Further, the first integral on the right also
vanishes. To see this, one simply integrates by parts, integrating the first
and differentiating the second member of the inner product. The term v′′

is zero in all element interiors, since v is piecewise linear. The jump terms
at the nodes vanish, since uI is the interpolant.
Applying now the stability bound (4.5.12) to (4.5.13) and inserting the

result into the first inequality, we have

|u − uh|1 ≤ |u − uI |1 + C k2‖u − uI‖
≤ (1 + Ck2h) |u − uI |1 ,

where the second line follows from the first by the approximation properties
(4.4.2). Taking into account that the interpolant uI is the best approxima-
tion of u in the H1-seminorm, we have shown the following theorem.

Theorem 4.13. Let f ∈ L2(0, 1) and let u ∈ V , uh ∈ Vh be the exact
and FE solutions, respectively, of (4.2.2), where the spaces are defined as
in Theorem 4.9. Then, if hk < 1, the error satisfies

|u − uh|1 ≤ (1 + C k2h
)
inf
v∈Vh

|u − v|1 , (4.5.14)

where C is a constant not depending on k, h.

Remark 4.14. Note that the asymptotic result (4.4.7) directly follows
from (4.5.14) if k2h ' 1. Thus Theorem 4.13 is a generalization (for the
special case of Model Problem I) of the well-known asymptotic theory.

Let us conclude by deriving the preasymptotic bound for the relative
error. Introducing the approximation properties of the interpolant and as-
suming oscillatory behavior of the solution (i.e., |u|2/|u|1 = O(k)), we find
that ẽ1 satisfies

ẽ1 ≤ C1hk + C2k
3h2 , hk < 1. (4.5.15)

The second term in (4.5.15) is significantly smaller (for large k) than the
term C2k

4h in the corollary of the inf–sup condition; cf. (4.5.9).
We will now show with computational results that the estimate (4.5.14)

is sharp. Considering the relative error in H1-norm, it turns out that the
upper bound in (4.5.15) cannot be further improved: a pollution term of
the size O(k3h2) is indeed seen in numerical experiments.
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FIGURE 4.7. Discrete and exact cosine.

4.5.4 Results of Computational Experiments
We consider Model Problem I with datum f = 1. The FE meshes Xh are
uniform with mesh size h = N−1.

Discrete Wave Number and Phase Lag:

We first illustrate the dispersion relation (4.5.6). In Fig. 4.7, we show the
“discrete cosine” cos k̃h, computed from (4.5.4), compared to the exact
cos kh. The FE solution is evanescent if kh >

√
12. The cutoff value kh =√

12 is marked in the plot with a fat dot. For normalized discrete wave
numbers below the cutoff value, the finite element solution is a propagating
wave with a dispersive discrete wave number. We consider only this case in
the following.
The phase lag of the FE solution with respect to the exact solution, as

quantified in (4.5.6), is illustrated in Fig. 4.8.

Error of the Best Approximation:

The best approximation of the exact solution u in the H1-seminorm | · |1 is
the nodal interpolant uI ; cf. (4.4.6). The convergence of the interpolation
error is shown for different wave numbers in Fig. 4.9. The log-log plot
shows the predicted convergence rate of N−1. The error stays at 100%
on coarse meshes and starts to decrease at a certain mesh size, which we
call the critical number of degrees of freedom (DOF) for approximability.
More precisely, for any fixed k and f the critical number of DOF is the
minimal number N(k, f) for which, first, ẽ1(n, k) < 1 and, second, ẽ1(n, k)
is monotone decreasing with respect to n for n > N(k, f).
The critical number of DOF for approximability is determined by the rule

that the mesh size for interpolation by piecewise linear functions should be
smaller than one-half of the wavelength of the exact solution, i.e. hk < π.
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FIGURE 4.8. Phase lag of the finite element solution: exact and finite element
solution for k = N = 10.
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FIGURE 4.9. Relative error of best approximation in the H1-seminorm, wave
numbers (from left to right) k = 10, 40, 100, 400.
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FIGURE 4.10. Relative error of the FE solution in the H1-seminorm for
k = 3, 10, 50, 100. The horizontal lines connect points with hk =constant.

The critical point N0, computed from

N0 =
[
k

π

]
(4.5.16)

is plotted for different k. The positions of these points approximately coin-
cide with the beginning of convergence on all curves. The figure also shows
that the error of the best approximation is controlled by the magnitude hk.
For illustration, the points hk = 0.2 are connected in the convergence cur-
ves for the different k. The connecting line neither increases nor decreases
significantly with the change of k. Applying the “rule of thumb” λ/h ≈ 10
thus guarantees a constant (with respect to k) error of about 17%.

TABLE 4.1. Resolution needed to maintain a relative error of 10% in the
H1-seminorm.

k 100 200 300 400 600 800 1000
n 38 57 63 82 94 107 120

Finite Element Error:

The relative error of the finite element solution for different k is plotted in
Fig. 4.10. Unlike the error of the best approximation, the FE error is not
controlled by the magnitude of hk. We see that the lines hk=constant in
Fig. 4.10 increase with k. In Table 4.1 we display the resolution needed to
maintain an error of 10% for increasing k. Clearly, the rule kh =constant
is not sufficient to control the FE error. We observe a pollution effect at
large wave numbers.
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FIGURE 4.11. Relative error of the FE solution compared with the best approxi-
mation (BA) in the H1-seminorm. For each k, the lower lines show the BA error.
Points with k2h=constant on the BA or FE lines, respectively, are connected.
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FIGURE 4.12. Relative error of the FE solution compared to the best approxi-
mation in the H1-seminorm: stability constant C(k) in the preasymptotic range
(kh=constant).
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In Figures 4.11 and 4.12 we illustrate the error behavior, respectively, in
the asymptotic and in the preasymptotic range. The plots show the relative
FE error |u− uh|1/|u|1 and BA (best approximation) error |u− uba|1/|u|1
for different wave numbers k. Points with k2h=constant on the FE and BA
error lines, respectively, are connected in Fig. 4.11. Along the line corre-
sponding to k2h = 10, we observe a constant (with respect to k) distance
between the FE and BA error lines. Since we have plotted in the log-
log-scale, this corresponds to a constant ratio Cs = |u − uh|1/|u − uba|1 as
established in the quasioptimal estimate (4.4.7) of Theorem 4.9. This shows
that an assumption on k2h seems to be necessary for asymptotic conver-
gence. For k2h = 1 the distance is indistinguishable within the resolution of
the plot, corresponding to the fact that Cs → 1 as h → 0; cf. Section 4.4.3.
We also observe that the error decreases along the lines k2h=constant.
On the other hand, the stability constant Cs grows with k in the preasymp-

totic range kh=constant, as shown in Fig. 4.12. The ratio |u−uh|1/|u−uba|1
now behaves as predicted by the estimate (4.5.14) of Theorem 4.13.

4.6 Pollution of FE Solutions with Large Wave
Number

The error estimate (4.5.15) establishes a bound of order O(k3h2) for the
relative error of the FE solution to Model Problem I. Computations show
that this upper bound is reached for large k; see Fig. 4.13.
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FIGURE 4.13. Relative error of the FE solution in the H1-seminorm as function
of wave number k with constraint k3h2 = 1.

In this context, we speak of numerical pollution in the FE error: viewing
the error of interpolation as the “natural” error that is inherent to any
approximation, we interpret the second term in (4.5.15) as a “pollution” of
this natural error. We will give a precise definition in the following. We also
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address the influence of boundary conditions on the convergence behavior
and discuss error estimation in the L2-norm.

4.6.1 Numerical Pollution
Definition: Consider a Helmholtz problem with wave number k on a nor-
med space V . Let u �= 0 ∈ V and uh ∈ Vh ⊂ V , respectively, be the exact
and the finite element solution, and assume that an estimate of the form

ẽ =
‖u − uh‖V

‖u‖V ≤ C(k) inf
v∈Vh

‖u − v‖V
‖u‖V (4.6.1)

holds. Then, if C can be written in the form

C(k) = C1 + C2k
β(hk)γ , (4.6.2)

where β > 0, γ ≥ 0, and C1, C2 are independent of h and k, then the
finite element solution is said to be polluted, and the term C2k

β(hk)γ is
called pollution term.

Remark 4.15. Generally, one speaks of pollution if the error consists of
two parts, one that is locally determined and another that is of nonlocal
nature. For instance, in FE computations for elasticity problems, pollution
occurs in regions away from a singularity (corner, crack, point load) if an
error from insufficient resolution at the singularity spreads into the domain
of computation, superposing the local interpolation error also in areas that
are distant from the singularity.

Comparing (4.5.15) with (4.5.6), we see that the pollution term for the
error in Helmholtz problems has the size of the phase lag. Indeed, in the
proof of the error estimate, the pollution term results from the evaluation
of ‖uh − uI‖, where obviously, uI is in phase with the exact solution. The
phase lag is a global effect that builds up over the whole domain of computa-
tion. This shows the similarity between the notions of pollution in positive
definite and indefinite problems. The difference is that the pollution in our
case cannot be related to an insufficient resolution of a local singularity but
is caused by the dispersive character of the discrete wave number, which is
a global property. This topic will be further discussed in the section on a
posteriori error estimation.
The pollution term also determines the critical number of DOF for the

finite element error, as Fig. 4.14 shows. The position of the critical points, as
marked over the abscissa of the plot, has been computed from the formula

N0 =
√

k3/24 . (4.6.3)

This formula can be obtained by heuristic argument from a simple estimate
of the amplitude error at the end of the interval [72].
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FIGURE 4.14. Relative error of the FE solution in H1-seminorm and critical
number of DOF.

Remark 4.16. The size of the critical number of DOF may be important,
for instance, for the application of multilevel methods to the Helmholtz
equation, if the coarse-grid solutions still have to be able to approximate
the exact solution. Our experiments show that the coarsest grid should
then be found from some constraint on k3h2.

4.6.2 The Typical Convergence Pattern of FE Solutions to
the Helmholtz Equation

We have concluded from the preasymptotic estimate (4.5.14) that a cons-
traint k2h < c is sufficient for optimal convergence

‖u − uh‖1 ≤ C‖u − uI‖1 ,

with a constant C not depending on k, h. The plot in Fig. 4.11 has shown
(cf. the corresponding remarks in Section 4.5.4) that this constraint also
seems to be necessary.
We are now in a position to describe precisely the FE error behavior

throughout the region of convergence. In Fig. 4.15, the finite element error
and the interpolation error are plotted for k = 100. We distinguish four
intervals on the abscissa, where the number of elements N is shown:

(1) N ≤ no: The point

n0 =
k

π
≈ 32

is the “limit of resolution” (two elements per wavelength, hk = π).
To the left of n0, the error of the best approximation is 100%.
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FIGURE 4.15. Convergence of relative errors of FE solution (continuous line)
and best approximation (dashed line) for k = 100.

(2) n0 < N ≤ N0: The point

N0 =
√

k3/24 ≈ 200

is the minimal meshsize for which the FE error is (and stays, if the
mesh is refined) below 100%. In this interval, the error of the best
approximation goes down at the rate −1 as h decreases, whereas the
error of the finite element solution oscillates with amplitudes of more
than 100%. The finite element solution is well-defined, but it does
not approximate the exact solution. The pollution term in the error
estimate (4.5.15) is dominant in this region. For the “rule of thumb”
λ/n = 10 (read at N = 5k/π ≈ 160 in Fig. 4.15), the minimal error
is ≈ 15%, whereas the finite element error still exceeds 100%.

(3) N0 < N ≤ Ns: To the right of N = Ns, the influence of the pollution
term in the FE error is negligible. The point N = Ns marks the
beginning of asymptotic convergence; hence

Ns =
1
c
k2,

where, theoretically, c is a small constant. Numerical experience shows
that c need not be small, but a constraint on k2h is needed to ensure
quasi-optimality in the H1-norm. To the left of Ns, the convergence
behavior of the finite element solution is still governed by the pollu-
tion term. Note that the prevalence of this term leads to a superopti-
mal rate of convergence: one observes a decay N−2 compared with
N−1 for the best approximation.

(4) n > Ns: The condition for quasi-optimal convergence of the finite
element solution is satisfied, independent of k.
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FIGURE 4.16. Errors of finite element solution (FE) and best approximation
(BA) for Sommerfeld boundary conditions.

The third region is generally the region of practical interest. The finite
element error is sufficiently small, while the mesh is still reasonably coarse.
In particular, the FE error lies within this region if one constrains the
magnitude of k3h2; cf. estimate (4.5.15). With a constraint of this form,
reliability of the finite element solution is assured for all k.
We remark that similar behavior of the errors has been observed in com-

putations for a one-dimensional example with highly irregular mesh; cf.
Babuška and Sauter [17].

4.6.3 Influence of the Boundary Conditions
In order to test the influence of different boundary conditions on the beha-
vior of the FE solution, we impose a Sommerfeld condition instead of the
Dirichlet condition at x = 0. We then get the modified variational equality

b∗(u, v) = (u′, v′)− k2(u, v)− ik〈u, v〉 = (f, v), (4.6.4)

with
〈u, v〉 = u(0)v̄(0) + u(1)v̄(1) .

No Dirichlet condition is imposed, and hence the solution is sought in
V = H1(Ω). In this space, the H1-seminorm is not a norm. Instead we use

‖u‖∗ =
(‖u′‖2 + k2|u(0)|2)1/2 ,

which is equivalent to the H1-norm. The convergence behavior of the fi-
nite element solution and the best approximation is shown in Fig. 4.16 for
different wave numbers. The convergence behavior is similar to that in the
case of the Dirichlet condition. Further details can be found in Ihlenburg
and Babuška [74].
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FIGURE 4.17. Relative error of the FE solution in the l2-norm for constant
resolution with kh = 0.2.

4.6.4 Error estimation in the L2-norm
So far, estimates have been given in the H1-norm. This norm measures
both the function and its derivative, as opposed to the L2-norm, which
measures only the function itself.
An estimate for the error in the L2-norm is obtained in the same way as

for the H1-norm. Assuming again that hk < 1, one can show3 the discrete
stability bound

‖uh − uI‖ ≤ Ck‖u − uI‖
with C independent of h, k. Thus

‖u − uh‖ ≤ (1 + k)‖u − uI‖ .

Inserting on the right-hand side the interpolation estimate from (4.4.2), we
arrive at

‖u − uh‖ ≤ (1 + Ck)
(
h

π

)2
|u|2 . (4.6.5)

For an oscillatory solution, |u|2/‖u‖ = O(k2), and hence we can estimate
the relative error of an oscillatory solution as

ẽ0 :=
‖u − uh‖

‖u‖ ≤ Ck(kh)2 , (4.6.6)

where C is a constant that does not depend on k, h.
The estimate (4.6.6) states that the L2-errors are dispersive also in the

asymptotic range. That is, on meshes designed by the “rule of thumb,” the

3Recall that z = uh − uI solves the Helmholtz problem with the right-hand side
k2(u − uI), and compare the continuous stability bound (4.3.9).
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FIGURE 4.18. Relative errors of the FE solution in the H1-norm and in the
l2-norm for k = 10 and k = 100.

error grows linearly with k also for small h. This is confirmed in numerical
experiments. We consider again the FE solution of Model Problem I. In
Fig. 4.17, we show the growth of the relative error in the l2 vector norm
on meshes with resolution n = 10π. In Fig. 4.18, the convergence of the
relative error in the H1-seminorm is compared to the relative error in the
discrete l2-norm. The errors for k = 10 (left two lines) and k = 100 are
plotted. In each case, the lower lines in the plot correspond to the error in
the l2-norm, whereas the upper lines are the results in the H1-norm.
The figure illustrates the typical convergence behavior for H1-coercive

forms. If the perturbation term is large, it governs the error behavior in
the preasymptotic range (in both the H1- and L2-norms). However, while
the positive definite term determines the asymptotic behavior in the H1-
norm, this effect is not observed if the error is measured in the norm of the
perturbation (L2-norm).

