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Preface

There are many books on finite element methods but very few give more
than a brief description of their application to structural vibration analysis.
I have given lecture courses on this topic to undergraduates, postgraduates
and those seeking post experience training for many years. Being unable
to recommend a single suitable text led me to write this book.

The book assumes no previous knowledge of finite element methods.
However, those with a knowledge of static finite element analysis will find
a very large proportion of the book useful. It is written in such a way that
it can be used by Aeronautical, Civil, Mechanical and Structural Engineers
as well as Naval Architects. References are given to applications in these
fields.

The text has been written in modular style. This will facilitate its use for
courses of varying length and level. A prior knowledge of strength of
materials and fundamentals of vibration is assumed. Mathematically, there
is a need to be able to differentiate and integrate polynomials and
trigonometric functions. Algebraic manipulation is used extensively but
only an elementary knowledge of vector methods is required. A knowledge
of matrix analysis is essential. The reader should be able to add, subtract,
multiply, transpose, differentiate and integrate matrices. Methods of solving
linear equations and the existence of a matrix inverse is a prerequisite and
the evaluation of determinants is also required.

Chapter 1 deals with methods of formulating the equations of motion
of a dynamical system. A number of methods are introduced. The advantages
and disadvantages of each one are discussed and recommendations made.
The treatment is simple for ease of understanding with more advanced
aspects being treated in an Appendix. The simplest methods derive the
equations of motion from the expressions for kinetic and strain energy and
the virtual work done by externally applied loads. Expressions for these
are derived for various structural elements in Chapter 2.

The response of practical structures cannot be obtained using analytical
techniques due to their complexity. This difficulty is overcome by seeking
approximate solutions. Chapter 3 begins by describing the technique known
as the Rayleigh-Ritz method. The finite element displacement method is

xi



xii Preface

then introduced as a generalised Rayleigh-Ritz method. The principal
features of the method are introduced by considering rods, shafts, beams
and frameworks. In this chapter specific element matrices are evaluated
explicitly. However, many of the elements presented in later chapters can
only be evaluated using numerical integration techniques. In preparation
for this, numerical integration in one dimension is introduced. The extension
to two and three dimensions is presented where required.

In Chapter 4 various membrane elements are derived. These can be used
for analysing flat plate structures which vibrate in their plane. Chapter 5
deals with the vibration of solids using both axisymmetric and three-
dimensional elements. Chapter 6 indicates the difficulties encountered in
the development of accurate plate-bending elements. This has led to a large
number of elements being developed in attempting to overcome these
problems. Chapter 7 describes methods of analysing the vibrations of
stiffened plates and folded plate structures. This involves combining the
framework, membrane and plate bending elements described in previous
chapters. The problems which arise and how to overcome them are
described.

Chapters 8, 9 and 10 present methods of solving the equations of motion.
Chapter 8 considers the equations for free vibration of an undamped
structure. These take the form of a linear eigenproblem. The methods of
solution to be found in the major finite element systems are described. The
presentation is designed to give the finite element user an appreciation of
the methods. Program developers will need to consult the references given
for further details. Methods of reducing the number of degrees of freedom
are presented. These consist of making use of symmetry, the analysis of
rotationally period structures, Guyan reduction and component mode syn-
thesis.

Methods of predicting the response of structures to harmonic, periodic,
transient and random loads are described in Chapters 9 and 10. Both direct
and modal analysis techniques are presented. Methods of representing
damping are discussed. The prediction of the response to transient loads
involves the use of step-by-step integration methods. The stability and
accuracy of such methods are discussed. The response to imposed displace-
ments and response spectrum methods are also considered.

The final chapter on Computer Analysis Techniques assumes that the
reader intends to use a commercial program. Those wishing to write pro-
grams are referred to suitable texts.

Chapters 3 to 7 present details of the simpler elements. Reference to
more advanced techniques are given at the end of each chapter. Each one
has its own extensive list of references. Throughout the book numerical
examples are presented to illustrate the accuracy of the methods described.



Preface xiii

At the end of Chapters 1 to 9 a number of Problems are presented to give
the reader practice in using the techniques described. Many of these can
be solved by hand. Those requiring the use of an existing finite element
program are indicated. Those who do not have one available are referred
to a suitable one in Chapter 11.

In preparing such a text it is very difficult to acknowledge all the help
given to the author. First and foremost I am indebted to the finite element
community who have undertaken research and development that has led
to the techniques described. Without their publications, many of which are
listed, the task would have been all the greater. I should like to thank all
my past research students and those of my colleagues who have stimulated
my interest in finite techniques. Also, all the students who have taken the
courses on which this book is based.

I am indebted to Maureen Strickland, whose excellent typing skills
speeded up the process of converting my handwritten notes into the final
typescript. I should also like to thank Deborah Chase and Marilyn Cramer
for converting my drawings into reproducible form.



Notation

The following is a list of principal symbols used. Those which
have local meaning only and may have different meanings in
different contexts are defined when used.

Mathematical symbols
[ ] A rectangular or square matrix
[ J A diagonal matrix

A row matrix
{ } A column matrix

Matrix determinant
[ ]T Matrix transpose
[ ]-1 Matrix inverse
[ ]-T Inverse transpose: [ ]-T=([ ]-1)T= ([ ]T)-1

[ ]H Complex conjugate of transposed matrix

Latin symbols
A Area
[B] Strain-displacement matrix
[C] Structural damping matrix (Global)
D Dissipation function
[D] Matrix of material constants
E Young's modulus
{f} Equivalent nodal forces
G Shear modulus
h Plate thickness
I Second moment of area of beam cross-section
[I] Unit matrix
J Torsion constant
[J] Jacobian matrix
k Spring stiffness
[k] Element stiffness matrix
[K] Structural stiffness matrix (Global)
[m] Element inertia matrix
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Notation xv

[M] Structural inertia matrix (Global)
[NJ, [N] Matrix of assumed displacement functions
{q} Modal coordinates
{Q} Modal forces
r, 9, z Cylindrical coordinates
t Time
T Kinetic energy
u, v, w Components of displacement
{u} Column matrix of nodal displacements
U Strain energy
V Volume
W Work done by applied forces
x, y, z Local Cartesian coordinates
X, Y, Z Global Cartesian coordinates

Greek symbols
[a] Receptance matrix
y Damping ratio
0 Increment operator
S Virtual operator
{e} Strain components
6,, O y, 0. Rotations about Cartesian axes
K Shear factor
A Eigenvalue
P Poisson's ratio
e, ?7, Isoparametric coordinates
p Mass per unit volume
{v} Stress components
+ Eigenvector (mode shape)
4) Modal matrix
w Circular frequency in radians per second



1

Formulation of the equations of motion

The first step in the analysis of any structural vibration problem is the
formulation of the equations of motion. It is an important part of the
exercise, since the success of the analysis is dependent upon the equations
of motion being formulated correctly. This process will be less prone to
errors if a routine procedure for formulating the equations can be estab-
lished. In this chapter a number of methods will be presented and discussed.

1.1 Dynamic equilibrium

The equations of motion of any dynamic system can be written down using
Newton's second law of motion, which states that `the rate of change of
momentum of a mass is equal to the force acting on it'.

Consider a mass, m, which is displaced a distance u(t) when acted upon
by a force f(t), both being functions of time, 1, as shown in Figure 1.1, then
Newton's second law of motion gives

d ("' dt) -f(t) (1.1)

For constant m, which will be assumed throughout this book, equation (1.1)
reduces to

d2u
e (1.2)at

or

mii=f (1.3)

where dots denote differentiation with respect to time.

e u(t) (Displacement)

f(t) (Force)
m

Figure 1.1 Motion of a single mass.

1



2 Formulation of equations of motion

Equation (1.3) can be rewritten in the form

f-mu=0 (1.4)

If the term -mu is now regarded as a force, then equation (1.4) represents
an equation of equilibrium, that is, the sum of the forces acting on the mass
is equal to zero. The introduction of this fictitious force, which is referred
to as an inertia force, of magnitude mu, acting in the opposite direction to
the acceleration, ii, allows an equation of dynamic equilibrium to be formu-
lated using the concepts of static equilibrium. This equation of dynamic
equilibrium, when rearranged, gives the equation of motion of the system.
This concept is known as d'Alembert's principle.

Example 1.1 Derive the equation of motion of the single mass, spring,
damper system shown in Figure 1.2(a).

The forces acting on the mass consist of the externally applied force f,
a restoring force ku due to the spring, a damping force cti due to the viscous
damper and a fictitious inertia force mu. All act in the directions shown in
Figure 1.2(b). For equilibrium

-mu-cii-ku+f=0 (1.5)

Rearranging, gives the equation of motion

mu+cii+ku=f (1.6)

The above concepts can be extended to multi-degree of freedom systems.
Consider a system of N masses. The equations of dynamic equilibrium are
obtained by equating the sums of the forces and moments on each mass of
the system to zero. This gives

j'
d

dt(mu;)=0 j=1,2,...,N (1.7)

and

t
(J;)=L;-d 0

(a)

j = 1,2,..., N

u(t)
f(t)

mu.4-
cu 0ku *-

(b)

(1.8)

Figure 1.2 Single mass, spring, damper system.



Dynamic equilibrium 3

In these equations u2 is the displacement of the mass m;, f is the sum of
the applied forces, J; is the angular momentum, and L; is the sum of the
applied moments. If the vectors dj do not represent independent motions,
equations (1.7) and (1.8) must be modified by constraints of the form

g;(u1, u2,..., iiN)=0 j=1,2,..., m (1.9)

where m is the number of constraints. This aspect is discussed in Section 1.5.