4.6.5 Results from 2-D Computations
Now consider Model Problem II. The square domain Ω = (0, 1) × (0, 1)
is partitioned into regular square elements. Bilinear shape functions are
used for approximation. In the present example, boundary conditions are
chosen such that the exact solution is a plane wave with the wave vector
k = k{cos θ, sin θ} for θ = π/8. The FE solutions were obtained with
discretizations ranging from 16× 16 to 1024× 1024 elements.
In Fig. 4.19 the relative errors in the H1-seminorm for k = 10, k = 50,

and k = 100 are plotted. We observe that the error behavior is completely
similar to the one-dimensional case; cf. Fig. 4.15. In Fig. 4.20, the errors
of the finite element solution and best approximation in the H1-norm and



4.6 Pollution of FE Solutions with Large Wave Number 139

0.01

0.1

1

2 4 8 16 32 64 128 256 512 1024

R
el

at
iv

e 
E

rr
or

Number of Elements

FE, k = 10
BA, k = 10
FE, k = 50
BA, k = 50

FE, k = 100
BA, k = 100

FIGURE 4.19. Relative errors in the H1-norm for the 2-D Helmholtz problem:
finite element solution (FE) vs. best approximation (BA) for k = 10, k = 50 and
k = 100.
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FIGURE 4.20. Relative errors for the 2-D Helmholtz problem: finite element
solution (FE) vs. best approximation (BA) in the L2-norm and the H1-seminorm
for k = 50.
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the L2-norm, respectively, are shown for k = 50. Again, the results are
similar to those shown in Fig. 4.18. Similar results of computations in three
dimensions are discussed in Gerdes and Ihlenburg [57].

4.7 Analysis of the hp FEM

We have seen that the relative error of the standard (h-version) Galerkin
FEM can be written in the form (cf. (4.5.15))

ẽ1 = O(θ + kθ2), θ < 1 , (4.7.1)

with θ = kh. The second term in this estimate characterizes numerical pol-
lution, due to the phase difference between the exact and FE solutions. In
this section we will investigate FE approximations with polynomial shape
functions of degree p ≥ 2. It will become evident that formula (4.7.1) can
be generalized to higher-order polynomial approximations, except that now

θ :=
(
kh

p

)p
. (4.7.2)

Towards this goal, we outline the specifics of hp-approximation and describe
in detail the FE solution procedure, including static condensation. This
leads to the investigation of the phase lag by dispersion analysis. Finally,
the preasymptotic error estimate (4.7.1), with θ from (4.7.2), is obtained.
The material for this section is taken mostly from Ihlenburg and Babuška
[73].
The analysis of the problem has some new ingredients compared to the h-

version. First of all, we need information on the approximation of functions
by higher-order polynomials. The error of approximation (measured in the
H1-norm) of the function u with polynomials of order p can be bounded, in
general, by an expression of the form hp|u|p+1. To make use of this property,
the derivatives of higher order should exist (in the weak sense). Hence we
have to address the question of regularity. For Helmholtz problems, we need
to know how the wave number k enters the stability estimates for functions
of higher regularity. Also, it is possible to bound the error of approximation
in negative norms (up to 1− p).
After studying these two issues — approximability and stability in higher-

order norms — we turn to the actual error analysis. As for the h-version,
the key lemma addresses discrete stability. We describe the process of static
condensation that is used to separate local analysis from global analysis.
In particular, the error analysis in negative norms is of local character.

4.7.1 hp-Approximation
We consider again Model Problem I with uniform meshesXh of mesh size h.
Hence by the hp-version we here mean h-convergence (i.e., error reduction
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by global mesh refinement) with shape functions of degree p. The master
element in the one-dimensional case is the interval I = (−1, 1). The poly-
nomials in Sp(I) are written as linear combinations of the nodal shape
functions

N1(ξ) =
1− ξ

2
, N2(ξ) =

1 + ξ

2
; −1 ≤ ξ ≤ 1 ,

and (if p > 1) the internal shape functions

Nl(ξ) = φl−1(ξ) ; l = 3, 4, . . . , p+ 1 ,

where the φl have been defined in (3.4.3). We denote by Sph(τi) the set
of shape functions on the element τi = (xi−1, xi), where x = Q(ξ) is
the standard linear map I → τi. The global space of hp-approximation is
Sph(Ω) ⊂ H1(Ω). The approximation properties of the h-version (cf. (4.4.2))
can then be generalized. To write the corresponding theorem, we define an-
tiderivatives of a function as follows. As usual, f (m), m ≥ 0 denotes the
mth derivative of a function f . Generalizing this for negative integers, we
call any function F such that

∂mF = f

an mth antiderivative of f and write

F = f (−m) .

The definition is specified for the interval (0, 1) as follows. Let f ∈ L2(0, 1),
then

f (−1)(x) := −
∫ 1

x

f(t)dt ,

and similarly,

f (−m−1)(x) := −
∫ 1

x

f (−m)(t)dt .

Lemma 4.17. Let l, p be integers with 1 ≤ l ≤ p and let u ∈ H l+1(0, 1).
There exists an s ∈ Vh = Sph(0, 1) such that

∀xi ∈ Xh : s(m)(xi) = u(m)(xi) , m = −p+ 1, . . . , 0 , (4.7.3)

and

‖(u − s)(m)‖ ≤ Ca(l)Ca(−m)
(

h

2p

)l−m+1
|u|l+1 , m = −p+ 1, . . . , 1 ,

(4.7.4)
hold, where Ca satisfies:

1. Ca(−1) = 1 (formal definition),

2. Ca(0) = 1,
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3. Ca decreases for 0 ≤ l ≤ √
p,

4. Ca increases for l >
√
p and

Ca(p) = max
1≤l≤p

Ca(l) =
(e
2

)p
(πp)−1/4 . (4.7.5)

The proof is based on Babuška et al. [14], where the cases l = 0, 1 are
treated. Let τi be a finite element and let I = (−1, 1). A function u′(ξ) ∈
H l(I) ⊂ L2(I) can be expanded as

u′(ξ) =
∞∑
i=0

aiPi(ξ) ,

where Pi(ξ) are the Legendre polynomials of order i and equality is under-
stood in the L2 sense. Setting

s′(ξ) :=
p−1∑
i=0

aiPi(ξ)

and defining the integrals (i = 0, 1, 2, . . .)

u(−i)(ξ) = u(−i)(1)−
∫ 1

ξ

u(−i+1)(τ)dτ , (4.7.6)

s(−i)(ξ) = u(−i)(1)−
∫ 1

ξ

s(−i+1)(τ)dτ , (4.7.7)

we now prove that (4.7.3) holds. First, let i = 0. Then from (4.7.6), (4.7.7)
we have trivially u(1) = s(1). Further, by definition,

u(−1) = u(1)−
∫ 1

−1
u′(τ)dτ = u(1)−

∞∑
j=0

aj

∫ 1

−1
Pj(τ)dτ = u(1)− 2a0

= u(1)−
∫ 1

−1
s′(t)dt = s(−1)

by (4.7.7). Now we integrate u′(ξ). Using

Pi(τ) = (P ′
i−1(τ)− P ′

i+1(τ))/(2i+ 1) ,

we obtain

u(ξ) = u(1) + a0(P1(ξ)− P0(ξ)) +
∞∑
i=1

ai
Pi+1(ξ)− Pi−1(ξ)

2i+ 1
.
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Integrating once more (we write U := u(−1)),

U(−1) = U(1)−
∫ 1

−1
u(τ)dτ = U(1)− 2u(1) + 2a0 + 2a13 .

Obviously, the same result is obtained from the integration of the polyno-
mial s(ξ), since only the coefficient of P0 influences the result of integration
over the whole interval I. Using a similar argument we conclude that in-
tegration of the polynomial s on the one hand and the function u on the
other hand leads to the same result exactly p − 1 times. Indeed, by repla-
cing repeatedly Pi(τ) = (P ′

i−1(τ)−P ′
i+1(τ))/(2i+1), we see that with the

ith succesive integration of u(ξ) or s(ξ) the coefficient ai enters the set of
coefficients multiplying P0. Since the norms of u(i) and s(i) depend only on
the coefficient of P0, both norms are equal until P0 is multiplied by ap−1;
i.e., in general, u(−p+1)(ξ) = s(−p+1)(ξ) and u(−p)(ξ) �= s(−p)(ξ). Thus no-
dal exactness, (4.7.3), is proved on an arbitrary element and hence it holds
globally.
Let us now prepare the proof of estimate (4.7.4). With the above defini-

tions, the error of approximation is

e′(ξ) := u′(ξ)− s′(ξ) =
∞∑
i=p

aiPi(ξ) ,

and from the orthogonality property of the Legendre polynomials we have

‖e′‖2 =
∞∑
i=p

2
2i+ 1

a2i . (4.7.8)

It can be proven (see Babuška et al. [14], Chapter 3) that s′ is the best
L2-approximation to u′ on I and the estimate

‖u′ − s′‖ ≤ Ca(l)
pl

|u|l+1 (4.7.9)

holds for 0 ≤ l ≤ p, where the constant Ca has the properties 2–4 of the
statement. Integrating the error e′, we get

e(ξ) =
∫ 1

ξ

(u′(t)− s′(t)) dt

=
∞∑
i=p

ai

∫ 1

ξ

Pi(t)dt = −
∞∑
i=p

ai
2i+ 1

(Pi+1(ξ)− Pi−1(ξ)) .

After reordering, this is equivalently written as

e(ξ) =
∞∑

i=p+1

biPi(ξ) +
ap

2p+ 1
Pp−1(ξ) +

ap+1
2p+ 3

Pp(ξ)
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with
bi =

ai+1
2i+ 3

− ai−1
2i − 1 ,

and the norm is

‖e‖2 =
∞∑

i=p+1

2
2i+ 1

b2i +
a2p

(2p+ 1)2
2

2p − 1 +
a2p+1

(2p+ 3)2
2

2p+ 1
. (4.7.10)

We apply the relation (a − b)2 ≤ 2a2 + 2b2 to obtain (for i ≥ p+ 1)

b2i ≤ 2a2i−1
(2i − 1)2 +

2a2i+1
(2i+ 3)2

,

and thus
∞∑

i=p+1

b2i
2

2i+ 1
≤ 1
2p2

∞∑
i=p

a2i
2

2i+ 1
+

1
2p2

∞∑
i=p+2

a2i
2

2i+ 1

holds. Now taking into account the second and third member in the right-
hand side of (4.7.10), we get

‖e‖2 ≤ 1
p2

∞∑
i=p

a2i
2

2i+ 1
,

and hence
‖e‖ ≤ 1

p
‖e′‖ . (4.7.11)

From (4.7.9) it then follows that

‖e‖ ≤ Ca(l)
pl+1

|u|l+1 (4.7.12)

holds for 1 < l ≤ p.
We conclude the local analysis by showing an orthogonality property for

e. Since s′ is the L2-projection of u′ on Sp−1(I),∫ 1

−1
(u′(ξ)− s′(ξ))ξmdξ = 0 (4.7.13)

holds for m = 0, 1, . . . , p − 1. We claim that e(ξ) =
∫ 1
ξ
(u′(t) − s′(t))dt is

orthogonal to Sp−2(I).
Indeed, for m ≥ 0 we compute∫ 1

−1
e(ξ)ξmdξ =

∫ 1

−1
(
∫ 1

ξ

(u′(t)− s′(t))dt)ξmdξ

=
∫ 1

−1
((u′(t)− s′(t))

∫ t
−1

ξmdξ)dt

=
1

m+ 1

∫ 1

−1
(u′(t)− s′(t))(tm+1 + 1)dt ,
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which together with (4.7.13) proves that e is orthogonal to Sp−2(I). By the
back-transform I → τi and summation over the elements we derive (4.7.4)
for the H1- and L2-norms; i.e., the cases m = 1, 0 in (4.7.4).
It remains to prove (4.7.4) for dual norms. We apply a standard argument

(cf. Schatz [109]). By definition, for m ≥ 1,

‖e‖−m = sup
v∈Hm

(0

(e, v)
|v|m .

Let Pmv ∈ Smh (Ω) be the L2-projection of v ∈ Hm
(0 on Smh (Ω). Then by

orthogonality (4.7.13)

‖e‖−m = sup
v∈Hm

(0

(e, v − Pm−1v)
|v|m

holds for 1 ≤ m ≤ p − 1. Applying the Cauchy–Schwarz inequality and
(4.7.12), we conclude for 1 ≤ l ≤ p and 1 ≤ m ≤ p − 1 the estimate

‖e‖−m ≤ Ca(l)
(

h

2p

)l+1
|u|l+1 Ca(m)

(
h

2p

)m |v|m
|v|m

≤ C(l,m)
(

h

2p

)l+m+1
|u|l+1 ,

where
C(l,m) = Ca(l)Ca(m) ≤

(e
2

)2p
(πp)−1/2.

This completes the proof of the lemma.

Remark 4.18.We have shown that there exists an interpolant s such that
p − 1 antiderivatives of s interpolate the corresponding antiderivatives of
u. These interpolants then satisfy the standard interpolation error bounds.
The present proof is given for approximation in one dimension. The er-

ror bounds in the negative norms (i.e., for the antiderivatives) are similarly
obtained in two and three dimensions; see, e.g., Schatz [109].

4.7.2 Dual Stability
Besides the stability estimate (4.3.11), we will need yet another stability
result, bounding lower norms of the solution by the corresponding norms
of the data.

Lemma 4.19. Let Ω = (0, 1), and let f ∈ L2(Ω) be a “bubble” function with
the property f (−i)(0) = f (−i)(1) = 0 for i = 1, . . . ,m. Then the solution
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u ∈ H1
(0(Ω) of (4.2.2) with datum f satisfies

|u|1 ≤ C1k
m‖f (−m)‖+ C2‖f (−1)‖ , (4.7.14)

with C1, C2 independent of k.

Remark 4.20. The assumption on the data means that m integrals of f
vanish at x = 0 (note that all integrals vanish at the endpoint by definition).
Without this assumption we can prove only that

|u|1 ≤ C k ‖f (−1)‖ ;

cf. (2.4.19). In general, |u|1 cannot be bounded by a term C‖f (−1)‖ inde-
pendently of k.

We give the proof for m = 2. The idea is to introduce a smoother kernel
into the Green’s function representation of u(x). We define

K(x, s) := G(x, s)− H(x, s) ,

where H(x, s) is the Green’s function for the auxiliary Dirichlet problem

Find u ∈ H1

0 (Ω) :

B1(w, v) =
∫ 1

0
w′v′ + k2

∫ 1

0
wv = (f, v), ∀v ∈ H1

0 (Ω) .

(4.7.15)
Note that B1 is a positive definite bilinear form. Hence

Hxx(x, s)− k2H(x, s) = −δs(x) , (4.7.16)
Gxx(x, s) + k2G(x, s) = −δs(x) , (4.7.17)

holds weakly. It follows that

Kxx = −k2(G+H) .

Then, however, since G,H ∈ H1(Ω) (as functions of x for any fixed s), we
have K ∈ H3(Ω). We write

u(x) =
∫ 1

0
K(x, s)f(s)ds+

∫ 1

0
H(x, s)f(s)ds := u1(x) + u2(x) . (4.7.18)

The point is that K is a smooth kernel and H is the kernel for a V -elliptic
problem. This problem has an inf–sup constant β = 1 in the energy norm
(cf. Remark 2.18), and from the Lax-Milgram theorem it follows that

|u2|1 ≤ |||u2||| ≤ ‖f (−1)‖ .
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To estimate u1, we integrate by parts to get

u′
1(x) =

∫ 1

0
Kx(x, s)f(s)ds =

∫ 1

0
Kxss(x, s)f (−2)(s)ds,

(the boundary terms vanish due to the specific assumption on f). Thus, by
the Cauchy–Schwarz inequality,

|u′
1(x)| ≤ ‖Kxss‖‖f (−2)‖.

From the definition of the function K and the symmetry of the Green’s
functions, it follows that Kxss = −k2(G+H)x, and thus

‖Kxss‖ ≤ k2 (‖Gx‖+ ‖Hx‖) .
It is straightforward to show that ‖Gx‖ and ‖Hx‖ are bounded indepen-
dently of k, and we finally arrive at

|u′
1(x)| ≤ C k2‖f (−2)‖ .