Example 1.2 Derive the equations of motion of the system shown in Figure
1.3.

The mass m, has two forces acting on it due to the extension of the two
springs joining it to the masses m2 and m3.

If the position vectors of m, and m2 are VI and V2 respectively, then
the unit vector n",, along the line 2-1 is

n,L V1-V2)

where

(1.10)

L,=abs(V1- V2)

If the displacements of m, and m2 are denoted by e, and U2 then the
extension, e,, of the spring joining m, and m2 is given by the scalar product

e,=(U,-U2) n, (1.11)

If the stiffness of the spring is k,, then the force, f, acting on the mass
m, in the direction n, is

f,=-ke,=k,(U2-(J,) n, (1.12)

Figure 1.3 Multi-mass, spring system.



4 Formulation of equations of motion

Similarly, the force, f3, acting on the mass m, in the direction n3 is

f3=k3(U3-Ul) /13

where

n3 =L (V1-V3)
3

and

L3=abs(fl 1-V3).

The equation of dynamic equilibrium for m, is therefore

fins+f3n3-m,U, =0

(1.13)

(1.14)

(1.15)

When the components of each of the vectors are substituted in this equation,
two scalar equations will be obtained. These can then be rearranged, in the
manner shown in Example 1.1, to give the equations of motion of the mass
m, . The equations of motion of the masses mz and m3 are obtained in a
similar way.

1.2 Principle of virtual displacements

If the structure to be analysed is a complex one, then the vectoral addition
of all the forces acting at each mass point is difficult. This difficulty may
be overcome by first using d'Alembert's principle and then the principle of
virtual displacements. By this means the equations of dynamic equilibrium
and hence the equations of motion, are formulated indirectly.

The principle of virtual displacements states that `if a system, which is
in equilibrium under the action of a set of forces, is subjected to a virtual
displacement, then the total work done by the forces will be zero'. In this
context, a virtual displacement is a physically possible one, that is, any
displacement which is compatible with the system constraints.

Example 1.3 Use the principle of virtual displacements to derive the
equation of motion of the system shown in Figure 1.2.

Figure 1.2(b) shows the forces acting after the application of d'Alembert's
principle. If the system is given a virtual displacement Su, then the principle
of virtual displacements gives

-mu5u-ctSu-ku5u+Au=0 (1.16)

Rearranging gives

(-mu-cti-ku+f)Su=0 (1.17)



Hamilton's principle 5

Since Su is arbitrary and non-zero, then

mu+cii+ku=f (1.18)

The advantage of this approach is that the virtual work contributions are
scalar quantities which can be added algebraically.

For a multi-degree of freedom system, the principle of virtual work gives

j I f dt
(m,u,)) Sup+j

N

1

(fj
dt

(J,)) S9; =0 (1.19)

where the Su; are virtual displacements and the 84; virtual rotations. Since
each of these is arbitrary, equations (1.7) and (1.8) must hold.

1.3 Hamilton's principle

Although the principle of virtual displacements overcomes the problem of
vectorial addition of forces, virtual work itself is calculated from the scalar
product of two vectors, one representing a force and one a virtual displace-
ment. This disadvantage can be largely overcome by using Hamilton's
principle to determine the equations of motion.

Consider a mass, m, which is acted upon by a force, IT, causing a
displacement, u, as shown in Figure 1.4. fT represents the sum of all the
applied forces, both conservative and non-conservative.

The work done by a conservative force in moving a mass from one point
to another depends only on the position of the two points and is independent
of the path taken between them. The work done by non-conservative forces
does depend upon the path taken between the two points. Non-conservative
forces are energy dissipating forces such as friction forces, or forces impart-
ing energy to the system such as external forces.

The work done by a conservative force can be obtained from the change
in potential energy. The potential energy V(i) associated with position rF
is defined as the work done by a conservative force f in moving a mass
from position rF to a reference position rF"o. That is

r d; (1.20)V(;) = f: f
yJ

u (Displacement)
fT (Force)

m

Figure 1.4 Motion of a single mass.



6 Formulation of equations of motion

The work done by a conservative force f' in moving a mass from position
i to position rF2, as shown in Figure 1.5, is

('rZ
W= J

h

ro

fii':O f.drF-J
rz

=-{V(r2)-V(FF1)} (1.21)

Since the force is a conservative one, the work done is independent of the
path, and so in Figure 1.5 the path has been chosen to pass through the
reference point 0.

Equation (1.21) states that the work done by a conservative force is
minus the change in potential energy. In differential form this is

3W=-8V (1.22)

The type of potential energy which will be considered in this book is the
elastic potential energy, or strain energy U.

Consider a linear elastic spring of stiffness, k, which is stretched by an
amount u. Then the force, f, in the spring in the direction of u is

f=-ku (1.23)

and the potential energy
0 0

U= fdu=- kudu=12ku2 (1.24)
u u

Applying the principle of virtual displacements to the system in Figure
1.4 gives

fTSu - mu6u = 0 (1.25)

Figure 1.5 Path taken by a mass.



Hamilton's principle

where Su is a virtual displacement.

Now fTSu = SW = work done by the forces

and

miidu = mat (i 6u) - mti6ti

where it has been assumed that

dudt
(Su) = S u

d

(dt)

Equation (1.27) can be further modified as follows

mil6u = mat (tiSu) - S(Zmti2)

=mat(ti8u)-ST

where

T = 2mti2

7

(1.26)

(1.27)

(1.28)

(1.29)

represents the kinetic energy of the system.
Substituting equations (1.26) and (1.28) into equation (1.25) gives

SW-mat(tidu)+ST=0

or, on rearranging

3T+5W = mat (Ou) (1.30)

If the position of the mass is known at two instants of time t, and t2i
then its motion during this interval of time can be represented by a curve,
as shown in Figure 1.6. A slightly different curve or path is obtained if, at
any instant, a small variation in position Su is allowed with no associated
change in time; that is St = 0 (Figure 1.6). The stipulation is made, however,
that at times t, and t2 the two paths coincide, that is

Su=0 at t = t, and t = t2 (1.31)

The problem is to choose the true path from u, to u2 from all the possible
ones.



8 Formulation of equations of motion

Figure 1.6 Variation in the motion of a mass.

Multiplying equation (1.30) by dt and integrating between t1 and t2 gives

f2
(ST+ 8W) dt =

fma
(ti5u) dt

r,

= [miu8u];2 =0 (1.32)

by virtue of equation (1.31). Equation (1.32), therefore, states that

f"2
(ST+ 5W) dt = 0

rz

Separating the forces into conservative and non-conservative forces, gives

SW=SW,,+8Wnc

Using equation (1.22), namely,

SW,,=-8V

equation (1.34) becomes

Substituting equation (1.36) into equation (1.33) gives

Jr,
or

dt=0

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)
f"2

(1.38)

Note that equation (1.37) cannot be written in the form

f"2 S(T - V+ Wnc) dt = 0 (1.39)

since a work function W. does not exist for non-conservative forces.
However, the virtual work can always be calculated. Equation (1.38) is the
mathematical statement of Hamilton's principle. For a conservative system
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SW = 0. In this case equation (1.38) shows that the integral of (T - V)
along the true time path is stationary. It can be shown, for the applications
considered in this book, that the stationary value of the integral is a
minimum.

The application of this principle leads directly to the equations of motion
for any system. It can be applied to both discrete, multi-degree of freedom
systems (as shown in the Appendix) and continuous systems (as illustrated
in Section 2.11). The advantage of this formulation is that it uses scalar
energy quantities. Vector quantities may only be required in calculating the
work done by the non-conservative forces. As previously stated, the only
potential energy of interest in this book is elastic strain energy U. The form
of Hamilton's principle to be used is therefore

(1.40)

Example 1.4 Use Hamilton's principle to derive the equations of motion
of the system shown in Figure 1.2.

For this system

T = 2mu2

U ='-Zku2 (1.41)

Substituting into equation (1.40) gives

J tZ3(Zmti2--ku2)dt+ J rZ(flu -cuu)dt=0 (1.42)

that is

Now

t

Jt,

2

(mu6ti-kuSu+f$u-ctibu) dt=0

Sti = S(dt)
dt (Su)

Hence integrating the first term by parts givesrI,
mtiSti dt = [mtiSu], - muSu dt

f"2

_f2 r

J
muSu dt

t,

(1.43)

(1.44)

by virtue of equation (1.31).



10 Formulation of equations of motion

Substituting equation (1.44) into equation (1.43) gives

(-mu-cu-ku+f)Sudt=0 (1.45)

Since Su is arbitrary, equation (1.45) is satisfied only if

mu+cu+ku =f (1.46)

1.4 Lagrange's equations

When Hamilton's principle is applied to discrete systems it can be expressed
in a more convenient form. To illustrate this, consider the system shown in
Figure 1.2. The kinetic and strain energies are given by

T=zmu2=T(u), U=2ku2=U(u) (1.47)

and the virtual work done by the non-conservative forces is

(1.48)

Equationf2(aT3(J)(1.40) therefore becomes

dt=0 (1.49)
ait au

Integrating the first term by parts givesf"2

Stidt=lau5u]r2-fr,2dtd (au)Sudt

L t,

= -

f"2

d (IT)
Su dt (1.50)dt au J

as a consequence of using equation (1.31).
Substituting equation (1.50) into equation (1.49) gives

f"2 .d aT aU+f-cti
Sudt=O

dt (ati) au

Since Su is arbitrary, then

d aT aU
dt ati

+au+cti=f

Introducing a dissipation function, D, which is defined by

(1.51)

(1.52)

D = zcu2 (1.53)
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the damping force is given by

aD
Cu = -

aiu
(1.54)

The dissipation function represents the instantaneous rate of energy
dissipation which is given by

z x damping force x rate of extension of damper

Substituting the relationship (1.54) into equation (1.52) gives

d aT +aD+aU_f
(1.55)

dt aui au au

Equation (1.55) is Lagrange's equation for a single degree of freedom
system. Substituting equations (1.47) and (1.53) into equation (1.55) gives

mu+cii+ku=f (1.56)

which is the equation of motion of the system. It can be seen that the term
(d/dt)(aT/ati) gives the inertia force and aU/au the restoring force due to
the spring.