Together with the estimate of u2, this proves the case m = 2.
For m = 1, the statement follows from the inf–sup condition. For m ≥ 3,

the proof proceeds as for m = 2; see [73].

4.7.3 FEM Solution Procedure. Static Condensation
In the following, we describe in detail the solution of the boundary value
problem (4.2.1) by the hp-version of the FEM.

Step 1. Local Approximation and Static Condensation:

On any element τj , the trial function u and the test function v are writ-

ten as scalar products of shape functions
{
N j
1 , N

j
2 , . . . , N

j
p+1

}
and the

vectors of unknown coefficients {aj} =
{
aj1, a

j
2, . . . , a

j
p+1

}T
and {bj} ={

bj1, b
j
2, . . . , b

j
p+1

}T
, respectively. We assume a local numbering in which

subscripts 1, 2 correspond to the nodal modes, while subscripts j ≥ 3 corre-
spond to the bubble modes. Thus aj1 = u(xj−1) := uj−1, a

j
2 = u(xj) := uj ,

and bj1 = vj−1, b
j
2 = vj . The variational problem reduces locally (i.e., on

interior elements τj) to

{b̄j}T [Bj ]{aj} = {b̄j}T {rj} , (4.7.19)

where the elements of the (p+ 1)× (p+ 1) square matrix [Bj ] are

blm =
∫
τj

N j
l (x)

′
N j
m(x)

′
dx − k2

∫
τj

N j
l (x)N

j
m(x)dx − ikN j

l (1)N
j
m(1) ,

(4.7.20)
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and the right-hand side is

rjl =
∫
τj

f(x)N j
l (x)) dx .

Now, decomposing

[Bj ] =



[
Bj11

] [
Bj12

]
[
Bj21

] [
Bj22

]

 , (4.7.21)

where
[
Bj11

]
is the left upper 2×2 submatrix of [Bj ], and assuming for the

moment that
[
Bj22

]
is nonsingular, we define

[CBj ] =
[
Bj11

]
−
[
Bj12

] [
Bj22

]−1 [
Bj21

]
. (4.7.22)

Then, by local variation of {bj3, . . . , bjp+1}T , we find

{vj−1 vj}
[
CBj

]{ uj−1
uj

}
= {vj−1 vj}

{
r̃j−1
r̃j

}
, (4.7.23)

where

{
r̃j−1
r̃j

}
=
{

rj1
rj2

}
−
[
Bj12

] [
Bj22

]−1


rj3
...

rjp+1


 . (4.7.24)

On a uniform mesh, the local matrices [CBj ] are identical on all elements
and can be written in the form

[CB] =
[

Sp(kh) Tp(kh)
Tp(kh) Sp(kh)

]
, (4.7.25)

where Sp and Tp are rational polynomial functions.

Step 2. Global Assembling and Solution for uh:

Enforcing continuity of the test functions at the nodal points of Xh leads
to the usual set of linear equations

Kpu
p
h = rp .

The condensed stiffness matrix Kp is an n × n tridiagonal matrix

Kp =




2Sp(kh) Tp(kh)
Tp(kh) 2Sp(kh) Tp(kh)

. . .
Tp(kh) 2Sp(kh) Tp(kh)

Tp(kh) Sp(kh)− ikh


 (4.7.26)
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which is formally similar to the stiffness matrix of the h version. The vector
on the right-hand side is

rp =




r̃1
...

r̃j−1 + r̃j
...
r̃n




. (4.7.27)

Step 3. Local “Decondensation:”

The equation

[
Bj22

]


aj3
...

ajp+1


 =




rj3
...

rjp+1


−

[
Bj21

]{
uj−1
uj

}
(4.7.28)

can be inverted, provided that
[
Bj22

]
is regular, to determine locally the

bubble modes of the finite element solution. Adding together the local
modes and the bubble modes, the finite element solution is obtained, com-
pleting the procedure.

Remark 4.21. The matrix [B22] is singular at the discrete eigenvalues of
the condensation, determined by the eigenvalue problem

w′′ + λ2w = 0 , w(0) = w(1) = 0 .

The exact solutions are λ = π, 2π, . . . The discrete eigenvalues are obtained
if the problem is solved over the subspace of all “bubble” polynomials
of order ≤ p. In one dimension, there exist p − 1 “bubble” polynomials
(p = 2, 3, . . .), and hence the eigenvalue problem has p − 1 solutions. We
list the computed and exact eigenvalues for p = 2, . . . , 6 in Table 4.2. Ob-
viously the rule hk ≤ π excludes a breakdown of condensation.

4.7.4 Dispersion Analysis and Phase Lag
The homogeneous solutions of the interior difference equations

Tp(kh)uh(xi−1) + 2Sp(kh)uh(xi) + Tp(kh)uh(xi+1) = 0

are, similar to (4.5.2),

yh1 = exp(ik̃xh), yh2 = exp(−ik̃xh) ,
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TABLE 4.2. Singular values λh of the local stiffness matrix and exact eigenvalues
(lower row) of the associated eigenvalue-problem for p = 2, . . . , 6.

p / i 1 2 3 4 5
2 3.16228 - - - -
3 3.16228 6.48074 - - -
4 3.14612 6.48074 10.1060 - -
5 3.14612 6.28503 10.1060 14.1597 -
6 3.14159 6.28503 9.44318 14.1597 18.7338

i ∗ π 3.14159 6.28319 9.42478 12.5664 15.7080

where the parameter k̃ is determined as a function of k, h, and p by

cos(k̃h) = −Sp(kh)
Tp(kh)

. (4.7.29)

In Fig. 4.21, we plot the discrete cosine cos(k̃h), computed from (4.7.29),
for p = 1, . . . , 6. The plot for p = 1 is identical with the plot of Fig. 4.7.
Recall that the discrete wave number k̃ is complex, and hence the numerical
solution is evanescent, if | cos(k̃h)| = |Sp(kh)/Tp(kh)| > 1. The magnitude
of the cutoff frequency grows with the increase of approximation order p.
However, the discrete wave number is complex on small intervals (see, for
example, kh ≈ 7 for p = 3) also before it reaches the cutoff frequency. The
only way to avoid this situation completely is to keep the resolution below
the first cutoff frequency kh =

√
12.

We now show a bound for the phase difference between the exact and
FE solutions for the hp-version.

Theorem 4.22. Let p ≥ 1 and denote by k̃ the discrete wave number
defined in (4.7.29). Then, if hk < 1,

|k̃ − k| ≤ k C

(
Ca(p)
2

)2(
hk

2p

)2p
(4.7.30)

where k is the exact wave number, Ca is the approximation constant from
(4.7.4), and C does not depend on k, h, or p.

The proof can be found in [73]. The key idea is to use analytic shape
functions for the represention of the exact solution. These functions t1, t2
are found from the local boundary value problems

t′′ + k2t = 0 on τj , (4.7.31)

with inhomogeneous local Dirichlet data

t1(xj−1) = 1, t1(xj) = 0 , (4.7.32)
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FIGURE 4.21. Cosine of the normalized discrete wave number vs. normalized
frequency K.

or
t2(xj−1) = 0, t2(xj) = 1 , (4.7.33)

respectively. Having computed t1, t2, the homogeneous solution of the Helm-
holtz equation can be written on each inner element τj ⊂ Ω as

u(x) = u1t1(x) + u2t2(x) , (4.7.34)

where u1 := u(xj−1), u2 := u(xj) are the nodal values of u on Xh. The
phase difference is then estimated by comparing the analytic with the finite
element shape functions.

4.7.5 Discrete Stability
Now we have collected almost all prerequisites to showing the error esti-
mates. The last step is to prove discrete stability estimates. It is easy to
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show the following.

Lemma 4.23. Let uh ∈ Sph(0, 1) be the finite element solution to the va-
riational problem (4.2.2) with datum f ∈ L2(Ω). Assume that hk ≤ α < π.
Then

‖u′
h‖ ≤ C‖f‖ (4.7.35)

holds with a constant C independent of h,k, and p.

This is just the same statement as for p = 1, see Lemma 4.12. The proof
can be found in [73].
We proceed to the assessment of dual discrete stability. Here we consider

only data that vanishes at all points of the finite element grid. We showed
in Lemma 4.17 that there exist approximating functions such that the
error has this property. Hence, for integer l ≥ 0, we define a subspace
F l0(Ω) ⊂ L2(Ω) by

F l0(Ω) =
{
f ∈ L2(Ω)

∣∣∣ f (−i) |Xh
= 0 for i = 1, . . . , l

}
(4.7.36)

with F 00 (Ω) := L2(Ω). For this data, one can locally bound the components
of the condensed right-hand side in (4.7.24).

Lemma 4.24. Consider the variational problem (4.2.2) on Sph(Ω) with data
f ∈ F p−10 (Ω). Let τj be an arbitrary finite element and let {r̃j−1, r̃j}T be
the condensed right-hand side vector given by (4.7.24). Assume further that
the mesh size h is sufficiently small so that hk ≤ α < π. Then

|r̃j | ≤ Cd(p,m)h1/2km‖f (−m)‖∆i (4.7.37)

holds for even m = 0, 2, . . . ≤ p − 1 with

Cd(p, 0) = 1

and

Cd(p,m) = C1 + C2α
p−m 2(m−1)/2 (p+ 1)!(p+ 1)

((p − m+ 1)!)2
, m ≥ 2 ,

where C1, C2 do not depend on h, k, or p.

The proof is rather technical; the details can be found in [73]. We can
prove this statement also for odd m with the additional assumption that
hk is bounded from below, i.e., 0 < β ≤ hk.
We are ready to formulate the dual stability theorem on the finite-

dimensional (discrete) level.
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Lemma 4.25. Let uh ∈ Sph(0, 1) be the FE solution to (4.2.2) with datum
f ∈ Fm0 (Ω). Assume that 0 < kh ≤ α < π. Then

|uh|1 ≤ Cd(p,m)km‖f (−m)‖+ C1‖f (−1)‖ , (4.7.38)

where Cd is the constant from (4.7.37) and C1 does not depend on h, k, or p.

The proof follows the argument for the continuous case; see Lemma 4.19.
For details, we refer again to [73].

4.7.6 Error Estimates
We formulate two theorems. The first error estimate is similar to the h-
version estimate (4.5.14).

Theorem 4.26. For 1 ≤ l ≤ p let u ∈ H1
(0(0, 1) ∩ H l+1(0, 1) and uh ∈

Sph(0, 1) be the solution and the FE solution to the variational problem
(4.2.2), respectively. Assume that hk ≤ α < π. Then the error e := u − uh
satisfies the bound

|e|1 ≤ Ca(l)
(
1 + C1k

(
kh

2p

))(
h

2p

)l
|u|l+1 , (4.7.39)

where C1 does not depend on h, k, or p, and Ca(l) is the constant in the
approximation property (4.7.4).

The proof proceeds as for p = 1, using the interpolant s from Lemma 4.17.
We write e = u − s + z and observe that z := s − uh solves (4.2.2) with
data f = k2(u − s). Thus |e|1 ≤ Ck2‖u − s‖+ |u − s|1, and the statement
follows with the approximation property (4.7.4). This proves (4.7.39).
But (4.7.4) admits error bounds also with respect to dual norms of the

data k2(u− s) ∈ F p−10 (Ω). Using also the corresponding dual stability pro-
perties from Lemma 4.25, we directly arrive at the following result.

Theorem 4.27. Let 1 ≤ l ≤ p and 0 ≤ m ≤ p, m even, with p ≥ 2. Let u ∈
H1
(0(0, 1) ∩ H(l+1)(0, 1) be the solution to the variational problem (4.2.2)

with data f ∈ H(l−1)(0, 1), and let uh ∈ Sph(0, 1) be the finite element
solution to this problem. Assume further that the mesh size h is such that
hk ≤ α < π. Then

|e|1 ≤ Ca(l)

[
1 + C1

(
kh

2p

)2
+ kCd(p,m)Ca(m)

(
kh

2p

)m+1](
h

2p

)l
|u|l+1
(4.7.40)

holds with C1 independent on k, h, and p.
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The order m is related to the specific approximation properties of the
interpolant s, allowing the estimation of p + 1 antiderivatives in the dual
norm. As usual in the hp-version, the error is bounded by higher-order
derivatives of the exact solution.
Assuming again oscillatory behavior with |u|l+1/|u|1 = O(kl) and taking

l = p, we can estimate the relative error after (4.7.40) as

ẽ1 ≤ C1

(
hk

2p

)p
+ C2 k

(
hk

2p

)2p
. (4.7.41)

The first term in this estimate is the approximation error, while the second
term represents numerical pollution. As for the h-version, this term is of
the same order as the phase lag. We conclude that the pollution effect for
p ≥ 2 is significantly reduced if the mesh is fine enough such that

θ =
kh

2p
< 1 .

Since this expression is taken to the power 2p in the pollution term, the
wave number k must be rather large to render a significant pollution effect.

Remark 4.28. The order of convergence depends on the regularity of the
solution. A function over a one-dimensional domain Ω ⊂ R has regularity
l + 1 if its weak derivatives ∂ju, j ≤ l + 1 exist in Ω. For solutions u of
exterior Helmholtz problems, the Wilcox expansion theorem states that u
is analytic, i.e., of infinite regularity. In that case, the order of convergence
is always p after estimate (4.7.41). However, there are applications such as
diffraction from binary gratings (cf. Elschner and Schmidt [51]), where one
maximally has regularity 2. Solving such problems with hp FEM, one can
expect only the convergence rate 1 in the energy norm. On the other hand,
since the pollution error is estimated using negative norms, the estimate
for l ≤ p is still

ẽ1 ≤ C1

(
hk

2p

)l
+ c2 k

(
hk

2p

)l+p
.

Hence, the application of p-version elements always leads to a reduction of
the pollution error. Relative to the approximation error, this reduction is
even more significant for low regularity.

Remark 4.29. Setting

θ =
(
hk

p

)p
,

we can rewrite (4.7.41) as

ẽ1 ≤ C1θ + C2θ
2 .
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FIGURE 4.22. Relative error of the finite element solution versus best approxi-
mation error for k = 30π and p = 1, 2, . . . , 6.

Thus the estimate is similar for all p, including the standard h-version with
p = 1; cf. (4.5.15). As a practical matter, we conclude that the error will,
in general, be the same for any p if θ is kept constant (i.e., if higher appro-
ximation is applied on coarser mesh).

4.7.7 Numerical Results
We illustrate our analysis with some results from computational experi-
ments. The following computations were carried out on Model Problem I
with data f = 1 in (4.2.2). In Fig. 4.22, we plot the error of the best appro-
ximation and the FE error in the H1-norm for k = 30π and p = 1, . . . , 6.
We observe the theoretically predicted asymptotic convergence rates hp and
the reduction of the pollution effect for hk < 2p. We also see that roughly
the same pollution (look at the distance between the BA and the FE error
curves along the horizontal mark e = 0.1) occurs for constant ratio θ as
defined in the remark above.

Remark 4.30. The “bumps” in the error lines in Fig. 4.22 are an artifact
of the one-dimensional model. For h such that kh = lπ, l = 1, 2, . . . , we
locally approximate only one of the functions sinx or cosx, respectively.
From the Taylor expansions of these functions it is easy to understand the
“even–odd” effect in the approximation with polynomials of order p.
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FIGURE 4.23. Error of the finite element solution as a function of the number
of nodal points N (upper plot) and as a function of the number of DOF (lower
plot) for k = 100 and p = 1, . . . , 6.
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TABLE 4.3. Number of elements to achieve accuracy (relative error in
H1-seminorm) of ε. Parameters: k = 30π, p = 1, . . . , 6; n: number of elements;
DOF=n ∗ p: degrees of freedom; nmd: computational cost measured in numbers
of multiplications and divisions.

p 1 2 3 4 5 6 ε

ẽfe 0.49795 0.51962 0.5470 0.5582 0.5851 0.7208
n 211 48 25 16 12 10

DOF 211 96 75 64 60 60 0.5
nmd 1051 284 321 508 824 1296
ẽfe 0.099947 0.09956 0.09683 0.0911 0.0829 0.09833
n 491 76 35 22 16 12

DOF 491 152 105 88 80 72 0.1
nmd 2451 452 451 700 1100 1556
ẽfe 0.01000 0.0.01055 0.01013 0.01000 0.01026 0.00983
n 2813 180 64 35 23 17

DOF 2813 360 192 140 115 102 0.01
nmd 14061 1076 828 1116 1583 2206

The theoretical analysis and the numerical tests show that the quality
and reliablity of the FE solution grow with p. In computational practice,
this (theoretically unbounded) growth is inhibited by the decrease in nu-
merical stability due to ill conditioning of the stiffness matrix for higher
p. We thus conclude this section by a short discussion of computational
efficiency of the FEM implementation for different p. Consider first the
plots in Fig. 4.23, where the relative error of the FE solution is plotted,
respectively, against the number of mesh points and the number of DOF.
Increasing p, one significantly reduces the number of elements needed to

stay within some preset tolerance. The same is true if accuracy is related
to the number of DOF, though the gain for p ≥ 4 becomes less signifi-
cant. A comparison of numerical effort is made by the count of the number
of multiplications and divisions (nmd). In the given one-dimensional case,
condensation involves computing the inverse of a (p − 1)× (p − 1) matrix,
which requires (p− 1)3 operations [5, p. 515]. Generally (on a non-uniform
mesh) this has to be performed on each element. The solution of the re-
sulting tridiagonal system then requires 5n − 4 operations [5, p. 528]. The
overall number of multiplications and divisions is thus

nmd = 5n − 4 + n(p − 1)3.

In Table 4.3, we tabulate the nmd needed to achieve a relative error of the
finite element solution in H1-seminorm of 0.1%, 0.5%, or 0.01%, respec-
tively. We observe a significant payoff in computational effort in passing
from p = 1 to p = 2 or p = 3. As usual in the hp-method, the optimal
relation between h and p depends on the required accuracy; generally, the
higher the accuracy the bigger the payoff by higher-order elements.
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4.8 Generalized FEM for Helmholtz Problems

The pollution effect at high wave numbers is inherent in the standard
Galerkin FEM solutions for Helmholtz problems. As previously, we speak
of a nondimensional wave number that models a high frequency or a large
computational domain. As both cases frequently occur in practical appli-
cations, the question arises of how to reduce the pollution effect.
Our analysis has shown that the pollution in the FEM error is due to

the deterioration of stability. This is a specific property of the Helmholtz
variational form. Accordingly, one may attempt a reduction of pollution by
a modification of the Helmholtz operator in such a way that the modified
operator has better stability properties. This approach is called stabiliza-
tion. On the other hand, the practical interest is not stabilization per se
but error control, i.e., convergence. Recalling the conclusions from Ceá’s
lemma, convergence can also be improved by raising the order of approxi-
mation. In the hp-version of the FEM, higher-order polynomials are used
as shape functions. The next step is to use analytic functions for appro-
ximation. These functions should incorporate knowledge on the operator
(e.g., be partial solutions) to have a priori good approximation properties.
Methodically, such an approach can be viewed as a limiting case p → ∞ of
the hp-version of the FEM.
In this section, we review stabilized methods and methods with speci-

fic approximation properties. The approaches are investigated analytically
and in numerical experiments on Model Problems I, II. The idea of sta-
bilization by Galerkin–least-squares FEM after Harari and Hughes [63] is
explained on the one-dimensional example. We also consider a so-called
quasi-stabilized method that gives in one dimension the same nodal values
as a FEM with analytic shape functions. All of these methods eliminate
the pollution effect for Model Problem I.
This elimination is not possible using any generalized FEM in two dimen-

sions. Here, the stabilizing effect of the GLS–FEM is sensitive to the direc-
tion of the exact solution. The error can be significantly reduced in certain
“preferred” directions, but the stabilized approach, in general, has little
effect if the exact solution does not have dominant components in one of
these directions. As an alternative, we review the quasi-stabilized FEM
(QSFEM) after Babuška and Sauter [11, 17]. In this method, the error is
nowhere completely eliminated. Rather, the pollution error is minimized
for all possible directional components of the exact solution.

4.8.1 Generalized FEM in One Dimension
To present the idea of the generalized FEM, we first consider Model Pro-
blem I with uniform mesh Xh.
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Stabilization:

The Helmholtz variational form is indefinite due to the term −k2(u, v). In
the Galerkin–least-squares (GLS) method proposed by Harari and Hughes
[63], the variational form is modified to

bGLS(u, v) = b(u, v) + τ (Lu,Lv)Ω̃, u, v ∈ Vh , (4.8.1)

and the right-hand side is

fGLS(v) = f(v) + τ (f,Lv)Ω̃. (4.8.2)

Here, L is the Helmholtz differential operator, τ is a parameter yet to be
determined, and (·, ·)Ω̃ is the reduced L2 inner product, where integration
is carried out only on the element interiors (i.e., the singularities at inter-
element boundaries are suppressed in the reduced inner product).
The goal is to make, by appropriate choice of the parameter τ , the form

bGLS “unconditionally stable” and thus to “circumvent the Babuška–Brezzi
condition,” i.e., to avoid the stability problems of the form b as quantified
by the inf–sup condition.
The optimal τ is found from discrete dispersion analysis. A typical stencil

of the standard FEM stiffness matrix in one dimension is (cf. (4.5.1))

(2αG + 1)uj−1 + 2(4αG − 1)uj + (2αG + 1)uj+1 , (4.8.3)

with αG = (kh)2/12. The GLS matrix is similarly defined, but with αG
replaced by

αGLS = αG(1− τk2) . (4.8.4)

The discrete wave number of the FE solution is determined by (4.5.4),
which we here write in the form

cos k̃h =
1− 4αG
1 + 2αG

.

Thus we seek τ such that

cos kh =
1− 4αGLS
1 + 2αGLS

,

i.e., the GLS solution has the exact wave number. Solving this equation for
αGLS and equating the result to αG(1− τk2), we find

τ =
1
k2

(
1− 6

k2h2
1− cos kh
2 + cos kh

)
. (4.8.5)

It is shown in numerical experiments on Model Problem I that this choice
of τ leads indeed to solutions with no phase lag [63]. Thus the error in the
GLS method is an interpolation error that is free of pollution.
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A generalized FEM with the same property on nonuniform meshes is
developed in Babuška and Sauter [17]. In this quasi-stabilized FEM (QS-
FEM), the nodal values of the approximate solution uh are computed from
the algebraic system

Gstabuh = Qstab(f) , (4.8.6)

where uh is the vector of nodal values of the function uh on Xh, the FE
stiffness matrix Gstab is the tridiagonal matrix defined by

Gij =
k2h

2 tan kh2




sin k(xi+1 − xi−1)
sin k(xi+1 − xi) sin k(xi − xi−1)

if i = j ,

− 1
sin k|xi − xj | if |i − j| = 1 ,

0 otherwise ,
(4.8.7)

and the mapping Qstab is defined by

(
Qstabf

)
i
=

h

2 tan kh2

i+1∑
m=i

tan k(xm−xm−1)
2

xm − xm−1

∫ xm

xm−1
f(x)dx

xm − xm−1
. (4.8.8)

In [17], it is proven that the solution uh obtained from (4.8.6) is nodally
exact for piecewise constant data and that it is pollution-free for any data
f ∈ H1(Ω).

Approximation with Analytic Shape Functions:

The nodal values of the QSFEM are equivalently obtained from a Galerkin
FEM with analytic shape functions. Consider the nodal functions Φi of the
form

Φi =




t
(i)
1 on ∆i ,

t
(i−1)
2 on ∆i−1 ,

0 otherwise,

(4.8.9)

where the shape functions t1, t2 are computed from the local boundary
value problems (4.7.31) and (4.7.32) or (4.7.33), respectively. On the master
element ξ ∈ (−1, 1), the shape functions are explicitly

t1(ξ) = − sinKξ

2 sinK
+
cosKξ

2 cosK
, (4.8.10)

t2(ξ) =
sinKξ

2 sinK
+
cosKξ

2 cosK
, (4.8.11)

with K = kh/2; see Fig. 4.24.
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FIGURE 4.24. Analytic shape functions on master element.

The trial functions for the Galerkin FEM are written in the standard
way as a linear combination of nodal functions

uh(x) =
N∑
i=1

uiΦi(x) , (4.8.12)

where ui are the unknown nodal values of the function uh. Then the matrix
coefficient Gii−1 is

Gii−1 =
2

xi − xi−1

∫ 1

−1
t′1(ξ)t

′
2(ξ)dξ − xi − xi−1

2
k2
∫ 1

−1
t1(ξ)t2(ξ)dξ

= − k

sin k(xi − xi−1)
.

Similarly,

Gii =
2

xi − xi−1

∫ 1

−1
(t′2)

2 − xi − xi−1
2

k2
∫ 1

−1
(t2)2

+
2

xi+1 − xi

∫ 1

−1
(t′1)

2 − xi+1 − xi
2

k2
∫ 1

−1
(t1)2

=
k sin k(xi+1 − xi−1)

sin k(xi − xi−1) sin k(xi+1 − xi)
.

The expression on the right-hand side is exact for piecewise constant func-
tions. In this case, we integrate:

2
xi − xi−1

∫ 1

−1
ft1 +

2
xi+1 − xi

∫ 1

−1
ft2

=
2
k

(
tan k(xi − xi−1)

xi − xi−1

∫ xi

xi−1
f

xi − xi−1
+
tan k(xi+1 − xi)

xi+1 − xi

∫ xi+1

xi
f

xi+1 − xi

)
.
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Equations (4.8.7), (4.8.8) are then obtained if we multiply by a scaling
factor. For a general right-hand side, the integration over the elements is
equivalent to local averaging of the data. Since (4.8.12) represents in fact
the exact solution of (4.2.1), it is clear that the generalized FEM (which uses
linear shape functions but has nodal values from analytic shape functions)
is exact at the nodal points. Since the homogeneous generalized FEM has
no phase lag, it can be shown [17] that no pollution occurs in the error for
all right-hand sides f ∈ H1(Ω).

Conclusions from the 1-D example:

In the one-dimensional case, it is possible to eliminate the phase lag of the
FE solution and, accordingly, the pollution term in the error. The salient
feature of the Galerkin–least-squares FEM and the quasi-stabilized FEM
is high nodal approximation and elimination of the phase lag rather than
stabilization of the underlying variational form. For small values of kh, the
GLS parameter τ is negative and thus does not stabilize the Helmholtz
variational form. Indeed, expanding (4.8.5) for small kh leads to

τ = −h2

12
+O(k2h4);

see also Fig. 4.25.
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FIGURE 4.25. The function τ(kh) for k = 100.

4.8.2 Generalized FEM in Two Dimensions
Unlike the one-dimensional model case, Helmholtz problems in higher-
dimensional applications possess an infinite number of linearly independent
particular solutions. For instance, all plane waves u(x, y) = exp(ik ·x) with
|k| = k are solutions of (u + k2u = 0 in Rn, n ≥ 2. We now investigate
how this essential difference influences the performance of the generalized
FEM.
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Galerkin–Least-Squares FEM:

We consider the numerical solution of Model Problem II with bilinear FEM
on a uniform square mesh. The shape functions are the nodal modes

N1(ξ, η) = φ1(ξ)φ1(η), . . . , N4(ξ, η) = φ2(ξ)φ2(η) .

Inserting the bilinear approximation into the GLS variational equality

b(uh, vh) + τ(Luh,Lvh) = 0

on a uniform interior element patch as shown in Fig. 4.26 leads to the
discrete equation

i+1∑
k=i−1

j+1∑
l=j−1

(
Sijkl − k2(1− τk2)Mijkl

)
uh(xk, yl) = 0 ,

where Sijkl, ,Mijkl are the coefficients of the assembled stiffness and mass
matrix, respectively. Thus, at every interior point of the mesh, the FEM

h

h

i+1

i

i-1

j-1 j j+1

FIGURE 4.26. Patch in uniform 2-D mesh.

equations can be represented by the 9-point difference star

Ainterior =


 A2 A1 A2

A1 A0 A1
A2 A1 A2


 . (4.8.13)

Assuming now a solution in the form of a plane wave with (known) direction
θ and (unknown) discrete wave number k̃ = k̃(θ),

uh(x, y) = eik̃(x cos θ+y sin θ) ,

we get the dispersion relation

A0 + 2A1(cos ξ̃1 + cos ξ̃2) + 4A2(cos ξ̃1 cos ξ̃2) = 0 , (4.8.14)

with
ξ̃1 := k̃h cos θ , ξ̃2 := k̃h sin θ .
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For the Galerkin method with exact integration, we have the standard
coefficients of the stiffness and mass matrix

A0 =
8
3

− 4αG , A1 = −1
3

− αG
4

, A2 = −1
3

− αG ,

where now αG :=
(kh)2

9
. The same coefficients are obtained for the GLS–

FEM, with αG replaced by αGLS = αG(1− τk2). Inserting this stencil into
the dispersion relation (4.8.14), the optimal value of τ(θ, k, h) is computed
by setting k̃ = k, i.e., replacing ξ̃1, ξ̃2 by

ξ1 = kh cos θ , ξ2 = kh sin θ ,

to obtain

τ =
1
k2

(
1− 64− cos ξ1 − cos ξ2 − 2 cos ξ1 cos ξ2

(2 + cos ξ1)(2 + cos ξ2)k2h2

)
. (4.8.15)

Inserting this value of τ into the GLS variational equality, we get an FE
solution that has no phase lag if the exact solution is a plane wave in
direction θ.

Example 4.31. Assuming θ = 0 we get with cos ξ1 = cos kh, cos ξ2 = 1,
the 1-D dispersion relation (cf. (4.8.5))

τ =
1
k2

(
1− 6

k2h2
1− cos kh
2 + cos kh

)
.

However, a general signal consists of plane waves going in an infinite
number of directions. Even if there are directionally prevalent components
in this decomposition, they are not necessarily known a priori. It is not
clear if the GLS leads to improved approximation of a wave that is not
dominant in the preferred direction. In fact, numerical tests (cf. Thompson
and Pinsky [114, Fig. 12]; see also the paragraph on numerical results be-
low) show that the GLS–FEM has the same error as the standard Galerkin
FEM if the direction of the exact solution is different from the direction
chosen for the factor τ .

Minimization of Pollution in the Quasi-Stabilized FEM:

The discretization of the Helmholtz equation by the Galerkin or the Galerkin–
least-squares FEM renders on a uniform square mesh the uniform differ-
ence stencils (4.8.13) with dispersion relation (4.8.14). On the other hand,
the exact dispersion relation of a plane wave u = exp(ξ1x + ξ2y) , ξ1 =
kh cos θ , ξ2 = kh sin θ , is the circle

ξ21 + ξ22 − k2h2 = 0 .
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The phase lag, and thus the pollution of the discrete solution, is determined
by the distance between the curves described by the exact and the discrete
dispersion relations. The maximal distance of the curves is

d(k, h, kh) = max
0≤θ≤2π

∥∥∥∥
(

ξ̃1(θ)
ξ̃2(θ)

)
−
(

ξ1(θ)
ξ2(θ)

)∥∥∥∥
in vector norm, where ξ̃1(θ), ξ̃2(θ) are the roots of the dispersion relation
(4.8.14). Recalling the definitions of ξ̃i and ξi, we see that

d = max
θ

|k̃(θ)− k|h . (4.8.16)

Since k̃ is computed from the dispersion relation (4.8.14) as a function
of A0, A1, A2, we may ask for the minimal distance d over all possible
coefficients of the stencil (4.8.13). The coefficients are linearly dependent
through the dispersion relation; hence we effectively have two degrees of
freedom for a modification of the stencil. Assuming that the phase lag, as
in the one-dimensional case, can be expanded as a series with odd powers
of kh,

(k̃ − k)h = c1(kh)3 + c2(kh)5 + c3(kh)7 + · · · ,
where the ci depend on A0, A1, A2 via k̃, one can choose A0, A1, A2 such
that c1 = c2 = 0, whence

k̃opt − k = k7h6 +O
(
k9h8

)
. (4.8.17)

Example 4.32. The stencil

Ainterioropt =
3∑

m=0

(kh)mAinteriorm

has the optimal property (4.8.17) if

Ainterior0 =


 − 1

5 − 4
5 − 1

5− 4
5 4 − 4

5− 1
5 − 4

5 − 1
5


 , Ainterior1 = − 1

250


 17 58 17
58 0 58
17 58 17


 ,

Ainterior2 =
−1
50000


 801 2549 801
2549 0 2549
801 2549 801


 ,

Ainterior3 =
−1

4.5× 107


 152626 473849 152626
473849 0 473849
152626 473849 152626


 .