In the case of a multi-degree of freedom system, the deformation of
which is described by n independent displacements q1, q2, ... , qn, then the
kinetic energy is a function of the velocities q ; (j = 1 , 2, ... , n) only and
the strain energy a function of the displacements q ; (j = 1 , 2, ... , n) only,
that is

T=T(41,42,...,4.)
(1.57)

Similarly, the dissipation function is a function of the velocities 4;, that is

D=D(41,42,...,4'.) (1.58)

Also, the work done by the non-conservative forces can be written in the
form (see Appendix)

\\

Y (Qi-DISq; (1.59)
i=1 4i

where the Q; are generalised forces.
Lagrange's equations now take the form

d(aT1+aD+-=Q,, j=1,2,...,n (1.60)
dt aq; aq; aq;

These equations are derived in the Appendix.



12 Formulation of equations of motion

j

Cl C2

CE --a

u, U2

Figure 1.7 Two degree of freedom mass, spring, damper system.

Example 1.5 Use Lagrange's equations to derive the equations of motion
of the system shown in Figure 1.7.

T = (1.61)

the dissipation function by

D = 2c,
U,2+2c2(1!2 - U,)2

=2(c,+c2)U,2-c2U,ti2+Zc2U22

and the strain energy by

U=2k,u,2+2k2(u2-u1)2

= 2(k, + k2)u,2 - k2u, u2+2k2u22

The virtual work done by the applied force is

SW = f2Su2

Applying Lagrange's equations (1.60) gives

m,ii,+(c,+c2)U, -c2t12+(k,+k2)u, -k2u2=0

m2ii2-C2U,+c2U2-k2ui+k2u2=f2

(1.62)

(1.63)

(1.64)

(1.65)

The procedure can be made even more systematic, and therefore less
prone to errors, by using matrix notation. The kinetic energy, dissipation
function and strain energy can all be written in the following forms

2141 WHO

D = 2{q}T[C]{q} (1.66)

U= 2{q}T[K]{q}

where

{q} = column matrix of system displacements

{y} = column matrix of system velocities
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[M] = square symmetric matrix of inertia coefficients

[C] = square symmetric matrix of damping coefficients

[K] = square symmetric matrix of stiffness coefficients

Using equations (1.66), the separate terms in Lagrange's
become

d IT
ldt (a9 )} _ [M]{q}

aD ay_ [C]{4}

{

f
a U = [K]{q}
aq

equations

(1.67)

Lagrange's equations (1.60) therefore yield the following equations of
motion in matrix form

[M]{q}+[C]{q}+[K]{q} = {Q} (1.68)

Equations (1.66) and (1.68) show that it is only necessary to obtain the
energy expressions in matrix form in order to determine the matrix
coefficients in the equations of motion.

Example 1.6 Determine the equations of motion of the system in Figure
1.7 in matrix form.

In matrix form the energy expressions are as follows

T = zm,ll,2+Zm21122

2Lu2JTL 01 m2JLu2J0

giving

_ ml 0
[M] 0 m2

D=z(c1+c2)1l,2-c2U,U2+ZC2u22

I[Ii2

[(Cl
C22)

c22]

[u2
2 6 2

(1.69)

(1.70)

(1.71)
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giving

[C] =
(c,+c2) -c2I

_C2 C2

U=2(k,+k2)u,2-k2u,u2+Zk2u22

_ 1 ru,1TI(k,+k2)
-k2JLu2
k2 u2 -k2 2 uiJ

giving

(1.72)

(1.73)

[K] _ 1(k, kkz) k2 z] (1.74)

Also

{q}- IUJ' {Q)
I ,fzJ

The equations of motion are therefore

M1 0 _C2 a,

L 0
m2JLu2J+[(cl c2 z)

c2 JLuz

0+1(k- kkz) kzzJLu2J - LJ2J

Note that equations (1.65) and (1.76) are identical.

(1.75)

(1.76)

The inertia, damping and stiffness matrices are all symmetric matrices.
In addition, the inertia matrix is positive definite and the stiffness matrix
either positive definite or positive semi-definite.

A positive definite matrix is one whose elements are the coefficients of
a positive definite quadratic form. The kinetic energy is represented by a
positive definite quadratic form (equation (1.66)) since T> 0 for all possible
values of {q} $ 0. If the structural system is supported, then the strain energy
is also represented by a positive definite quadratic form since U > 0 for all
possible values of {q} $ 0. An unsupported structure is capable of rigid body
motion without distortion. In this case U = 0 for some {q} $ 0. Therefore,
for such a structure U>- 0 for all {q} 0 0. In this case, the quadratic form
for U is said to be positive semi-definite.

1.5 Equations of motion for a system with constraints

Sometimes it is easier to express the energy functions in terms of a set of
displacements g ; (j = 1, 2, ... , n) which are not independent. In this case
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there will be a set of m constraints of the form

8;(9>,9z,...,9.)=0, j=1,2,...,m (1.77)

In this text only linear constraint equations will be considered. Equations
(1.77) can therefore be written in the following matrix form

[G]{q} = 0 (1.78)

where [G] is a matrix of coefficients having m rows and n columns.
The column matrix {q} can be partitioned into a set of (n - m) indepen-

dent displacements {q,} and a set of m dependent displacmements {q2}.
Partitioning the matrix [G] in a compatible manner, equation (1.78) can be
written in the form

[G, G21[g2] =0 (1.79)

The sub-matrices [G,] and [Gz] will have (n - m) and m columns respec-
tively. Expanding equation (1.79) gives

[G,]{q,}+ [G2]{qz} = 0 (1.80)

Since [G2] is a square matrix it can be inverted to give [G2]-'. Premultiply-
ing equation (1.80) by [G2]-' and rearranging gives

{Q2} = -[G2]-'[G,]{q,} (1.81)

This equation expresses the relationship between the dependent displace-
ments and the independent ones. Combining the two sets of displacements
gives

jqj
_ [q]

- ]
[-G2"G,q

where I is the unit matrix.
The transformation expressed in equation (1.82) is now substituted into

the energy function (1.66) to give

T = z{q,}T[M]{q,}

D = z{q, }T[ C] {q, } (1.83)

U = z{q,IT[K]{q,}

where

[M] _ [TG]T[M][TQ]

[C] _ [TG]T[C][TG]

[K] _ [TG]T[K][TG]

(1.84)
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The virtual work done by the applied forces also becomes, on being
transformed

n

SW = E Q;Sq; = {Sq}T{Q}
J=1

where

= {Sq,}T[T,]T{Q} = {Sq,}T{Q} (1.85)

{Q} = [TG]T{Q} (1.86)

The energy and virtual work functions are now expressed in terms of
independent displacements and so may be substituted into Lagrange's
equations (1.60) to give the equations of motion

[M]{q,}+[C]{cj,}+[K]{q,} = {Q} (1.87)

Example 1.7 Derive the equations of motion of the torsional system shown
in Figure 1.8, which consists of three rigid gears with torsional inertias I,,
I2 and 13 and two light shafts having torsional stiffnesses k, and k2.

For the system shown in Figure 1.8 it is easier to express the energy
functions in terms of the angular displacements of the three gears 0,, 02
and 03. These are

T=IL61

U=il91

92

02

D=0, SW=O

G

12

0 0 B,

k2 -k2 02

k2 k2 e3-

13

(1.88)

Figure 1.8 Branched, gear system.



Problems 17

If the teeth of gears I, and I2 remain in contact, then 0, and 02 must
satisfy the constraint relation

r,0,=-r202 (1.89)

where r, and r2 are the radii of the two gears. This can be written in the
simpler form

01 = - n02 (1.90)

where n = r2/ r, .

Since there are three coordinates and one constraint relation, only two
coordinates are independent. Choosing 02 and 03 as the independent co-
ordinates, the transformation equation (1.82) becomes

[0][fl 0
02 = 1 0 ][::]

Substituting equation (1.91) into equations (1.88) gives

L . J r(n21,
0

+12) 01f021
13 e3T=z e2 e3 IL JIL J

02U = z a
L2

031
1(n2k

-
, + k2) -k2110,1

L k2 k2

(1.91)

(1.92)

The equations of motion are obtained by substituting equations (1.92)
into Lagrange's equation (1.60). This results in

1(n21,+12) 011 e2 (n2k,+k2) k2][02] _Q
0 I3JLe3J+L -k2 k2

B3-

Problems

(1.93)

1.1 Three masses m,, m2 and m3 are supported by four springs of stiffness
k,, k2, k3 and k, respectively as shown in Figure P1.l. The masses are
subjected to dynamic forces f,, f2 and f3 along the axis of the springs as

Figure P1.1
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Platform

Figure P1.2

shown. Derive the equations of motion in terms of the displacements u, ,
u2 and u3 of the masses along the axis of the springs.

1.2 A delicate package of mass m, is to be transported on a land vehicle.
In order to protect it from damage it is mounted on springs of stiffness k,
inside a container of mass m2. The container is, in turn, mounted on a rigid
platform by means of springs of stiffness k2, as shown in Figure P1.2. The
platform is then securely mounted on the transportation vehicle. Derive the
equations of motion relative to the vehicle assuming that the motion takes
place only in the vertical direction.

1.3 Figure P1.3(b) shows a simplified model of the drop hammer in Figure
P1.3(a) after the tup has fallen. The foundation m, is supported by a spring
k, and viscous damper c, representing the ground. M2 represents the mass
of the anvil, sow, tup and part of the columns. The stiffness k2 and damper
c2 represent the isolators between the anvil and the foundation. m3 represents
the mass of the headgear and the remainder of the columns. The stiffness
and damping of the columns is k3 and c3 respectively. Each mass is con-
strained to move vertically. Derive the equations of free vibration.

1.4 An automobile body is represented by a rigid body of mass m and
pitching moment of inertia I,, about an axis through the centre of gravity
(CG), as shown in Figure P1.4. The front suspension has stiffness k, and
damping c, and the rear one k2 and c2. Derive the equations for motion in
the fore and aft plane.

1.5 A concrete block is mounted on four isolators of stiffness k and damping
c at its four corners, as shown in Figure P1.5. After a vibration test rig has
been mounted on the top surface the distances of the centre of gravity (CG)
from the front and back face in the x-direction are a, and a2, and the
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Headgear

Frame

Tup

Sow

0

Figure P1.3

Figure P1.4

Anvil

0

0 0 o

(a)

U

Z, W

0

(b)

Figure P1.5
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distances from the side faces are b, and b2 in the y-direction. The total
mass is m and the moments of inertia about the axes through the centre of
gravity are Ix and I. Derive the equations of free vibration, assuming that
the mounts move only in the z-direction.

1.6 A simplified model of a three-storey building consists of three horizontal
rigid floors of mass ml, m2 and m3 supported by massless, elastic columns,
as shown in Figure P1.6. The stiffnesses k,, k2 and k3 indicate the horizontal
stiffness of all columns in a storey. The building is subjected to a distributed
dynamic pressure load along one wall. This load can be represented by
three equivalent point forces f, , f2 and f3 acting at the floor levels as shown.
Derive the equations of motion of the model assuming that the floors move
only horizontally.

1.7 The torsional system shown in Figure P1.7 consists of three rigid gears
of radii R,, R2 and R2 which have moments of inertia I,, I2 and I2 and
three light shafts having torsional stiffensses k, , k2 and k2. Each shaft is
fixed at one end as shown. Derive the equation of free vibration of the system.

1.8 The branched-geared system shown in Figure P1.8 consists of three
rigid discs having moments of inertia I,, IS and I6 and three rigid gears of
radii R,, R,/2 and R,/3 having moments of inertia I2, 13 and 14 which are
connected by three light-shafts having torsional stiffnesses k,, k2 and k3-
Derive the equations of free vibration.

Figure P1.6
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R2"

Figure P1.7
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Element energy functions

In Chapter 1 it is shown that the equations of motion of any structural
system can be obtained from the energy functions of the system. These
energy functions consist of the strain and kinetic energies, the dissipation
function and the virtual work done by the applied loads. In this chapter,
the energy functions are derived for various structural elements.

The derivations are based upon the linear theory of elasticity. This means
that both the stress-strain and the strain-displacement relations are linear.
The state of stress in a three-dimensional elastic body is defined by the
stress components (which are referred to Cartesian axes x, y, z).

I

with

T. Tzy Qz

[v] _ T (2.1)yx Qy Tyz

Tyx = Txy, Tzx = Txz, Tzy = 7,Y. (2.2)

In relating the stresses to the strains, anisotropic, orthotropic and isotropic
materials will be considered, except in the case of one-dimensional elements
(axial, torque and beam) when only the isotropic case is treated.

The state of strain in an elastic body is defined by the strain components

ex yxy yxz

yxy -'Y yyz

'Yxz )'v Ez

If the displacement components in the directions of the axes are denoted
by (u, v, w), then the strain-displacement relations are

_ au
Ex

(9X

av
Ey=ay,

_Ow
EZ

az
(2.4)

au av au aw .9v aw
yxy -ay+ax, yxz -az+ax, yyz

_
az +ay

It should be noted that all displacement components are time dependent.

OWx Txy rxz

22
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In considering the spatial variation of these quantities explicit mention of
time dependence is omitted.

2.1 Axial element

An axial element of constant cross-sectional area A and length 2a is shown
in Figure 2.1.

For wavelengths which are greater than ten times the cross-sectional
dimensions of the element, it can be assumed that each plane cross-section
remains plane during the motion. Also, all the stress components are
negligible except for the axial component, o,,, which is uniform over each
cross-section.

The axial force on one of the faces of the increment, dx, in Figure 2.1
is, therefore, o-,A. The extension of the element is E. dx, where E. is the
axial strain component. The work done on the element, d W, is therefore

d W =-zo,A s dx

= ZQxE,A dx

This work will be stored as strain energy d U, and so

dU=!o,,,E,Adx

The total strain energy in the complete element is therefore

+a
U=1z r,ExA dx

by

(2.5)

(2.6)

(2.7)

Assuming a linear stress-strain relationship, the direct stress, o,,, is given

o-r = EE,

where E is Young's modulus for the material.

2a

Px

x = -a

(2.8)

Figure 2.1 Axial element in the local coordinate system.
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Substituting equation (2.8) into equation (2.7) gives

U=1 J EAE 2 dx (2.9)+a

From equations (2.4), the axial strain component can be expressed in
terms of the axial displacement, u(x), by means of the relation

au_
ax

(2.10)

Substituting equation (2.10) into equation (2.9), the strain energy becomes

f+a au z

U=2 EAI -I dx\ax/ (2.11)

The kinetic energy of a small increment, dx, is 2uzpA dx, where p is the
mass per unit volume of the material. The kinetic energy of the complete
element is therefore

T=2 fa pAuzdx

a
(2.12)

If there is an applied load of magnitude pJe per unit length, as shown in
Figure 2.1, then the force on the increment dx is px dx, and the work done
in a virtual displacement Su is Su px dx. The virtual work for the complete
element is therefore

8W=
f a pxSu

dx
a

(2.13)

2.2 Torque element

A torque element of constant cross-sectional area A and length 2a is shown
in Figure 2.2.

The element is assumed to undergo twisting deformations about the
x-axis only. The rotation at position x is denoted by O .

For wavelengths which are greater than ten times the cross-sectional
dimensions of the element, the Saint-Venant theory of torsion can be used.
This theory assumes that the deformation of the twisted element consists
of (a) rotations of the cross-sections about the axis and (b) warping of the
cross-sections. Taking axes y and z perpendicular to the x- axis, the displace-
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2a

F Mx
r -.. .. -.. -10. -00. -r.

11771
x= -a x x = a

dx

moo.Y

Figure 2.2 Torque element in the local coordinate system.

ments u, v, w in the directions of the x, y, z axes are given by

u(x,Y, z) =aoa x)
41(Y, z)

v(x, y, z) _ -ox(x)z (2.14)

w(x, Y, z) = ex(x)Y

where 4i(y, z) is a function which represents the warping of a cross-section.
With these displacements, the components of strain are

Ey=Ez=Yr=o
ago

Ex =
axZ

(2.15)
a ox mli

yxy=ax
a

-Z
Y

aex
a`l+ YYXZ - ax (az

In most cases the axial strain component, Ex, is negligible. (An exception
to this rule, thin-walled, open-section beams, is discussed in Section 3.11.)
Therefore, the only strain components to be considered are the shear strains
yxy and yXz. The corresponding stresses are given by

Txy = Gyxy, Txz - Gyxz (2.16)

where G denotes the shear modulus of the material.
With reference to Figure 2.3, it can be seen that the shear stresses Txy

form a couple of magnitude Tx, dy dz dx on an element of thickness dz.
This couple causes a rotation av/ax. Similarly, the stresses Tyx form a couple
of magnitude Tyx dx dz dy which causes a rotation au/ay. Since Tyx = Ty,
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Y, V
A

0

Figure 2.3 Stresses and distortion in the xy-plane.

the total work done on the element is

d W 2Txy
avax+aua dx dy dz

Y

= iTxyyxy dA dx (2.17)

where dA is an element of area of the cross-section.
The work done by the stresses r is, therefore,

d W = ZTxzyxz dA dx

Since the strain energy is equal to the total work done, then
to

U= 2 (rxy yxy + Txz yyz) d A d x
A

(2.18)

(2.19)

Substituting equations (2.15) and (2.16) into equation (2.19) gives
+a

U =
2

GJ
(,O_)2-dx (2.20)Ja

where

J - JA

I
\ay-z

12+(L,,+ Y) 2

c

} dA (2.21)

is the torsion constant of the cross-section. In the case of a circular shaft
,(< = 0 and J reduces to the polar moment of area of the cross-section, I.
For other solid cross-sectional shapes J is given by the approximate
expression

J=0.025A4/Ix

This equation should not, however, be used for elongated sections. For a
more complete discussion of this topic see, for example, reference [2.1].
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In deriving an expression for the kinetic energy of the element, the
longitudinal displacement due to warping of the cross-sections can be
neglected. The kinetic energy of a small increment, dx, of the element is,
therefore, 29x2pIx dx, where Ix is the second moment of area of the cross-
section about the x-axis. The kinetic energy of the complete element is
therefore

('
T

=
z

J plx0x2
dx (2.22)

a

If there is a twisting moment of magnitude mx per unit length, as shown
in Figure 2.2, then the torque on the increment, dx, is mx dx, and the work
done in a virtual displacement SOx, is S9xmx dx. The virtual work for the
complete element is therefore

+a

fSW= mxS9x dx (2.23)
a

2.3 Beam bending element

In deriving the energy functions for a beam bending element it is assumed
that the vibration occurs in one of the principal planes of the beam. The
beam, which is of length 2a and has a constant cross-sectional area A, is
shown in Figure 2.4. The xy-plane is the principal plane in which the beam
is vibrating and the x-axis coincides with the centroidal axis.