A rigorous outline of (4.8.17) can be found in Babuška et al. [17, 11]. There
it is also shown that for any 9-point difference stencil, one can find some
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exact solution of the Helmholtz equation such that its approximation on
the stencil is polluted. Hence, in two dimensions, there is no generalized
FEM (GFEM) with piecewise linear shape functions that is pollution-free
for all possible loads. On the other hand, it is possible to construct stencils
with minimal pollution error. The phase lag of the discrete solutions from
these stencils is of order k7h6.

Remark 4.33. In the GLS–FEM, the modified discrete operator stems
from a modified (“stabilized”) variational form. This form is subsequently
discretized by the standard FEM approach, i.e., the modifications are in-
troduced on the functional level. The modifications of the discrete operator
in the QSFEM are imposed on the algebraic level directly into the stiffness
matrix. Thus the QSFEM is rather a finite difference than a finite element
method. On the other hand, the conclusions from the analysis apply to any
generalized FEM that leads to nine-point difference stencils. The idea has
recently been generalized to rectilinear stencils (Elschner and Schmidt [51]).

Numerical Results:

Let us first illustrate the dispersion relation (4.8.14). We plot this relation
for kh = 2.5, with the coefficients computed by the Galerkin method, the
stabilized method after Pinsky and Thompson, and the quasi-stabilized
method. The results are shown in Fig. 4.27, all in comparison to the ex-
act dispersion curve (3.3.11).4 We see that the quasi-stabilized relation is
virtually identical with the exact relation, whereas the distance d(θ) of the
stabilized curve is zero for some θ but is large for others. The distance
between the Galerkin curve and the exact curve is large everywhere.
Second, we have solved Model Problem II with the methods discussed

above. The boundary conditions of the computational example have been
formulated in such a way that the exact solution is u = exp(ik · x).
Let us compare the standard Galerkin FEM with the stabilized methods.

In Fig. 4.28, we show the difference of the FE and BA errors |e|1 − |eba|1
for mesh sizes h(k) such that kh = 1.5 (i.e., on coarse grids with roughly
four elements per wavelength). We consider wave vectors k = k(cos θ, sin θ)
with

k = 30, 100, 150, θ = 0,
π

16
,
π

8
,
3π
16

,
π

4
,
3π
8

,
π

2
.

For each of these combinations (k, θ), the numerical solution is computed
with Galerkin FEM, GLS–FEM, and the QSFEM. The preferred direction
of the GLS–FEM is θ0 = π

8 . Again, the directional sensitivity of the GLS-
FEM is evident. While the numerical error is very small if the exact solution
is dominant in the preferred direction, the error is not much reduced (with

4Thanks to Stefan Sauter for the graphics routine that plots the 2-D dispersion curves.
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(a) Galerkin (b) Stabilized

(c) Q-stabilized

FIGURE 4.27. Dispersion curves for k = 100.

respect to the standard Galerkin FEM) if the exact solution differs from
the preferred direction. On the other hand, the error reduction by QSFEM
is directionally independent.

Analytic Approximation and Partition of Unity Method:

In one dimension, any solution of the homogeneous Helmholtz equation can
be written as a linear combination of the functions exp(ikx), exp(−ikx). So-
lutions of Helmholtz problems on two-dimensional bounded domains can
be approximated with arbitrarily small error using plane waves. More pre-
cisely, the set

W =
{{
exp(ik(x cos

2πm
n

+ y sin
2πm
n
)),m = 0, 1, . . . , n− 1

}
, n = 1, 2, . . .

}
(4.8.18)

is dense in the H1-norm on a bounded domain Ω (cf. Melenk [91, p.127],
Herrera [68]).
Thus analytic shape functions can be constructed on a rectilinear mesh as

tensor products of the one-dimensional functions ti(kxx)tj(kyy), i, j = 1, 2.
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FIGURE 4.28. Dependency of the H1-error on the wave direction θ for kh = 1.5
and k = 30, 100, 150.

Directional enrichment can be achieved by superposing several products
with k2x + k2y = k2. However, like the GLS–FEM and QSFEM, this ap-
proach lacks generality, since it is restricted to regular rectilinear grids.
This restriction results from the fact that the analytic functions are used
both for approximation and as shape functions on the FEM mesh, i.e.,
the functions have to satisfy the usual local boundary conditions on the
elements.
This restriction is removed in a new generalized FEM, the partition of

unity FEM (PUM) proposed by Melenk and Babuška [91, 92]. The concep-
tual idea of this new method makes it possible to incorporate analytical
knowledge of the exact solution on a general mesh or even using a mesh-free
approach of discretization. The key idea is to employ analytic functions for
approximation without imposing any mesh-dependent boundary conditi-
ons directly on these functions. Rather, the shape functions are obtained
by multiplying the approximating functions with patch functions that have
compact support and globally form a partition of unity on the domain Ω.
Thus a typical PUM basis function is written as

Φi(x, y) = ϕi(x, y)vi(x, y) , (4.8.19)

where the {ϕi(x, y)}Ni=1 form a partition of unity on Ω,

N∑
i=1

ϕi(x, y) ≡ 1 on Ω , (4.8.20)
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and

vi(x, y) =
m(i)∑
j=1

v
(j)
i (x, y) (4.8.21)

are the analytic approximating functions. For the Helmholtz equation, these
functions can be chosen from (4.8.18).
An partition of unity is given, for example, by the piecewise linear basis

functions (“hat functions”) on any FE partition of Ω. In Fig. 4.29, a typical
local approximation space of the PUM on a patch ωj is depicted. The
patch function ϕi is obtained from the piecewise linear shape functions. The
approximating function vi is a superposition of plane waves from W , being
directed in angles θ1, . . . , θ4. In a finite element context, one expects that

4

Ω
Γ

ω

ϕ
θ

θ θ
θ

j

BV
3

1 2

FIGURE 4.29. PUM basis function and approximation by plane waves.

by incorporation of functions from a local spaceW into the FEM trial space
the quality of approximation is increased significantly. This is confirmed by
Melenk and Babuška [92], who prove the approximation estimate

‖uH − um‖ ≤ C(Ω, k, s)
(
ln2m
m

)s
‖uH‖s.

Here, m is the number of basis functions from W that are used in (4.8.21).
The approximated function uH is any homogeneous solution of the Helm-
holtz equation on Ω ⊂ R2. While this is the same convergence rate as for
the p-version, the increase from m to m + 1 adds only one DOF, whereas
an ever increasing number of DOF is added if advancing by degree in the
p-version with polynomial approximation. Also the algebraic rate of con-
vergence is theoretically unlimited if the exact solution is analytic, hence
one expects exponential convergence with respect to m. Indeed, the first
numerical tests of the PUM for the Helmholtz equation show high con-
vergence rates. The tests are performed on Model Problem II. Table 4.4
(taken from [91, p. 148]) shows the potential advantage in efficiency com-
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pared to the FEM (h version) and QSFEM. In the table, N is the number
of subdivisions of the sides of the square domain (N = Nx = Ny).

TABLE 4.4. DOF necessary in different methods to stay below the indicated
tolerance for the relative error in H1-norm, with wave number k = 32.

ε 15% 7% 1%
FEM 9400 26000a 800, 000a

QSFEM 4096 16384 80, 000a

PUM, N = 1 88 88 104
PUM, N = 8 468 810 810

aestimated

4.9 The Influence of Damped Resonance in
Fluid–Solid Interaction

In this section, we discuss some numerical aspects of Model Problem III,
which describes fluid–solid interaction. The coupled problem of acoustic
fluid–solid interaction is well-defined for all frequencies ω. Due to the ra-
diation damping, the system does not have eigensolutions in the form of
standing waves. The vibrations of the elastic structure are damped by the
acoustic medium. The magnitude of the damping coefficient depends on the
ratio of the fluid and solid material constants. If the fluid has small density,
the system behaves almost as the elastic solid, vibrating in vacuo. Thus a
loss of stability is expected near the interior (i.e., of the elastic obstacle)
eigenfrequencies.

4.9.1 Analysis and Parameter Discussion
With respect to the wave number k, the coupled problem has generally
the same stability properties as the uncoupled problem. For a load F that
is a square-integrable function, there exists a unique solution U of the
variational problem (4.2.21). The solution is twice weakly differentiable
and depends on the load as (Babuška et al. [90])

‖U ,xx ‖0 ≤ Cs(1 + k)‖F‖0 , (4.9.1)

where ‖ · ‖0 is the L2-norm that is induced by the inner product (4.2.20).
Analyzing the convergence of the FE solution leads to the asymptotic

error estimate

‖U − Uh‖1,V ≤ Copt inf
Φ∈Sh

‖U − Φ‖1,V , (4.9.2)



4.9 The Influence of Damped Resonance in Fluid–Solid Interaction 171

1e-07

1e-06

1e-05

1e-04

0.001

0.01

30 60 120 240 480 960

R
el

at
iv

e 
E

rr
or

Number of Elements

BA
FE

FIGURE 4.30. Relative error of best approximation (BA) and FE solution in
H1-norm as a function of the number of elements for k = 10 and p = 2. The FE
error is marked by �.

where Sh is the subspace of FEM approximation. Here, the H1-norm is
defined as

‖U‖1,V =
(
(U ′,U ′)2 + k2(U ,U)2)1/2 . (4.9.3)

The estimate holds with Copt independent of k, h, provided that k2h ' 1.
Thus both the exact and the discrete problems are well-posed. The ana-

lysis is based on the G̊arding inequality, and hence does not provide pre-
asymptotic estimates. The stability constants depend on the coupling pa-
rameters a and n, as defined in Section 4.2.3. These coupling parameters
characterize the ratio of the solid and fluid material constants. For water
and steel, typical values are

E = 210× 109N/m2, cf = 1.5× 103m/s, cs = 5.1× 103m/s,
ρf = 1.0× 103kg/m3, ρs = 7.8× 103kg/m3.

4.9.2 Numerical Evaluation
In our numerical experiments for the coupled problem we pursue two objec-
tives: first, to investigate the preasymptotic error behavior of the coupled
problem; second, to address the sensitivity of the coupled problem to the
material properties of the media. Consider Model Problem III on a domain
Ω = ∪Ωi with Ω1 = (0, 3), Ω2 = (3, 6), Ω3 = (6, 9). In the left fluid region,
a source is present in the form of a step-function

g1(x) =
{
1 , x ∈ [1, 2],
0 , otherwise ,

and no load is given in the solid or in the right fluid region: f = g2 = 0.
The material parameters for steel and water are assumed.
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The nondimensional problem is discretized using an hp-version of the
FEM on uniform meshes with 30, 60, 120, . . . , 960 elements in the whole
fluid–solid region. The error of the FEM solution is again compared with
the error of the best approximation.
Representative results for the FE and BA errors are shown in Fig. 4.31.

Generally, higher p have to be chosen for higher k in order to get errors
below 100%.
We see that the coupled problem generally shows the same numerical

effects as the uncoupled one.
The more interesting feature of the coupled problem is its sensitivity

to the ratio of the material properties fluid–solid. This is investigated in
the following experiments. We now consider an infinite coupled domain
Ω = Ω1 × Ω2, where the solid is given on Ω1 = (0, 1) and the fluid on
Ω2 = (1,∞). A Dirichlet boundary condition u(0) = 0 is assumed, and
no load is given in the fluid, g2(x) = 0. This is the problem of forced
vibrations of a Dirichlet-fixed rod interacting with a fluid at x = 1. Via
a DtN condition at x = 1, this problem can be reduced to the boundary
value problem (cf. Example 1.6)

−u′′ − κk2u = f in (0, 1) ,
u(0) = 0 , (4.9.4)

u′(1)− ikαu(1) = 0 ,

where κ = (cf/cs)2 and α = ρfc
2
f /ρsc

2
s . For α → 0 the problem is ill

conditioned at the eigenvalues
√
κ k =

(π
2
+mπ

)
, m = 1, 2, . . . .
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Figure 4.32 shows the error of the FE solution (with data f = 1, piecewise
linear approximation) near the critical values for

√
κk.

The relative error in the H1-seminorm is plotted for different values of a
(we formally let a → 0 by ρf → 0). The solution converges almost optimally
for ρf = 1000. This corresponds to the propagation of a wave through a
homogeneous medium as considered in Model Problem I. No significant
pollution is observed on [0, 1], since the wave number is small. However,
the pollution effect grows considerably as a → 0.
To simulate in the same plot the FEM convergence between eigenvalues,

consider the line for ρ = 103. For large a−1, the Robin boundary condition
tends to the Dirichlet condition. This boundary value problem has exact
eigenvalues at mπ, m = 1, 2, . . ., and hence the assumed value of m = 10.5
lies between two eigenvalues. This solution converges almost optimally.
This effect is also illustrated in Fig. 4.33. Again we compute with the

material constants for steel and water. We see the significant increase of
the pollution effect when the wave number is moved toward an interior
eigenfrequency (from 10π to 10.5π). The mesh must be very fine in order
to achieve a reliable resolution of the dynamic instability.
Resuming the experiments, we conclude that unlike the uncoupled pro-

blem, the FE solution of the coupled problem may be considerably polluted
also for small k. The pollution occurs close to eigenvalues of the interior
problem. In the general case, these eigenvalues are not known a priori. The
reliability of the solution deteriorates close to the interior frequencies, in
particular, if the damping by the acoustic medium is small.

4.10 A Posteriori Error Analysis

The goal of a posteriori error analysis is twofold (cf. Verfürth [116, p. 1]):
first, one needs to identify (and resolve adaptively) local concentrations
of the errors due to singularities. Second, the a posteriori error estima-
tor should give a reliable indication of the global quality of the computed
solution. Here, we focus on the second aspect. We analyze the residual
estimator after Babuška and Miller [16]. In computational experiments, we
also investigate the averaging method after Zienkiewicz and Zhu [122]. The
question is how the indefiniteness of the variational form and the resulting
pollution in the FE solution influence the efficiency of a posteriori error
estimation. The investigation is carried out on Model Problem I.

4.10.1 Notation
Let uh ∈ Vh be the FE solution of (4.2.2). Here, we consider only the h-
version of the FEM; hence Vh =: Sh(0, 1) ⊂ H(0(0, 1) denotes the space of
piecewise linear functions that are defined on the unit interval and satisfy
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a Dirichlet condition at x = 0. The function

ri :=
(
f +

d2uh
dx2

+ k2uh

)∣∣∣∣
τi

(4.10.1)

is called the interior residual in the element τi. We define the element
residual indicator function êi ∈ H1

0 (τi) as the solution of the variational
problem: {

Find êi ∈ H1
0 (τi) :

bi(êi, v̂) = (ri, v̂)i ∀ v̂ ∈ H1
0 (τi) ,

(4.10.2)

where H1
0 (τi) denotes the subspace of H1-functions that vanish on the

element boundaries,

bi(êi, v̂) =
∫
τi

(
dêi
dx

dv̂

dx
− k2êiv̂

)
dx

is the reduction of the Helmholtz variational form to the element τi, and
(·, ·)i denotes the local L2 inner product. The element error indicators are
given by

ηi := |êi|1,i =
(∫

τi

∣∣∣∣dêidx

∣∣∣∣
2

dx

)1/2
. (4.10.3)

Finally, we define the global estimator of the H1-norm of the FE error |e|1,Ω
as

E :=
(
N∑
i=1

η2i

)1/2
. (4.10.4)

The efficiency of this estimator is measured by the global effectivity index

κ :=
E

|e|1,Ω . (4.10.5)

Remark 4.34. The error estimators based on the solution of local Dirich-
let problems are equivalent (cf. Verfürth [116, Section 1.3]) to the original
residual estimators of Babuška and Miller [16].

4.10.2 Bounds for the Effectivity Index
Theorem 4.35. Assume kh < π. Then

1(
1 +

k2h

π

)(
1 +
(
kh

π

)2) ≤ κ ≤
1 + C(1 + k)

k2h2

π(
1−
(
kh

π

)2) (4.10.6)
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holds with
C =

2(
1− 2(1 + k)

k2h2

π2

)
π

, (4.10.7)

provided that k, h are such that C is positive.

The proof of the theorem is based on the observation that the local
indicators measure an interpolation error, while on the other hand, we
know that the FE solution uh ∈ Vh is also shifted with respect to the exact
solution. This shift is a global effect of dispersion (which again is related
to the global effect of operator instability) and thus cannot be indicated
locally.
To quantify these observations, we define a function ũ ∈ H(0(0, 1) in such

a way that the FE solution is the H1-projection of ũ. Then there will be
no phase difference between ũ and uh. Let the function ũ be defined as the
solution of the variational problem{

Find ũ ∈ H1
(0(0, 1) :

(ũ′, v′) = (f, v) + k2(uh, v) + 〈uh, v〉, ∀v ∈ H1
(0(0, 1) ,

(4.10.8)
where we define

〈uh, v〉 := ikuh(1)v̄(1) .

We will call ũ the shifted solution. By definition, the FE solution of Model
Problem I is the projection of ũ in the H1-seminorm. Since we solve a one-
dimensional problem, the projection uh is in fact the nodal interpolant of
ũ (cf. Section 4.4.1). An illustration of the definition is given in Fig. 4.34,
where we plot the exact, the shifted, and the finite element solutions.
Now we are ready to formulate two lemmas that lead directly to the

proof of the theorem.

Lemma 4.36. Let u, ũ, uh be the exact, the shifted, and the finite element
solutions of (4.2.2), respectively. Let e = u − uh, ẽ = ũ − uh. Then

(
1 + C(1 + k)

k2h2

π

)−1
|ẽ|1 ≤ |e|1 ≤

(
1 +

k2h

π

)
|ẽ|1 (4.10.9)

holds with C from (4.10.7), provided that h, k are such that C is positive.

For the proof we observe that the exact solution satisfies

(u′, v′) = (f, v) + k2(u, v) + 〈u, v〉 ∀ v ∈ V .

Subtracting (4.10.8), we have

(µ′, v′) = k2(e, v) + 〈e, v〉 ∀ v ∈ V ,
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FIGURE 4.34. Real part of the exact, finite element, and shifted solutions for
k = 100 on a mesh with resolution λ/h ≈ 13.

where we define µ := u− ũ ∈ H1
(0(0, 1). Adding −k2((u− ũ), v)−〈u− ũ, v〉

to both sides, we find that µ is the solution of the problem{
Find µ ∈ H1

(0(0, 1) :
b(µ, v) = k2(ẽ, v) ∀v ∈ H1

(0(0, 1) .
(4.10.10)

(Note that ẽ(1) = 0 because uh is the nodal interpolant of ũ.) Thus µ can
be written as

µ(x) = k2
∫ 1

0
G(x, s)ẽ(s) ds ,

where G is the Green’s function given in (4.2.5). Differentiating in x and
applying the Cauchy–Schwarz inequality, we see that

|µ|1 ≤ k2‖G,x ‖‖ẽ‖ .

Using the approximation property (4.4.2)3, we have

|µ|1 ≤ k2h

π
|ẽ|1 .

Then, writing e = u − uh = µ − ẽ, the upper bound of (4.10.9) follows by
the triangle inequality.
For the lower bound, we write the variational equality of (4.10.8) as

(e′ − ẽ′, v′) = k2(e, v) + 〈e, v〉 .
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Choosing v = −ẽ, we get

|ẽ|21 = (e′, ẽ′)− k2(e, ẽ) ≤ |e|1|ẽ|1 + k2‖e‖‖ẽ‖
by the Cauchy–Schwarz inequality. In the proof of the asymptotic error
estimate (4.4.7) it is shown that

‖e‖ ≤ C(1 + k)h|e|1 (4.10.11)

holds with C from (4.10.7). Hence

|ẽ|21 ≤ |e|1|ẽ|1 + k2C(1 + k)h|e|1
h

π
|ẽ|1 ,

where we have also used the interpolation estimate (4.4.2). Dividing now
both sides of the estimate by |ẽ|1, we obtain the lower bound, proving the
lemma.

Remark 4.37. The assumptions on k, h in the lower bound are quite
restrictive. In many cases, instead of (4.10.11), the simpler relation

|ẽ|1 ≤ |e|1 (4.10.12)

holds, since ẽ is an interpolation error (of the shifted solution), whereas e is
polluted. The lower bound (which is the numerator in the upper bound of
the theorem) holds then with the constant 1. We observed this behavior, in
particular, in the numerical evaluation. However, (4.10.12) is not generally
true. A counterexample is given in Babuška et al. [12].

Lemma 4.38. Assume kh < π. Then(
1 +

k2h2

π2

)−1
|ẽ|1,i ≤ |êi|1,i ≤

(
1− k2h2

π2

)−1
|ẽ|1,i . (4.10.13)

For the proof, let us fix an arbitrary interior element τi and use in (4.10.8)
a test function v̂ ∈ H1

0 (τi) that is extended by zero outside of τi. We get

(ẽ′, v̂′)i = (f + k2uh, v̂)i = (ri, v̂) ,

where the latter equality follows from the definition of the interior residual
(note that u′′

h = 0 in the element interiors). Now from the definition of the
residual indicator function (4.10.2) we have

bi(êi, v̂) = (ẽ′, v̂′)i . (4.10.14)

Taking again v̂ = êi, we obtain

(ẽ′, ê′
i)i = |êi|21,i − k2‖êi‖2i ,
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and hence

|êi|21,i = (ẽ′, ê′
i)i + k2‖êi‖2i ≤ |ẽ|1,i|êi|1,i +

k2h2

π2
|êi|21,i ,

where we have used the interpolation estimate (4.4.2). Reordering and
dividing by |êi|1,i, we get(

1− k2h2

π2

)
|êi|1,i ≤ |ẽ|1,i ,

and the upper bound of the statement readily follows.
To prove the lower bound, we take v̂ = ẽ in (4.10.14):

|ẽ|21,i = bi(êi, ẽ)

=
∣∣(ê′
i, ẽ

′)i − k2 (êi, ẽ)i
∣∣ ≤ |(ê′

i, ẽ
′)i|+ k2 |(êi, ẽ)i|

≤ |êi|1,i|ẽ|1,i + k2‖êi‖i ‖ẽ‖i ≤
(
1 +

k2h2

π2

)
|êi|1,i |ẽ|1,i .

Canceling |ẽ|1,i on both sides, we obtain the lower bound for |êi|1,i, and
the statement is shown.

Remark 4.39. The lemma indicates what the local indicators really mea-
sure, namely, the difference between the shifted solution and the FE so-
lution (rather than the difference between the exact and the FE soluti-
ons). Indeed, we may assume that kh ' 1 in practice, and hence the local
effectivity index of the indicator with respect to the error function ẽ is close
to 1 on each element. On the other hand, considering the upper bound in
Lemma 4.37 we see that the global error of the FE solution may be signi-
ficantly larger than the error with respect to the shifted solution (k2h � 1
for large k on meshes with kh = constant). Using Lemma 4.38 we can iden-
tify the error of the shifted solution with the local indicator.

The estimate (4.10.6) of Theorem 4.35 is a direct consequence of the
estimates (4.10.9) and (4.10.13). We state two conclusions. First, the error
estimator is asymptotically exact; i.e., the effectivity index tends to 1 as
h → 0. Second, the lower bound in (4.10.6) indicates that the error may be
significantly underestimated if k2h is not small.
We now illustrate these conclusions in numerical experiments.

4.10.3 Numerical Results
In Fig. 4.35, we plot the error function e, the error with respect to the
shifted solution ẽ, and the local residual indicator function ê for f ≡ 1,
k = 100, and h = 1/300. We see that the indicator ê closely measures the
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FIGURE 4.35. Real parts of exact error e(x) (thick solid line), error with respect
to the shifted solution ẽ(x) (thick dashed), and the residual error indicator func-
tion ê(x) (thin solid). The derivates are shown in the lower plot, where also the
(Z–Z)-estimator is plotted (dotted). Dashed vertical lines indicate nodes.

TABLE 4.5. Quality of the residual estimator: comparison of exact and estimated
errors, magnitudes in percentage of H1-norm of exact solution.

hk k Estimated, % Exact, %
10 16.73 19.58
100 29.29 128.58

0.6 200 25.38 199.71
500 17.43 133.85
10 8.50 8.95
100 10.10 28.88

0.3 200 11.27 66.40
500 7.29 123.18
10 2.79 2.81
100 2.92 3.99

0.1 200 2.98 7.10
500 2.93 18.09
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FIGURE 4.36. Numerical evaluation of bounds for the effectivity index. The solid
line shows the measured index as a function of the wave number, the dashed lines
show the predicted upper and lower bounds, respectively.
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FIGURE 4.37. Convergence h→ 0 of exact and estimated error for k = 100 and
k = 400.
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error ẽ but does not reflect the true behavior of the FE error. The amplitude
of the error is significantly underestimated by the local indicators.
The following computations further illustrate the bounds in (4.10.6). To

show that the lower bound indeed reflects the behavior of the effectivity
index for meshes with kh =constant, we plot in Fig. 4.36 the numerically
computed effectivity index for kh = 0.6. This magnitude of kh corresponds
to the “rule of thumb” to use 10 elements per wavelength. We compare the
effectivity index of the FE computation (continuous line) to the theoretical
upper and lower bound (dashed lines) in (4.10.6). Clearly, the lower bound
of (4.10.6) reflects the actual behavior of the computed effectivity index.
We now evaluate the estimator E using linear elements. For this parti-

cular case, the second derivatives of uh vanish in all element interiors, and
hence the residuals ri are given by ri = (f+k2uh)|τi . The element residual
problems (4.10.2) were solved using quadratic approximations for trial and
test functions êi and v̂.

In Fig. 4.37, we plot the exact relative error
|e|1,I
|u|1,I

and the estimated

relative error
E

|u|1,I
for k = 100 and k = 400. Again we see that on coarse

meshes the estimator E underestimates the error |e|1,I . Note that for k =
400 the true error is 100% at a mesh size where the estimator predicts an
error of only 10%. Additional numbers are given in Table 4.5 for meshes
with hk = 0.6, 0.3, and 0.1. Recall that hk = 0.6 corresponds to the “rule
of thumb” (4.4.1), whereas hk = 0.3, hk = 0.1 are overrefined meshes. Note
that the estimators predict errors of a constant order of magnitude for all
wave numbers. Comparing this observation with the a priori investigation
(in particular, Fig. 4.9 and corresponding remarks), and also comparing
Fig. 4.37 with Figures 4.11 and 4.12 from Section 4.5., we see that the
estimator shows the typical convergence behavior of a best approximation
— yet another illustration of the fact that the residual estimator measures
the interpolation error.
To show that this behavior is typical for local error indicators in general,

the computations were carried out also for the estimator EZZ based on the
so-called ZZ element error indicators, as defined in Zienkiewicz and Zhu
[122] by

ηZZi :=
(∫

τi

∣∣∣σ̂ZZi (x)− duh
dx
(x)
∣∣∣2dx)

1
2

, (4.10.15)

where

σ̂ZZi (x) =
x − xi−1
xi − xi−1

ŝZZi +
xi − x

xi − xi−1
ŝZZi−1, x ∈ τi , (4.10.16)

with

ŝZZi =
1
2
duh
dx

(
x̄i
)
+
1
2
duh
dx

(
x̄i+1

)
, x̄i =

(xi−1 + xi
2

)
,
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FIGURE 4.38. Convergence of the global effectivity index for the residual
estimator.
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FIGURE 4.39. Convergence of the global effectivity index for ZZ estimator.
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FIGURE 4.40. Global effectivity index on sequences of meshes with
k2h =constant. The effectivity indices have been computed from the residual
estimator.

for each interior node i, 1 ≤ i ≤ N − 1. The estimator and effectivity
indices are computed as in (4.10.4), (4.10.5).
In Figures 4.38 and 4.39, we plot the effectivity indices κ from the resi-

dual and ZZ methods, respectively, as functions of the number of elements
for different k. We observe that in both cases the indices converge mono-
tonically to 1 as h → 0. Thus, for sufficiently fine meshes, E is an efficient
estimator of |e|1,Ω. However, the asymptotic behavior of the estimator does
not reflect the quality of engineering computations, where it is a common
practice to employ meshes with a specified number of elements per wave-
length. The plots show again how the true FE error is underestimated on
meshes that correspond to the “rule of thumb” kh=constant.
The ZZ estimator and the residual estimator behave similarly, differing

only on very coarse grids, where the residual estimator overestimates the
error, while the ZZ estimator underestimates the error.
Finally, we expect from (4.10.6) that the global estimator E is efficient

if the size of k2h is restricted (as k grows), whereas it is unbounded if the
meshes are designed by the “rule of thumb” (4.4.1). This is confirmed in
Figures 4.40 and 4.41. The plots show how the effectivity index depends
on k if the meshes for the FE computation satisfy constraints on k2h and
kh, respectively. Obviously, the estimators are efficient and reliable for all
k if hk2 = β. On the other hand, the quality of the estimators deteriorates
if kh = constant.
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FIGURE 4.41. Variation of the global effectivity index with wave number. The
upper line shows the effectivity indices on a sequence of fine meshes for which
k2h = 2. The lower line shows the deterioration of the effectivity index on meshes
with kh = 0.5. The effectivity indeces have been computed from the the ZZ
estimator.

4.11 Summary and Conclusions for Computational
Application

The application of discrete methods to Helmholtz problems generally re-
quires the resolution of different scales. For exterior problems, the FEM is
applied in the near field. The far-field behavior has to be mapped onto the
near field in such a way that the reduced problem is well-posed and the
truncation error is controlled.
The FE model in the near field resolves the size of the computational

domain, as well as the wavelength of the incident signal. These scales may
differ in order of magnitude, leading to a large nondimensional wave number
in a scaled model. The solutions are then highly oscillatory (rough). The
variational operator is indefinite, and the stability of the model deteriorates
with large wave number.
In the case of elastic scattering, the wave propagates through an inho-

mogeneous medium. Here, the numerical model suffers additional stability
problems at the (discrete) eigenfrequencies of the interior problem.
We have investigated the reliability of finite element methods for large

wave number. From our numerical results, the term “large wave number”



186 4. Finite Element Error Analysis and Control for Helmholtz Problems

for the homogeneous case can be quantified roughly by the relation

L

λ
≈ 10 ,

that is, the computational domain is ten times larger than the length of
the incident wave. In our discussion, a wave number k means the nondi-
mensional number

k = 2π
L

λ
.

Our investigation leads to the following conclusions.

Error Control for the h-Version of the FEM:

There is a principal difference between asymptotic and preasymptotic er-
ror behavior. The asymptotic estimates do not hold in the typical range
of engineering computations. On meshes with kh =constant, the FE error
has a pollution term the size of which corresponds to the phase error of
the numerical solution. The pollution term, and thus the error, is unboun-
ded for large wave numbers on meshes designed by the “rule of thumb”
kh =constant.
For piecewise linear approximation, the error can be controlled by a rule

k3h2=constant. That is, the number of elements computed from the “rule
of thumb” should be augmented by

√
k, yielding a resolution

λ

h
≈ 6

√
k . (4.11.1)

This relation also controls the error in the L2-norm. Computational expe-
riments show that these rules, which are concluded from a priori error ana-
lysis, lead to reliable FE solutions. This has been confirmed in experiments
on the original one-dimensional model problems, as well as in benchmark
computations for higher-dimensional applications.
Regarding a posteriori error estimation, one cannot, in general, rely on

the standard local estimators and indicators to control the error in the FE
solution of Helmholtz problems. These errors effectively estimate a quasi-
interpolating numerical solution and do not take into account the phase
error. The true error is underestimated if the wave number is large.