For wavelengths which are greater than ten times the cross-sectional
dimensions of the element, the elementary theory of bending can be used.
This theory assumes that the stress components o y, o-,, Ty, and Txz are zero.
It also assumes that plane sections which are normal to the undeformed
centroidal axis remain plane after bending and are normal to the deformed
axis. With this assumption, the axial displacement, u, at a distance y from
the centroidal axis is

av
u(x, Y) _ -Y ax

y, V

x= -a

Py
+ + # # + 4 4 4 4

x, u

-- x = a
dx

(2.24)

Figure 2.4 Straight beam element in local coordinate system.
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where v = v(x) is the displacement of the centroidal axis in the y-direction
at position x. The strain components ex and yxy are therefore

au a2v
EX -

ax ax2

au avyxy_ay
ax+-0

The strain energy stored in the element is therefore given by

U=z f oxex dv
v

The normal stress is given by

o-x = Eex

and so equation (2.26) becomes

U=i f Eex2dV
v

(2.25)

(2.26)

(2.27)

(2.28)

Substituting the first of equations (2.25) into equation (2.28) gives, since

02+a \ 2
U='2 EIZ(

V

2J dx (2.29)
ax //

where

dA (2.30)
fA

is the second moment of area of the cross-section about the z-axis.
The stress-strain relations

Txy = Gyxy

together with equations (2.25) suggest that Txy is zero. In fact this component
is non-zero, as can be shown by considering equilibrium. The resulting
shear force, Q, in the y-direction is given by equation (2.130).

The kinetic energy of a small increment, dx, is 2v2pA dx. The kinetic
energy of the complete element is therefore

T = z f
+a

pAv2 dx (2.31)

If there is a distributed load of magnitude p, per unit length, as shown
in Figure 2.4, then the force on the increment, dx, is py dx, and the work
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done in a virtual displacement Sv is Svp,, dx. The virtual work for the
complete element is therefore

SW=
J

pSv dx (2.32)
a

2.4 Deep beam bending element

Flexural wave speeds are much lower than the speed of either longitudinal
or torsional waves. Therefore, flexural wavelengths which are less than ten
times the cross-sectional dimensions of the beam will occur at much lower
frequencies. This situation occurs when analysin beams at low
frequencies and slender beams at higher frequencies. In these cases, defor-
mation due to transverse shear and kinetic energy due to the rotation of
the cross-section become important.

In developing energy expressions which include both shear deformation
and rotary inertia, the assumption that plane sections which are normal to
the undeformed centroidal axis remain plane after bending, will be retained.
However, it will no longer be assumed that these sections remain normal
to the deformed axis. Consequently, the axial displacement, u, at a distance
y from the centroidal axis is now written as

u(x, y) = -A (x) (2.33)

where 0,(x) is the rotation of the cross-section at position x.
The strain components ex and yc,, in this case are given by

au aez
Ex

ax Y ax
(2.34)

au av av
yxy =--+-= x-Oz+ax

Y

Thus the strain energy stored in the element is the sum of the energies
due to bending and shear deformation; which is given by

rxyyxydV (2.35)U=2
fV

o,,s,dV+2 fV

As in the previous section, the normal stress is given by

Qx = EEx (2.36)

The shear stresses, Txy, corresponding to a given shear force, vary over
the cross-section. It follows that the corresponding shear strains will also
vary over the cross-section. In assuming that plane sections remain plane,
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the variation of strain over the cross-section has been neglected. This
variation can be accounted for by introducing a numerical factor K, which
depends upon the shape of the cross-section, such that

Tx,, = KGyX,, (2.37)

where -r,,, is the average shear stress. The values of K for various cross-
sectional shapes are given in reference [2.2].

Substituting equations (2.36) and (2.37) into (2.35) gives

U=2 J E,X2dV+2' J KGyxy2dV (2.38)
V V

The substitution of equations (2.34) into equation (2.38) and the use of
d V = dA dx results in

fa ae\2 1+a a,v \2
U = 2

a
EI=1 az 1 dx +'2

J a
KAG (ax - 6 I dx (2.39)

The kinetic energy of the beam consists of kinetic energy of translation
and kinetic energy of rotation which is expressed as

J+a +a

Av2 dx+z
J

pIZ6Z2 dx (2.40)T= 2 a p
a

The virtual work of the distributed loading is given by equation (2.32).

2.5 Membrane element

Figure 2.5 shows a thin plate of constant thickness, h, which is subject to
distributed boundary loads. These loads are applied in directions which are
parallel to the middle plane of the plate and are uniformly distributed
through the thickness. There are no forces acting on the surfaces z = ±h/2
and so the stress components mix, ; , r are zero on these surfaces. Under
the above stated conditions it is reasonable to assume that these stresses
are negligibly small everywhere within the plate. The state of stress is then
defined by the components Qx, v, , rx,,, which are assumed to be independent
of z. Such a state is called `plane stress' and the element a `membrane
element'.

The strain energy stored in the element is given by

U=2 J (QXEx+Q, r,+; y,)dV (2.41)
V
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x, u

Figure 2.5 Membrane element lying in xy-plane.

which can be expressed in the following matrix form

{r}T{E}dVU=2 f (2.42)

v

where

{Q}T= lo, QY ?sYJ

and 2.43)

II{E}T= [Ex £Y Y-Y]

The stress-strain relationships take the form

(c r) = [D]{E} (2.44)

where, for an anisotropic material,

d31 d12 d13

[D] = d22 d23 (2.45)

Sym d33

The coefficients d;; (i, j = 1, 2, 3) are material constants.
If the material is orthotropic it will have two lines of symmetry. Taking

these lines as coordinate axes x, y, the matrix of material constants takes
the form

EX ExvXy 0

[D*] = E, 0 (2.46)

Sym GXy
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where

EX Ev
E- _ - Ev=

x (I - iXyvyX) (I - vxvvvz)

Ex = modulus of elasticity in the 9-direction

Ev = modulus of elasticity in the y-direction

vXv = strain in the 5c-direction due to a unit strain in the
y-direction

v_vg = strain in the y-direction due to a unit strain in the
9-direction

Gxv = shear modulus with respect to R-, y- directions.

These constants are related as follows

(2.47)

EX vxv = Ev vvz, E X vxv = E;, vvx (2.48)

In general, the material axes will be inclined at some angle /3 to the
geometric axes. By considering the relationship between strains related to
both material and geometric axes, it can be shown that the matrix of material
constants, referred to geometric axes, is given by

[D] = [R*]T[D*][R*] (2.49)

where the transformation matrix [R*] is given by

cost a sin2 /3 z sin 2/3

[R*] = sing /3 cost /3 -t sin 2/3
-sin 2/3 sin 2/3 cos 2(3

(2.50)

For isotropic materials the elastic properties are the same in all directions.
The matrix of material constants therefore reduces to

E' E'v 0

[D] = E' 0

Sym G

where

E E
E =(1-vt)' G=2(1+v)

(2.51)

(2.52)

E = Young's modulus

v = Poisson's ratio
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Substituting(' equation (2.44) into the energy expression (2.42) gives

U= z J {E}T[D]{} d V (2.53)
V

Since the stresses {Q} are assumed independent of z, then the strains {E}
and the displacement components, u, v, will also be independent of z.
Integrating (2.53) with respect to z gives

U = z
J

h{E}T[D]{e} dA (2.54)
A

where A is the area of the middle surface. In expression (2.54) the strains
are expressed in terms of the displacements as follows

au/ax

{E} = av/ay (2.55)

au/ay+av/ax

The kinetic energy of the membrane element is given by

T =Z
J

ph(u2+v2) dA (2.56)
A

If px, py are the components of the applied boundary forces per unit arc
length of the boundary, then the virtual work is

5W= J (pxSu+py5v) ds (2.57)

where s denotes the boundary of the element.

2.6 Thin plate bending element

Figure 2.6 shows a thin plate of constant thickness, h, which is subject to
distributed surface loads. These loads are normal to the middle surface,
which is the plane z = 0.

In deriving the energy functions for a thin plate, it is assumed that the
direct stress in the transverse direction, a-,, is zero. Also, normals to
the middle surface of the undeformed plate remain straight and normal
to the middle surface during deformation. Thus, the displacements parallel
to the undeformed middle surface are given by

u(x,y,z)=-z aw-
ax

(2.58)

v(x,Y,z)=-z
awa
Y
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z, w

x, u

Figure 2.6 Plate bending element.

where w(x, y) denotes the displacement of the middle surface in the
z-direction. The components of strain are given as follows:

aU 82W
EX ax -z

8xZ

av azwe,,=ay=-zayz

yxy-au+av=-z2 azw
ay ax ax ay

yxz =
au+aw= 0 yvZ = av+aw=

0
az ax az ay

(2.59)

(2.60)

Since oz, yxz and y,, are all zero, then the strain energy stored in the
element is given by

U = 2 J (o-XeX+oyE,,+ rxyyxy) dV (2.61)

which is identical to equation (2.41) for a membrane element. This equation
can be expressed in the matrix form

U = J {r}T{e} d V (2.62)

where { r} and {e} are defined by (2.43).
Since oz = 0 the stress-strain relations take the form

Jul = [D]{e}

where [D] is defined by equation (2.45).

(2.63)
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Substituting

(

U z J

(2.63) into (2.62) gives

{C}T[D]{E} d V (2.64)
V

Using equations (2.59), the strain matrix can be written in the form

{s} = -z{X} (2.65)

where

I
{X} = a2w/aye

2a 2 w1ax ay 1

(2.66)

Substituting equation (2.65) into equation (2.64) and
respect to z gives

integrating with

3

U = z
fA

12

h
{X}T[D]{X} dA (2.67)

The kinetic energy of the plate is given by

T = 22
J

phw2 dA

and the virtual work of the transverse loading

8W= J f pZSw dA
A

(2.68)

(2.69)

2.7 Thick plate bending element

As in the case of deep beams, when the wavelengths are less than ten times
the plate thickness, shear deformation and rotary inertia effects must be
included.

When shear deformation is important, it cannot be assumed that normals
to the middle surface remain normal to it. In this case the displacements
parallel to the middle surface are given by

u(x, Y, z) = zO (x, Y)
(2.70)

v(x, Y, z) = -zOX(x, Y)

where O , 0,, are the rotations about the x- and y-axes of lines originally
normal to the middle plane before deformation. The in-plane strains are
now given by

{e} = -z{X} (2.71)
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where

-a8,,/ax
{X} = aexlay

aex/ax -aOY/ay

(2.72)

The relationships between the transverse shear stresses yXZ, yyz and the
displacements are

au aw av aw
yxz

_
+
_'

yyz
__+_

az ax az ay

Substituting for the displacements from (2.70) gives

(2.73)

aw

{Y} = r =
B+-

YJ
,ax

(2.74)
YY= aw

-ex+ay

Note that when the transverse shears are negligible, equation (2.74) gives
0,, = -aw/ax and ex = aw/ay. With these relationships it can be seen that
equation (2.72) reduces to equation (2.66).

The strain energy stored in the element is the sum of the energies due
to bending and' shear deformation, which is given by

U= 2 J {E}T[D]{s} d V+,'
J

{'r}T{-y} d V (2.75)
v v

provided the plane z = 0 is a plane of symmetry for the material. The
relationship between the average shear stresses, Jr), -and the shear strains,
as given by (2..74)1 is,

Txz1 = K[DS]{y} (2.76)1,,I=
1'rYZ

where K is a constant which is introduced to account for the variation of
the shear stresses and strains through the thickness. It is usual to take K to
be either ire/ 12 or 5/6. If the material is isotropic, then

s G 0_ E 1 0

[D ] 0 G] 2(1+v) 0 1]
(2.77)

Substituting equations (2.71) and (2.76) into equation (2.75) and integrat-
ing through the thickness gives

3

U ='2 fA 12 {X}T[D]{X} dA+z JA Kh{y}T[DS]{y} dA (2.78)
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The kinetic energy of the plate is given by

T=z J p(u2 (2.79)
V

Substituting for u, v from equation (2.70) and integrating with respect
to z after putting d V = dz dA gives

h3 h3
p\1 hw2+1 ex2+1 6,2) dA (2.80)T =i fA

1

The virtual work of the transverse loading is again given by equation
(2.69).

2.8 Three-dimensional solid

Consider a three-dimensional solid of volume V which is enclosed by a
surface S as shown in Figure 2.7. The state of stress and strain at a point
is defined by the six independent components given in expressions (2.1)
and (2.3). The strain energy is therefore given by

(QxEx+QyEy+QzEz+Txy'Yxy+Txzyxz+Tyzyyz) d V (2.81)U=2
fV

which can be expressed in matrix form as

U= 2 J {Q}T{E} d V

where

{Q}T= Lax Qy O-z Txy Txz r zj
{E}T= [Ex Ey Ez -/, yxz yyz

x, u

x

(2.82)

(2.83)

Figure 2.7 Three-dimensional solid.
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The stress-strain relationships take the form

{o}=[D]{} (2.84)

where [D] is a symmetric matrix. For an anisotropic material it contains
21 independent material constants. In the case of an isotropic material it is

D
E

[ ] ( 1+v)(1-2v)

(1 -v) v v 0 0 0

(1-v) v 0 0 0

X (1-v) 0 0 0

z(1-2v) 0 0

z(1-2v) 0

S ym 2(1-2v)

where

(2.85)

E = Young's modulus, v = Poisson's ratio

Substituting( equation (2.84) into equation (2.82) gives

U 2 J {r}T[D]{E} d V (2.86)
V

The strain-displacement relations to be used in equation (2.86) are given
by (2.4), namely

r au 1

ax

av

ay

aw

az

au av-+-
ay ax

au aw-+-
az ax

av aw-+-
az ay

(2.87)
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The kinetic energy is given by

T=2 p(ti2+v2+w2)dV (2.88)fV

If p,r, p,,, pz are the components of the applied surface forces per unit
area, then the virtual work is

SW= f (p.Su+p,,Sv+pSw)dS (2.89)
S

2.9 Axisymmetric solid

In the previous section the solid body considered had a general shape. If
the shape of the body can be generated by rotating a plane area through a
full revolution about an axis lying in the plane of the area, it is called a
solid of revolution or an axisymmetric solid. In this case it is more convenient
to use cylindrical polar coordinates r, 0, z than Cartesian coordinates
x, Y, Z.

An axisymmetric solid together with its axes, displacements and loadings
is shown in Figure 2.8.

The strain energy is again given by equation (2.86) where the elasticity
matrix [D] is given by equation (2.85) for an isotropic material. That is

U=1
J

{e}T[D]{s} d V (2.90)

Figure 2.8 Axisymmetric solid.
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On this occasion the strain components are referred to cylindrical polar
coordinates, namely

Er

{E} =

Eq

E,

Y.r

yro

Yez

The strain-displacement relations

au aw-+-
az Or

I au av v

r a0 Or r
av law
az r a0

(2.91)

(2.92)

where u, v, w are the displacements in the r, 0, z directions.
The kinetic

J

eis given by

T=p(Z12+62+w2)dV (2.93)

In both equations (2.90) and (2.93) the element of volume is given by

dV=rdrdOdz (2.94)

If pr, pei pz are the components of the applied surface forces per unit
area, then the virtual work is

SW= J (prSU+p0Sv+pz6w)dS (2.95)S

are

The element of surface area is given by

dS = rs d0 ds (2.96)
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where ds is an increment of arc length on the surface in the r, z plane and
rs is the value of r on the surface.

2.10 The dissipation function

The dissipation function has not been derived for each of the structural
elements considered in the previous sections since damping is not necessarily
an inherent property of the vibrating structure. Damping forces depend not
only on the structure itself, but also on the surrounding medium. Structural
damping is caused by internal friction within the material and at joints
between components. Viscous damping occurs when a structure is moving
in air or a fluid.

Generally, the formulation of mathematical expressions for the damping
forces in a structure is quite complicated. For this reason, simplified models
have been developed which, in many cases, have been found to be adequate.
Of these models, the viscous damping force leads to the simplest mathemati-
cal treatment. This type of force is introduced in Chapter 1. Because of its
simplicity, damping forces of a complicated nature are very often replaced
by equivalent viscous damping forces.

The energy dissipated in one cycle of oscillation by a viscous damping
force is proportional to the frequency of oscillation and the square of the
amplitude of vibration. This can be shown by considering a single degree
of freedom system. Denoting the displacement by u, then for harmonic
motion

u=Iul cos(wt - a) (2.97)

where Jul is the amplitude of vibration, w the frequency and a the phase
difference between excitation and response. Since the viscous damping force
is -cti, then the energy dissipated per cycle is

Wd= J cu du

J

2,r/m

cue dt
0

cw2lul2 sin 2 (wt -a) dt

_ 7rcwI u1, (2.98)

Experimental investigations have indicated that for most structural
metals, the energy dissipated per cycle is independent of frequency, over a
wide frequency range, and proportional to the square of the amplitude of
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vibration. Structural damping can, therefore, be represented by a frequency
dependent damping coefficient

c(w) = h
w

In this case

(2.99)

damping force = -h ti = -ihu (2.100)

for harmonic motion. Thus, it can be seen that the damping force is in
antiphase to velocity and proportional to displacement.

The equation of motion of a single degree of freedom system, consisting
of a mass m, a spring of stiffness k, a structural damping force -ihu and
an applied force f is

mu+ihu+ku =f (2.101)

This can be rewritten in the form

mu+(k+ih)u =f (2.102)

The quantity (k+ ih) is called a `complex stiffness', which is usually written
in the form

k+ ih = k(1 + iq) (2.103)

where 77 is the `loss factor' of the system. A physical interpretation of the
loss factor can be obtained as follows. From equations (2.98) and (2.99),
the energy dissipated per cycle for a structurally damped system is

Wd = irgkl ul2

U12

= 2ir-q U. (2.104)

where

Um = 21kIUI2 (2.105)

is the maximum strain energy stored. Therefore, from equation (2.104)

1 Wd 1 energy dissipated per cycle
2or Um 27T maximum strain energy (2.106)

Strictly speaking, this method of representing structural damping should
only be used for frequency domain analysis where the excitation is harmonic.

Because of the difficulties which were referred to above, it is useful to
use simplified damping models for the complete structure, rather than for
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individual structural elements. The techniques used for representing both
viscous and structural damping type forces are presented in Chapter 9.