Convergence Speedup:

Raising the order of approximation p leads to significant speedup of the h
convergence, both in the interpolation and the pollution error. Taking into
account the computational cost, a selection of p = 2, 3, or 4 has been found
optimal in the one-dimensional model problem. The scale of the mesh for
the hp version is

θ =
(
hk

p

)p
,
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meaning that reliable results can also be expected on coarse meshes. It is
possible to create specialized FEM, incorporating analytical information
about the Helmholtz operator into the trial space. We have discussed the
quasistabilized FEM and the partition of unity FEM.

Error Norm:

Most of the estimates are given in the H1-norm (energy norm). Usually
the interest in acoustic computations is in the primary variable (pressure
p) rather than its derivative. Still, the H1-norm is relevant for exterior
problems if one is interested in the far-field response. In many FE approa-
ches, this response is computed analytically from the Helmholtz boundary
integral equation using the FE data on some “collecting surface” within Ωa.
Since this integral equation involves both p and its normal derivative, the
H1-norm is appropriate for error control in the near field. The situation is
different for interior problems. Here, the L2-norm may be more appropriate
for error control. The numerical analysis of the convergence behavior and
a posteriori error control in the L2-norm is a matter of ongoing research.

Error control for Fluid–Solid Interaction Problems:

For elastic scattering, the numerical error is significantly polluted also for
small wave numbers if the corresponding frequency ω is close to an eigen-
frequency of the interior problem. Efficient error control in the vicinity of
eigenfrequencies is an open problem.

Finite Element Modeling of Exterior Problems:

Since the pollution of the finite element error depends on both the frequency
and the size of the computational domain, it is favorable to keep this domain
as small as possible. This means that the artificial surface should be close
to the obstacle.

4.12 Bibliographical Remarks

Numerous textbooks are available for an introduction to the FEM, for in-
stance Akin [2], Bathe [18], or Hughes [71]. Since we placed special emphasis
on the hp-version, we mostly follow the book by Szabó and Babuška [112].
The foundations of the FEM for elliptic partial differential equations can
be found in a number of textbooks such as Breass [30], Brenner–Scott [31],
Carey–Oden [33], or Schatz [109]. The classical monograph by Ciarlet [34]
has been reedited in [35].
Regarding indefinite forms, the fundamental inf–sup condition was proven

by Babuška in 1973 [7]. Schatz published his results on forms satisfying a
G̊arding inequality in 1974 [108]. The results are covered in Hackbusch’s
textbook [62]; see also Braess [30]. The application to Helmholtz forms is
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more recent; see Aziz, Kellog and Stephens [6] and Douglas et al. [50]. Our
proof of the asymptotic quasioptimality of the FE error is based on [50].
Several papers have been devoted to the dispersion analysis of the dis-

crete Helmholtz operators; cf. Harari and Hughes [63, 64], Thompson and
Pinsky [113, 114]. The preasymptotic estimates in this chapter were first
published in joint papers with Babuška [72, 73, 74]. Our elaborations on
numerical pollution are closely related to Wahlbin’s article [117]. Compare,
for example, our estimates of the pollution term for higher p to the following
from [117, p. 377].

“If a function is appreciably smaller in a negative norm than
in, say, the L2 norm, this is frequently due to oscillations. As
an example, the reader may contemplate the functions vn(x) =
sin(nx) . . . .”

Since the pollution in the discrete oscillatory solutions of the Helmholtz
equation is caused by a global (namely, in the Helmholtz differential ope-
rator) rather than a local (geometric) singularity, our error estimates are
global, too. Other than that, our main estimates (4.7.39) and (4.7.40) are
similar to Wahlbin’s “basic local estimates” [117, Theorems 9.1, 9.2].
On the generalized FEM for Helmholtz problems, see Babuška and Sauter

[17]; the idea of the QSFEM is outlined in Babuška et al. [11]. The partition
of unity FEM was first proposed in the PhD thesis of Melenk [91] and has
since been developed in a series of papers by Melenk and Babuška [92, 93].
This method can also be viewed and implemented as a meshless method;
see Babuška and Melenk [15].
The material of Section 4.10 is taken from our joint work with Babuška,

Strouboulis and Gangeraj [12].



5
Computational Simulation of Elastic
Scattering

We use the finite–infinite element program SONAX1 for the computational
simulation of elastic scattering. We first perform computational experi-
ments with an elastic sphere where the exact solution is known and then
proceed to the simulation of physical experiments for an elongated cylin-
drical shell embedded in water.

5.1 Elastic Scattering from a Sphere

5.1.1 Implementation of a Coupled Finite–Infinite Element
Method for Axisymmetric Problems

The computer program SONAX computes the numerical solution for elastic
scattering from rotationally symmetric obstacles by a Fourier finite–infinite
element (FE–IE) method. It is especially geared towards the approximation
of elongated scatterers, since the artificial boundary is, in general, a prolate
spheroid. This allows the user to keep the FE region small, reducing the
computational effort and the numerical pollution at large kL (here L is the
principal length of the finite element domain around the obstacle).
The obstacle is modeled in cylindrical coordinates (r, φ, z); see Fig. 5.1.

With the assumption of rotational symmetry, all structural and acoustic

1The program SONAX was created by Dr. Joseph Shirron at the Naval Research
Laboratory, in Washington, D.C.
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FIGURE 5.1. Rotationally symmetric obstacle insonified by a plane wave.

unknowns of the full three-dimensional model can be expanded in a Fou-
rier series in the azimuthal angle φ. Then the degrees of freedom for the
numerical model are introduced in the two-dimensional cross-section of the
three-dimensional model. If the load is also symmetric, only the zeroth com-
ponent of the expansion need be computed. The assumption of rotational
symmetry is made only for the structure.
If the load is nonsymmetric, then the boundary data g(r, z, φ) is decom-

posed as

g(r, z, φ) =
∞∑

n=−∞
gn(r, z)einφ .

A finite number of problems with rotationally symmetric loads gn(r, z) are
solved, and the three-dimensional solution p is obtained as the superposi-
tion of the solutions pneinφ.
The load can be given as a combination of plane waves in arbitrary

directions or as a combination of point sources (spherical waves). The source
point P0 is the far-field point determined by the polar angle θ0. The load
is given by user input in the form of a sweep over a frequency range k =
k0, . . . , k1 in steps of size ∆k. For each frequency in the sweep, the scattered
pressure ps can be computed at arbitrary far-field points Ps. We thus define,
for some given far-field point Ps, a frequency response function (FRF)

F (k) := ps(Ps, k) .

The program SONAX features the possibilities of monostatic and bista-
tic frequency sweeps. In monostatic scattering, the locations of the source
and receiver are fixed. If the source and receiver are at the same location
(θ0 = θs), the monostatic sweep returns the backscattered field. In bistatic
scattering, the source is fixed at θ0, but there are many receivers at various
locations θs(i), i = 1, 2, . . . .
The far-field response is computed in several steps: First, we solve the

FE–IE problem to obtain the numerical solution pNh ≈ p in the near field.
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We then compute the normal derivative ∂νp
N
h on the wet surface. Finally,

the integral

p(r) ≈
∫
Γ

[
pNh (r

′)∂νg(r, r′)− ∂νp
N
h (r

′)g(r, r′)
]
dS′ (5.1.1)

is computed. Since Ps is a far-field point, we use the asymptotic expression
(2.1.29) for the free-space Green’s function.
The finite elements in the three-dimensional elastic and fluid media are

based on the hierarchical Legendre-type shape functions (cf. Babuška–
Szabó [112]). The far-field behavior is resolved by infinite elements using
the unconjugated Bubnov–Galerkin formulation (3.5.12). The test and trial
spaces are identical, both being based on (3.5.2). The resulting system ma-
trix is symmetric. In general, the artificial surface is a prolate spheroid,
given in a bipolar coordinate system. On this surface, the infinite elements
are constructed by the same principle as described for the sphere in Sec-
tion 3.5. For details, see Burnett [32].

5.1.2 Model Problem
We analyze scattering from an elastic sphere. The exact solution for this
problem is given in Section 2.1. It has been found to be in good agreement
with experimental results; cf. Junger and Feit [81, pp. 352–356].
This model is chosen as a benchmark for SONAX. In particular, we are

interested in the convergence behavior of the FE–IEM with respect to the
numerical parameters h, p (finite elements), and N (infinite elements). We
consider three different spheres, S05, S15, and S25, with uniform thicknesses
t = 0.05m, t = 0.1m, t = 0.25m, respectively. All spheres have the same
midsurface radius a = 5m. The material parameters for all spheres are
given in Table 5.1.

TABLE 5.1. Material parameters.

E = 2.07E + 11P Young’s modulus
ρs = 7669 kg/m3 solid density
ρf = 1000 kg/m3 fluid density
ν = 0.3 Poisson’s ratio
cf = 1524m/s fluid speed of sound

A plane wave of unit amplitude is incident on the shells, and the far-field
pattern of the backscattered pressure is computed.
In Fig. 5.2, we show the exact frequency response function for the three

shells, i.e., the absolute value of the far-field pattern in the backscattered
direction. We observe that no resonance peaks are formed at the higher
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FIGURE 5.2. Far-field pattern of backscattered pressure for elastic spherical
shells S05, S15, S25.

TABLE 5.2. Wave numbers corresponding to eigenfrequencies of free vibration.

1 2 3 4 5 5 7 8
0.501 0.596 0.639 0.669 0.701 0.741 0.794 0.862

eigenmodes for the shells S05 and S15, whereas they are still visible for the
“thick” shell S25. For S05, only the first four eigenmodes are visible in the
FRF plot, whereas the first six peaks can be distinguished for S15. The
eigenfrequencies for the free vibrations of the shell in vacuum are the zeros
of the mechanical impedance; cf. the denominator in (2.1.20). We list the
wave numbers corresponding to the first eight frequencies in Table 5.2.
The in-fluid damped eigenvalues are shifted to the left from their po-

sitions in free vibration. The shift is rather significant since the acoustic
impedance zn is complex with a nonvanishing real part; cf. the denominator
in (2.1.19). For illustration, see in Fig. 5.3 the damped solution (with ρs, ρf
as in Table 5.1) compared to the weak damping ρf = 1.0 kg/m3. In the FRF
for the weakly damped case, the peaks occur precisely at the eigenvalues
in Table 5.2.
We now turn to the evaluation of the numerical discretizations. The

computational experiments with the FE–IE model are performed for the
shell S15 only. We are interested in wave numbers k = 0.25, . . . , 2m−1,
which correspond to the nondimensional frequency range ka = 1.25, . . . , 10.
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FIGURE 5.3. Scattering from elastic shell with different densities of acoustic
medium.
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FIGURE 5.4. Spherical shell with mesh a32-r2-R600.

Relating the wavenumber to the size of the computational domain, we get
the nondimensional wave number K = kaπ = 0.8, . . . , 32.
In Fig. 5.4, we show a typical mesh for the finite element discretization

of the model (after reduction to two dimensions by Fourier expansion in
the azimuthal angle φ). The thin-walled elastic medium is partitioned into
one layer of finite elements. The shell is enclosed in a spherical artificial
boundary of radius Ra. We choose a uniform angular discretization and
introduce a number of element layers in the radial direction. In the plot, we
show the mesh for the shell S15 with 32 elements in the angular direction
and 2 element layers in the fluid. The artificial boundary is located at
Ra = 6m. For this mesh, the mesh sizes in the angular and radial directions,
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respectively, are

hθ =
πa

32
= 0.491m, hr =

R − a+ t/2
2

= 0.4625m ,

and hence the magnitude of kh varies between 0.1 and 1. That is, for
the largest k the mesh stays below the minimal resolution kh = π/2 for
piecewise linear approximation. The recommended mesh size by the rule
λ/h = 10 corresponds to a magnitude kh = π/5 ≈ 0.62. For the mesh
as shown, this resolution is matched for k = 1.28m−1, i.e., roughly in the
middle of the frequency sweep. Convergence studies are carried out on a
series of meshes shown in Table 5.3.

TABLE 5.3. Meshes for convergence tests.

· · a16-r2-R600 · ·
a32-r2-R525 a32-r2-R550 a32-r2-R600 a32-r4-R600 a32-r8-R600

· · a64-r2-R600 · ·

In the table, a and r denote the angular and radial partitions, respec-
tively, and R is the radius of the artificial boundary. On these meshes, we
will test the effect of polynomial enrichment as well as angular and ra-
dial h-refinement. The mesh a32-r2-R600 is the pivot mesh. The meshes
for angular refinement are given in the vertical sequence of the meshes in
Table 5.3, while the meshes for radial refinement are given to the right of
the pivot. Finally, we will use the meshes a32-r2-R525 and a32-r2-R550 to
test the sensitivity of the FE–IE coupling to the size of the FE domain and
the number of DOF in the infinite elements.

5.1.3 Computational Results
Polynomial Enrichment:

In the following, we adopt the notation of p- or q-convergence, respectively,
for the solution behavior with respect to polynomial enrichment in the solid
(degree p) or in the fluid (degree q). We first consider pq-convergence on
the coarse mesh a16-r1-R600 (16 elements in the angular and one in the
radial direction). In Fig. 5.5 we show q-convergence with piecewise linear
elements in the shell. Due to the underresolution in the shell, the model
converges to the wrong solution. For p = 2 the shell is sufficiently well
resolved; see Fig. 5.6. Still the fluid is underresolved for q = 1, causing a
shift in the lower damped eigenfrequencies and a deviation from the exact
solution for higher wave numbers. The same effect is observed for p = 3
and p = 4; we show here p = 4 in Fig. 5.7. Clearly, the minimal degree of
approximation on the coarse mesh is p = q = 2, that is, quadratics both in
the shell and in the fluid. This conclusion is also supported by the plots of
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FIGURE 5.5. q-Convergence on coarse mesh with p = 1.
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FIGURE 5.6. q-Convergence on coarse mesh with p = 2.
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FIGURE 5.7. q-Convergence on coarse mesh with p = 4.

p-convergence with fixed q. In Fig. 5.8, we plot the curves with p = 1, 2, 3
for q = 2. We get very good agreement if p = 2 or p = 3. For p = 3 and
q = 2, the FEM model also resolves the higher eigenfrequencies (5th and
6th), provided the step size of the frequency sweep is chosen sufficiently
small, as shown in the detail of Fig. 5.9.
Let us relate these observations for the FRF to the error analysis in

Chapter 4. For the one-dimensional model problem, the relative error in the
H1-norm at K = 10 is about 20% for the best approximation, compared to
25% for the finite element solution. Thus there is no significant pollution
for wave number, but the relative error in the H1-norm is large due to
insufficient mesh refinement.2 The nondimensional wave number K = 10
corresponds to k = 0.6m−1 in the plot of the frequency response. Hence,
for q = 1, the fluid part is computed with considerable error, contributing
to the shift in the higher eigenvalues. On the other hand, the estimate of
the relative error for quadratic approximation in the fluid is of order(

kh

4

)2
≈ 2%

(pollution is negligible). Correspondingly, we see very good agreement in
the frequency response curves for higher approximation.

2Note that both p and its first derivative are used to compute the far-field response
by (5.1.1), hence the H1-norm is the appropriate error norm for far-field computations.
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FIGURE 5.8. p-Convergence on coarse mesh with q = 2.
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FIGURE 5.9. q-Convergence on coarse mesh with p = 3; details for higher eigen-
frequencies.
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FIGURE 5.10. pq-Convergence on mesh with 32 angular and 2 radial (fluid)
elements.
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FIGURE 5.11. q-Convergence on mesh a32r2, p = 3, q = 1, 2; details for higher
eigenfrequencies.
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FIGURE 5.12. Radial convergence on mesh with 32 angular elements, p = q = 1.

Mesh Refinement:

In Fig. 5.10 we show results from the finer mesh with 32 angular elements
and 2 radial fluid elements. A pq-convergence study leads to similar con-
clusions as far as the solid resolution is concerned. Also for this mesh, the
application of piecewise linear elements in the solid implies q-convergence
to the wrong solution. On the other hand, with p = 2 we now see good
agreement in the higher eigenmodes also for q = 1, indicating the effect of
h-convergence in the fluid. This is shown in detail in Fig. 5.11.
In Fig. 5.12, we show the FRF on radially refined meshes with p = q = 1.