2.11 Equations of motion and boundary conditions

In this section two examples are given of how the equations of motion and
boundary conditions of continuous structural elements can be formulated
using Hamilton's principle. In Chapter 1 the mathematical statement of
Hamilton's principle is shown to be (see equation (1.40))

(S(T- dt=0 (2.107)

where T is the kinetic energy, U the strain energy and the virtual
work done by the non-conservative forces. Expressions for these quantities
are derived in the preceding sections of this chapter. For the present exercise
the damping forces will be assumed to be zero.

Example 2.1 Derive the equation of motion and boundary conditions for
an axial element.

From equations (2.11), (2.12) and (2.13) the energy expressions are

T=2
J+apAi2dx

a
(2.108)

f+a au/ 2

U=2
J

EA(ax I dx (2.109)
a

S
J a pXSu

dx
a

(2.110)

Substituting equations (2.108), (2.109) and (2.110) into equation (2.107)
gives

2 +a +a lt

{ a pAuSu dx-
+

f EAaz S
(au) dx+L a pXSu dx } dr=0 (2.111)

l

4a

JJJ

Assuming that the operators S and a( )/at as well as S and a( )/ax are
commutative, and also that integrations with respect to t and x are inter-
changeable, the first and second terms can be integrated by parts as follows.
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Integrating the first term of equation (2.111) with respect to t gives

J pAuSu dt pAu- (Su) dt

f2

_ [pAi 6u],2 - pAuSu dt

J(2

pAuSu dt (2.112)
,

since Su vanishes at t = t, and t = t2.
Integrating the second term of equation (2.111) with respect to x gives

J+aEA 3iauldx= J+
°
°EAaxax(Su)dxax \ax//

au ]+aa +a2u
= EA- Bu - EAax2 Su dx (2.113)

ax 1_a i_a

Introducing equations (2.112) and (2.113) into equation (2.111) gives

(EA_PAu+P)u
J12{J±O

-a
dx- EAaSu] a}dt=0 (2.114)

Since Su is arbitrary within both the space and time intervals, then
z z

uEA 2 - pA -+ px = 0 (2.115)

throughout the region -a -_ x _ +a, and either

EAau=0 or 8u=O
ax

(2.116)

at x=-a and x=+a.
Equation (2.115) is the equation of motion of the element whilst equations

(2.116) constitute a statement of the boundary conditions. These conditions
can be interpreted physically as follows. Su = 0 implies that u = 0 and
therefore the boundary is fixed. Using equations (2.8) and (2.10), it can be
seen that EA au/ax represents the total force on a cross-section. Its vanishing
implies that the boundary is free.

Example 2.2 Derive the equation of motion and boundary conditions for
a beam bending element.
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From equations (2.29), (2.31) and (2.32), the energy expressions are
r+a pAv2

dx
T= 2

Ja

+ azv\ z
I dx

_aa

/
U =

2
EIZ(ax,

(2.117)

(2.118)

+a

8WWC=
J

pSv dx (2.119)

Substituting equations (2.117), (2.118) and (2.119) into equation (2.107)
gives

f,,, [
pAvSvdx- J aEIZa 2SIax 2ldx+ J

ax
p4,Svdx Jdt=O (2.120)

a

The first term is integrated by parts with respect to t as follows

J
Z

pAv&v dt = J
2

pAv(t (8v) dt

=[pAi&v],;- pAvSvdt

ft'2

pAvSvdt
,

(2.121)

since 3v=0 when t= t, and t= t2.
The second term in equation (2.120) is integrated by parts with respect

to x

fa
a2v

a2v 1+a a2v a2

EIZ Ti
S (axe) dx = _a EI= ax2 axe (Sv) dx

192V a (Sv)+a

EIZ
ax2 ax a

J oa EIZ a33
a (80 dxax ax

2 3 l+a

[EIz
ax2

S (ax) -EIZ
ax3

SvJ
_a

a
aav

+ EIZ a Sv dx (2.122)
+a

ax
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Substituting equations (2.121) and (2.122) into equation (2.120) gives

r j a 1 EIZ
ax'

pAv+p, I Sv dx

2 3 1+a

EIZax2s(ax)-E'z4sv1 }dt=0 (2.123)
a

Since 5v is arbitrary, then

z z

-EIZa v;-pAV+ p,.=0T dt

throughout -a x , +a. In addition, either
z

EIZa z=0 or a=0
ax ax

and either
03V

EIZax3=0 or v=0

(2.124)

(2.125)

at x = -a and x = +a.
Equations (2.124) aand (2.125) represent the equations of motion and

boundary conditions respectively. Note that in this case two conditions are
required at each boundary. The conditions v = 0 and av/ax = 0 represent
the vanishing of the displacement and slope respectively. To interpret the
other two, consider the distribution of stress over a cross-section given by
equations (2.27) and (2.25), that is

z

o-X -EyT (2.126)

The moment of this distribution about the z-axis is

MZ=- fA o ydA
J

2 2

Ey2a 2dA=EIZa 2

A ax ax
(2.127)

The vanishing of EIZ a2v/axe therefore represents the vanishing of the

bending moment. Using equation (2.127) the other term in (2.125) is

a3y aMz
EIZ

ax3 ax
(2.128)
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Y
A

0 x
Figure 2.9 Forces acting on an element of a beam.

For moment equilibrium of an element of length dx of the beam, as
shown in Figure 2.9

-M,+ MZ+a_Zdx +QZdx+ Q+aQdx Zdx=O (2.129)( ax ) ax

The last term can be neglected in comparison with the others, and so
equation (2.129) simplies to

aMZ

ax

(p,. -pAv)dx

Q t /(Q+aQdx)

MZ dx I
(MZ+

as Z dx)

+Q=O.

Equations (2.128) and (2.130) together give
a3V

EIZ ax3 -Q

(2.130)

(2.131)

The vanishing of EIZ a3v/ax3 therefore indicates the vanishing of the shear
force.

The boundary conditions for a beam are therefore as follows:
2

Simply supported v = 0, MZ = EIZ a 22 = 0

Clamped v = 0, ax = 0

a3v a2
Free Q=-EIZax3=0, MZ=EIZaxz=0

(2.132)

In the above two examples it can be seen that the boundary conditions
consist of two types. One type consists of the vanishing of displacements
or rotations. This type is called a `geometric' boundary condition. The other
type, which consists of the vanishing of forces or moments, is referred to
as a `natural' boundary condition. In general, it will be found that if the
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mathematical statement of Hamilton's principle involves derivatives of order
p, then boundary conditions which involve derivatives up to and including
those of order (p -1) will be geometric boundary conditions, and those
involving derivatives of order p, (p + 1), ... , (2p - 1) will be natural boun-
dary conditions.

Problems

2.1 Discuss the changes which should be made to the derivation of the
energy expressions for an axial element in Section 2.1 if the cross-sectional
area varies along its length.

Show that in this case the expressions for the kinetic and strain energies
become

+a +a
a u\ z

T=z pA(x)ti2dx, U=z EA(x)(auI dx
_a \ //

where A(x) is the cross-sectional area at position x.

2.2 Assuming that the Saint-Venant theory of torsion still holds and that
warping in the axial direction is negligible, show that the expressions for
the kinetic and strain energy of a torque element of variable cross-section
are

T-
J

2

r+aplx(x)9X2dx,
U f +Q GJ(x)(ae") dx

a Q (ax)

where Ix(x) and J(x) are the second moment of area about the x-axis and
the torsion constant at position x.

2.3 Show that when shear deformation and rotary inertia effects are
neglected, the expressions for kinetic and strain energy of a beam bending
element of variable cross-section are

a +a a2V 2
T ='2

a
pA(x)v2 dx, U =I2 f

a
EI.(x)(i) dx

ax

where A(x) and II(x) are the area and second moment of area about the
z-axis of the cross-section at position x.

2.4 Show that if shear deformation and rotary inertia effects are included,
the expressions for the kinetic and strain energy of a beam bending element
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of variable cross-section are

f 1
+a

faT =2 pA(x)v2dx+2 p1Z(x)6z2dx

L+a

aaex Z
2 Ea

a

av \2
KA(x)G(ax-eZ l dxU=iEIZ(x)\) dx+2

where A(x) and IL(x) are as defined in Problem 2.3. //
2.5 Show that the cross-sectional area, A(f), and the second moment of
area of the cross-section, of the linearly tapered beam element shown
in Figure P2.5(a) can be expressed in the form

A(4) = A(0){1 + a f + a242}

I.( )=1 (O){1+b,f+b2f2+b3f3+b,f4}

Also show that for

(1) a rectangular cross-section (Figure P.25(b)), the coefficients are given
by

a' -(1+B) -(1+D) a2-(1+B)(1+D)

b'
=_(I

l-3(1+D)

2a

i

E__:x=ax=-a
6=-1 x,

(a)

(c)

Figure P2.5
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bz-3(1+B)(1+D)+3(1+D)2

b3 = -3(1+B)(1+D)2-(1+D)3

b,-(1+B)(1+D)3

with B=b(+1)/b(-1) and D=d(+1)/d(-1), and
(2) for a circular cross-section (Figure P2.5(c)) the coefficients are as

above with B replaced by D.

2.6 Use Hamilton's principle to show that the equation of motion and
boundary conditions for a uniform rod with a mass at one end, which is
vibrating axially (Figure P2.6), are

z z

EA Txz - pA tu+ pX =O

Either

EAau=0 or u=Oatx=-a
ax

and either

EAau+Mu=0
or u=0atx=+a

ax

2.7 Use Hamilton's principle to show that the equations of motion of a
deep uniform beam element are

2

KAG a V- KAG
a 6z

- pAv + p%, = 0
ax ax

A.KAG ax+EIza
6z-KAGO

-pIIBz=0

2a

x= -a X, u
x=a

Figure P2.6
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and the boundary conditions are either

v=0 or KAG1 v-oZ 0

and either

0z = 0 or EIz fez = 0.