Again we observe convergence to the wrong solution. The radial refinement
in the fluid is, obviously, no remedy for the insufficient resolution of the
shell.
Angular refinement, which is performed simultaneously in the shell and

in the fluid, improves the quality of the numerical FRF. On a mesh with
64 angular linear elements, we achieve about the same agreement with the
exact FRF as on the mesh with 16 elements and quadratic elements in the
shell; cf. Fig. 5.13. However, also on the finest mesh we observe small peaks
in the numerical solution. Taking quadratic elements in the shell and linear
elements in the fluid, angular refinement from 16 to 32 elements yields very
good agreement (not shown here).
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FIGURE 5.13. Angular convergence on mesh with 2 radial (fluid) elements,
p = q = 1.
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FIGURE 5.14. Angular convergence on mesh with 2 radial (fluid) elements,
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FIGURE 5.15. Influence of far-field resolution.

Resolution of the Far Field:

Finally, we consider the influence of far-field resolution. In Fig. 5.15, we
plot results with Ra < 600 (i.e., the artificial boundary is moved closer to
the obstacle). For the same number of DOF in the infinite elements, the
agreement between the FRF curves does not visibly deteriorate as the size
of the FE region is decreased. Even reducing the number of exterior DOF
to the minimal N = 1 does not cause major disagreement with the exact
response. Only a slight perturbation of the FRF is observed at the fourth
eigenvalue.

5.1.4 Conclusions
The quality of the computed frequency response is more sensitive to the
numerical resolution of the solid than the numerical resolution of the fluid.
Though the positions of the frequency peaks are influenced both by the
mechanical and by the acoustic impedance, underrefinement in the solid
causes a larger error in the position of the frequency peaks than under-
resolution in the fluid.
The approximation of the far-field behavior with infinite elements in-

fluences the quality of the numerical FRF less significantly. In particular,
the size of the computational domain may be rather small, and for the
wave numbers considered, only a small number of radial shape functions is
needed.
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FIGURE 5.16. Influence of far-field resolution, detailed plot.

5.2 Elastic Scattering from a Cylinder with
Spherical Endcaps

5.2.1 Model Parameters
We consider a hemispherically capped cylinder, called mock shell; see Fig. 5.17.

l=

rout =4.686m t cyl =0.0406m
cap=0.1143mt

68m

FIGURE 5.17. Cylindrical shell with spherical endcaps.

The outer radius of the shell is 4.6863 m, the length of the circular
cylinder is 67.9958 m, the cylinder thickness is 0.04064 m, and the endcap
thickness is 0.1143 m. The material parameters are given in Table 5.4.
We will use two different meshes; see Fig. 5.18. The size of the coarse

mesh is H = 1.25 m in both directions, and the size of the fine mesh is
h = H/2. We will typically compute a frequency sweep of ka = 2.5, . . . , 20,
which corresponds to

λ

H
= 10, . . . , 1;

λ

h
= 20, . . . , 2.
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TABLE 5.4. Material parameters of capped shell.

E = 2.0E + 11P Young’s modulus
ρs = 7908.5 kg/m3 solid density
ρf = 1000 kg/m3 fluid density
ν = 0.29 Poisson’s ratio
cf = 1482m/s fluid speed of sound

(a) Coarse mesh H

(b) Fine mesh h

FIGURE 5.18. Mock shell in fluid; coarse and fine mesh for computations.

That is, the coarse mesh is for all wave numbers of the sweep below the
recommended resolution for piecewise linear approximation. The fine mesh
has the recommended resolution of 10 in the middle of the sweep. It is for
all k finer than the minimal resolution n = 2.
To get an estimate of the pollution effect, we have to consider a nondi-

mensional wave number that reflects the size of the computational domain.
In this elongated structure with L � a, the nondimensional wave num-
ber is K = kL, where L = 90 m measures the long principal axis of the
spheroid. The frequency sweep is then K = 45, . . . , 450; hence we have to
expect significant pollution of the numerical results at the higher end of
the sweep.

5.2.2 Convergence Tests
We first perform convergence tests to establish confidence in the compu-
tational simulation. In Fig. 5.19, we illustrate the pq-convergence on the
coarse mesh for k = 1, . . . , 3. On the abscissa we show the magnitude of
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FIGURE 5.19. Far-field pattern of backscattered pressure for the mock shell.
pqN-Convergence on coarse mesh.
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FIGURE 5.20. Far-field pattern of backscattered pressure for the mock shell.
pq-Convergence on coarse and fine mesh.
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FIGURE 5.21. Far-field pattern of backscattered pressure for the mock shell.
pq-Convergence on fine mesh.

ka, whereas the far-field pattern of the scattered pressure is measured on
the vertical axis (see Remark 5.1 below for the scaling of the data and the
unit of measurement). A coarse step size ∆k has been taken in the fre-
quency sweep. The legend shows the values for the numerical parameters
p, q (polynomial degrees in the solid and fluid mesh, respectively), and N
(number of radial shape functions in the infinite elements).
For p, q ≤ 3, convergence is observed only in the range k = 1, . . . , 2. At

the higher end of the sweep, good mutual agreement is found only between
the curves with higher polynomial resolution. We thus assume that these
latter results are convergent. This assumption is validated in the next plot,
Fig. 5.20, where we compare the results on the coarse mesh with data com-
puted on the fine mesh. Except for the peaks3 at ka = 12 in the p3-q2-N2
line and at ka = 13 in the p4-q2-N2 line, the results on the fine mesh are in
good mutual agreement. Both curves are closely fitted by the coarse mesh
data up to ka ≈ 13. We thus have enough confidence to recompute the fine
mesh data with a fine resolution of the frequency sweep. For the curves
as shown in Fig. 5.21, the sweep was k = 0.5 : 0.005 : 4.29, consisting of
759 separate FE–IE computations. In our implementation of SONAX on
RISC workstations, this sweep took up 52 minutes of CPU time for the
case p3-q2-N2 on the fine mesh. This time can, of course, be significantly

3Up to now we have no explanation for these peaks.
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reduced by using a frequency-adaptive approach, where a coarse mesh with
low pq is used at the beginning of the sweep, and the numerical resolution
is increased in several steps during the sweep.

Remark 5.1. The frequency response is given as the target strength, which
is precisely defined as TS = 20 log10 |F (k)|, where the far-field pattern in
the computation of F (k) has been scaled to 1 meter. The appropriate unit
for the TS is decibel (dB). In the plots, we write |F (k)| for brevity.

5.2.3 Comparison with Experiments

(Source)

Shell

Line Array

Receiver

FIGURE 5.22. Setup of experiments.

Experimental studies on the scattering from the mock shell were carried
out by Dr. Brian Houston at the Naval Research Laboratory. The setup of
the experiments is sketched in Fig. 5.22. The test model is a shell that has
been precisely fabricated with ratio 1:50 of the original model. The expe-
rimental results are scaled back to the true scale, where the computations
with the FE-IE model are performed. The shell is embedded in a large tank
containing water. A plane wave is simulated by a line array of point sources.
The response is measured by a receiver. The source is fixed. Both the recei-
ver and the shell can be rotated independently. To measure backscattered
data, the receiver is aligned with the source (monostatic measurements).
The center of the shell is located at a distance l = 3 m from the center of
the line array. The reproducibility of the experimental data has been care-
fully checked by repeated measurements. The curves that will be shown
here are the averaged representations of a series of measurements.
In Fig. 5.23, we show the comparison between the experiment and the

simulation for the backscattered elastic response at bow incidence. The shell
is positioned such that its long axis is perpendicular to the line array. The
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FIGURE 5.23. Far-field pattern of backscattered pressure for the mock shell.
Comparison of high-resolution simulation and experiment. Plane wave insonifi-
cation.
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FIGURE 5.24. Far-field pattern of backscattered pressure for the mock shell.
Detail at the higher end of the frequency sweep.
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simulation very well reflects the k-dependent pattern of the experiment,
but the agreement in the amplitude is not satisfactory. The oscillations at
the high end of the sweep are better reproduced with degree q = 4; see also
the detailed plot in Fig. 5.24.

3m

1.36m 3m

FIGURE 5.25. Situation for end-on insonification.

Still the amplitudes are not in good agreement. Obviously, this is not due
to the lack of convergence in the simulation. Reconsidering the experimental
setup, we were led to the hypothesis that the shell, at bow incidence of the
wave, responds to a point source rather than a plane wave (see a sketch
of the situation in Fig. 5.25). Hence the computations were repeated with
a point source as load input. The results are shown in Fig. 5.26. We now
observe a very good agreement between computational and experimental
data throughout the range of the frequency sweep.
In a final numerical experiment (here the load is again a plane wave), we

investigate the sensitivity of the numerical model with respect to coarse-
ning of the grid. Recall that the numerical parameters of the high-fidelity
computations had been determined, based both on our a priori studies of
error behavior and on the convergence tests described above. The minimal
resolution for high confidence of the simulation had been established to be
p = 4, q = 3, and N = 2 (on the fine mesh of size h), and this was validated
by comparison with the experimental data.
In Fig. 5.27, we compare the experimental data with the results from

computations with smaller numerical resolution. Lowering the polynomial
degree on the fine mesh, we compute a sweep that becomes blurred and
unstructured at ka ≈ 13. On the coarse mesh with the same polynomial
degree of approximation, the computational sweep is in good agreement
only up to ka ≈ 9 (except for an unexplained peak at ka ≈ 5.6). This is
better than expected, taking into account the pollution effect, which should
be significant on the coarse mesh. We assume that we are dealing with the
effect of smoothening of the near-field data, which takes place when the
far-field data are computed from the integral representation of the exterior
solution.
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FIGURE 5.26. Far-field pattern of backscattered pressure for the mock shell.
Point source insonification.
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FIGURE 5.27. Far-field pattern of backscattered pressure for mock shell. Com-
parison of simulation on fine and coarse mesh with experiment. Plane wave inso-
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5.3 Summary

We report on our experience from computational simulations of elastic scat-
tering using finite and infinite elements. The computations were performed
with the hp FE–IE program SONAX, written by Dr. Joseph Shirron, Naval
Research Laboratory, Washington D.C.
The testing is carried out in several steps. First, we analyze an obstacle

for which the exact solution can be found analytically. The main purpose
is to establish confidence in the method and the implementation and to
test the influence of the computational parameters on the accuracy of the
discrete solution. We then turn to the application, where the exact solution
is not known. Here, we test hp-convergence of the discrete solution. These
tests are carried out, based on the study of the error behavior in Chapter 4.
After a sufficient resolution has been found, the results for this model are
compared to experimental data. The measured and computed frequency
response functions are found to be in good agreement.
The implementation shows that the FEM can be used as an effective and

convenient numerical tool for the computational analysis of acoustic fluid–
structure interaction. The high efficiency is due partly to the application
of the Fourier FEM with the corresponding dimensional reduction (at the
expense of a restriction to axially symmetric objects). In the present com-
putations, we considered symmetric (with respect to angle φ) loads only.
In related tests, we also obtained good agreement for angular incidence,
performing computations at φ = 45◦ and φ = 70◦. In this case, we need
to superimpose several Fourier modes. To the best of our knowledge, an
analysis of the Fourier FEM for the Helmholtz equation is still lacking. For
the Laplace equation, see Heinrich [67].
Regarding the numerical parameters, we make the following observations:

first, the coupled model is more sensitive to insufficient numerical resolution
of the structure, compared to the resolution in the fluid (here we mean only
the resolution of the near field that is discretized by FEM). Second, the
degree of approximation in the far-field part of the fluid (discretized by
infinite elements) has only little influence on the accuracy of the far-field
response. We recall that this response is computed analytically, using the
Helmholtz integral equation, from the near-field FE data. In the example
considered, even several successive reductions of the FE domain did not
significantly influence the final result. Third, results obtained by polynomial
enrichment on a coarse mesh were generally of higher quality than results
of the h-version with approximation p = 1. This especially concerns the
discretization of the shell.
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package (2DhpAP), Technical Report, Cracow, April 1992.

[45] L. Demkowicz and F. Ihlenburg, Analysis of a Coupled Finite–Infinite
Element Method for Exterior Helmholtz Problems, TICAM Technical
Report, 11-96.

[46] L. Demkowicz and K. Gerdes, Convergence of the infinite element
methods for the Helmholtz equation, TICAM-Report 6/96, to appear
in Numer. Math..

[47] L. Demkowicz, A. Karafiat, and J.T. Oden, Solution of elastic scatte-
ring problems in linear acoustics using hp boundary element method,
Comp. Methods Appl. Mech. Eng. 101 (1992) 251–282.



References 215

[48] L. Demkowicz and J.T. Oden, Recent Progress on application of hp-
adaptive BE/FE methods to elastic scattering, Int. J. Numer. Meth.
Eng., 37, 2893–2910 (1994).

[49] L. Demkowicz and J.T. Oden, Application of hp-adaptive BE/FE
methods to elastic scattering, TICAM Report 94–15, 1994.

[50] J. Douglas Jr., J.E. Santos, D. Sheen, L. Schreyer, Frequency domain
treatment of one-dimensional scalar waves, Mathematical Models and
Methods in Applied Sciences, Vol. 3, (1993) 171–194.

[51] J. Elschner and G. Schmidt, Diffraction in periodic structures and
optimal design of binary gratings I. Direct problems and gradient
formulas, to appear in Math. Methods Appl. Sci.

[52] B. Enquist and A. Majda, Absorbing boundary conditions for the
numerical simulation of waves, Math. Comp. 31, No. 139, 629–651
(1977).

[53] B. Enquist and A. Majda, Radiation boundary conditions for acoustic
and elastic wave calculations, Comm. Pure Appl. Math., Vol. 32, 313–
357, 1979.

[54] Feng Kang, Finite element method and natural boundary reduction,
Proceedings of the International Congress of Mathematicians, War-
saw, 1983, 1439–1453.

[55] K. Gerdes, The conjugated vs. the unconjugated infinite element
method for the Helmholtz equation in exterior domains, Research
Report 96–11, Seminar Angewandte Mathematik, ETH Zürich, to
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[112] B.S. Szabó and I. Babuška, Finite Element Analysis, J. Wiley, 1991.

[113] L.L. Thompson and P.M. Pinsky, Complex wavenumber Fourier ana-
lysis of the p-version finite element method, Comp. Mech., 13 (1994),
255 –275.

[114] L.L. Thompson and P.M. Pinsky, A Galerkin Least Squares Finite
Element Method for the Two-Dimensional Helmholtz Equation, Int.
J. Numer. Meth. Eng., 38 (1995), 371–397.

[115] V.V. Varadan, A. Lakhtakia, and V.K. Varadan, Field Representa-
tions and Introduction to Scattering, Vol. 1, North Holland 1991.

[116] R. Verfürth, A Review of aposteriori Error Estimation and Adaptive
Mesh Refinement Techniques, J. Wiley and Teubner-Verlag, 1996.

[117] L.B. Wahlbin, Local behavior in finite element methods. In: P.G.
Ciarlet and J.L. Lions, eds., Handbook of Numerical Analysis, Vol.
II, Elsevier, 353–522.



220 References

[118] W.L. Wendland, On asymptotic error estimates for the combined
BEM and FEM. In: Stein, E., Wendland, W. (eds.) Finite element
and boundary element techniques from mathematical and engineering
point of view, CISM Lecture Notes 301, Springer-Verlag 1988, 273–
333.

[119] C. H. Wilcox, An expansion theorem for electromagnetic fields,
Comm. Pure Appl. Math. 9, 115–134 (1956).

[120] K. Yosida, Functional Analysis, Springer-Verlag, Berlin, 1980.

[121] E. Zeidler (ed.) Teubner Taschenbuch der Mathematik, Teubner Ver-
lag, Leipzig, 1996.

[122] O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery
and a posteriori error estimates. Part 2: Error estimates and adapti-
vity, Int. J. Numer. Meth. Eng., 33, 1365–1382 (1992).



Index

Absorbing boundary condition i,
6, 61, 71–78

Adjoint sesquilinear form 38
Ampère’s law 17–18
Amplitude 13
Antilinear functional 38
Approximability 95, 104
Artificial boundary i, 61–63, 87,

95, 193–194, 201
Atkinson–Wilcox expansion 31–32,

41, 61, 72
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