2.8 Use Hamilton's principle to show that the equation of motion for axial
vibration of a tapered rod is

ax(EA(x)ax I -pA(x)u+p, =0

and the boundary conditions are either

u=0 or EA(x) au/ax = 0

2.9 Use Hamilton's principle to show that the equation of motion for flexural
vibrations of a slender tapered beam is

2i
EI,(x) axZ}+pA(x)v-p,, =0

and the boundary conditions are either

a f aZvl
v= 0 or

ax
EIZ(x)

axz
j= 0

and either

av a2v
ax=0 or EIL(x)axZ=0

2.10 Use Hamilton's principle to show that the equations of motion for
flexural vibrations of a deep tapered beam are

ax
((x)G(----o, I -pA(x)v+p, = 0

av aeKA(x)G(ax-o)+ax (EIz(x)
ax

-pIZ(x)9Z=0

and the boundary conditions are either

v=0 or KA(x)G(ax av-6z =0
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and either

0z=0 or EIz(x)a =O
ax

2.11 Show that the expressions for the kinetic and strain energy of a
membrane elementent of variable thickness are

JA
T= J ph(u2+ 2) dA, Uh{s}T[D]{e} dA

A

where h = h(x, y), the other notation being defined in Section 2.5, provided
the plate is sufficiently thin.

2.12 Show that the expressions for the kinetic and strain energy of a thin
plate bending element of variable thickness are

JA
T = AdA, U = 12 {X}T[D]{X} dA

where h = h(x, y), the other notation being defined in Section 2.6.



3

Introduction to the finite element
displacement method

The response of simple structures, such as uniform axial, torque and beam
elements, may be obtained by solving the differential equations of motion
together with the appropriate boundary conditions, as derived in Section
2.11. In many practical situations either the geometrical or material proper-
ties vary, or it may be that the shape of the boundaries cannot be described
in terms of known functions. Also, practical structures consist of an assem-
blage of components of different types, namely, beams, plates, shells and
solids. In these situations it is impossible to obtain analytical solutions to
the equations - of motion which satisfy the boundary conditions. This
difficulty is overcome by seeking approximate solutions which satisfy Hamil-
ton's principle (see Section 1.3).

There are a number of techniques available for determining approximate
solutions to Hamilton's principle. One of the most widely used procedures
is the Rayleigh-Ritz method, which is described in the next section. A
generalisation of the Rayleigh-Ritz method, known as the finite element
displacement method, is then introduced. The principlal features of this
method are described by considering rods, shafts, beams and frame-
works.

3.1 Rayleigh-Ritz method

The Rayleigh-Ritz method is first described with reference to the problem
of determining the axial motion of the rod shown in Figure 3.1.

Hamilton's principle (Section 1.3) requires that

J (S(T- U)+SW) dt =0 (3.1)
t,

53
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I
x=0 x=L

Figure 3.1 Rod subject to an axial force.

F(t)

From Section 2.1 the energy functions are
L

T='2 pA62dx
0

U='2 J LEA(
aulzdx

o `ax/I

8W= F8u(L)

(3.2)

Since Hamilton's principle is derived using the principle of virtual dis-
placements, then the solution u(x, t) which is required is the one which
satisfies both (3.1) and the geometric boundary condition

u(0) = 0 (3.3)

Satisfaction of Hamilton's principle will ensure that both the equation
of motion and the natural boundary condition at x = L will be satisfied (see
Section 2.11).

The Rayleigh-Ritz method approximates the solution with a finite
expansion of the form

un(x, t) = Y_ Oj(x)gj (t)
i=I

where the q; (t) are unknown functions of time, t, and the ¢;(x) are
prescribed functions of x, which are linearly independent. A set of functions
are said to be linearly independent if

n

Y_ a;0;(x)=0 for all x (3.5)
J=I

implies that

a;=0 forj=1,2,...,n (3.6)

Each of the functions (k;(x) must satisfy the geometric boundary condi-
tion (3.3) in order to ensure that the solution, as given by equation (3.4),
satisfies this condition. Therefore

4;(0)=0 j=1,2,...,n (3.7)
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Since the strain energy expression (3.2) involves the first derivative of u
with respect to x, then each of the functions 4j(x) should have a finite
derivative. This implies that these functions must be continuous.

A continuous deformable body, such as the rod considered here, consists
of an infinity of material points, and therefore, it has infinitely many degrees
of freedom. By assuming that the motion is given by the expression (3.4),
the continuous system has been reduced to a system with a finite number
of degrees of freedom. This has been achieved by applying the constraints

qn+l=qn+z= =0 (3.8)

The expression (3.4) is substituted into equation (3.1) and the q (t)
found. Since the system has been reduced to one with a finite number of
degrees of freedom, then the application of Hamilton's principle leads to
Lagrange's equations (Sections 1.4 and A2). These give, in matrix form
(Section 1.4)

[M]{q"}+[K]{q"} = {Q"} (3.9)

where

{qn}T= [qi qn ... qn] (3.10)

The inertia and stiffness matrices are determined by substituting (3.4) into
the kinetic and strain energy expressions (3.2) respectively. The elements
of these matrices are given by

PA4j(x)4k(x) dxMjk = f L
0

Kjk = f L EA4;(x)4k(x) dx
0

(3.11)

where primes denote differentiation with respect to x. The generalised forces
Qj are obtained by calculating the virtual work done by the applied load
F(t). From (3.2) and (3.4)

5W=F(t)8u(L)=F(t) > 4j(L)Sq; (t)
j=1

_ Y_ Qj 8qj
j=1

This gives

Qj = 4j(L)F(t)

(3.12)

(3.13)
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Equation (3.9) is solved for the {qnn}, which are then substituted into
(3.4) to give an approximate solution for u(x, t). Methods of solving
equation (3.9) are described in Chapters 9 and 10.

If the integrals in (3.1) involve derivatives up to order p, then the functions
¢;(x) of equation (3.4) must satisfy the following criteria in order to ensure
convergence of the solution.

(1) Be linearly independent.
(2) Be continuous and have continuous derivatives up to order (p -1).

In this book only the cases p =1 and 2 will be considered.
(3) Satisfy the geometric boundary conditions. These involve derivatives

up to order (p -1) (see Section 2.11).
(4) Form a complete series.

A series of functions is said to be complete if the 'mean square error'
vanishes in the limit, that is

('L / " 2

lim J ( u- E ¢;q;" I dx = 0 (3.14)
o \ 1=1

Polynomials (i.e., 1, x, x2, ... ), trigonometric functions, Legendre,
Tchebycheff and Jacobi or hypergeometric polynomials are all series of
functions which are complete. An approximate solution which satisfies
(3.14) is said to `converge in the mean'.

In order to assess the convergence of the method, solutions are obtained
using the sequence of functions uI, u2, u', ... , u". This sequence is called
a minimising sequence. Using a minimising sequence ensures monotonic
convergence of the solution. Using functions ¢;(x), which form a complete
series, ensures monotonic convergence to the true solution.

The proof of convergence of the Rayleigh-Ritz method is based upon
the proof of convergence of the expansion of an arbitrary function by means
of an infinite series of linearly independent functions. If polynomials are
used, then use can be made of Weierstrass's Approximation Theorem which
states that: `Any function which is continuous in the interval a , x , b may
be approximated uniformly by polynomials in this interval.' This theorem
[3.1] asserts the possibility of uniform convergence rather than just conver-
gence in the mean. Since the functions are required to have continuous
derivatives up to order (p -1), then all derivatives up to this order will
converge uniformly.

These statements can be extended to functions of more than one variable.
Further details are given in references [3.2-3.5]. It should be noted that in
using the Rayleigh-Ritz method the equations of motion and natural boun-
dary conditions will only be satisfied approximately.
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Another problem of interest in vibration analysis is that of determining
the natural frequencies and modes of free vibration of a structure. In this
case SW = 0 in (3.1). The value of the integral of (T - U), I", obtained by
substituting (3.4) into it, will be greater than the true minimum because of
the application of the constraints (3.8). Using the sequence of functions
u', u2, u3, ... , u", it follows that

I'>I2_I3_...>I" (3.15)

since the inclusion of more terms in (3.4) is equivalent to relaxing successive
constraints. In this equation (3.9) reduces to

[M]{q"}+ [K]{q"} = 0 (3.16)

Since the motion is harmonic then
{q"(t)} = {A"} sin wt (3.17)

where the amplitudes {A"} are independent of time and w is the frequency
of vibration. Substituting (3.17) into (3.16) gives

[K - w2M]{A"} = 0 (3.18)

Equation (3.18) represents a set of n linear homogeneous equations in
the unknowns An , A2 , ... , A° A. The condition that these equations should
have a non-zero solution is that the determinant of coefficients should
vanish, that is

det [K-w2M] = IK- w2MI = 0 (3.19)

Equation (3.19) can be expanded to give a polynomial of degree n in W2.
This polynomial equation will have n roots w,2, w22, ... , w"2. Such roots
are called `eigenvalues'. Since [M] is positive definite, and [K] is either
positive definite or positive semi-definite (see Section 1.4), the eigenvalues
are all real and either positive or zero [3.6]. However, they are not necessarily
all different from one another. The quantities Oh, w2, ... , w", which are
also real and either positive or zero, are approximate values of the first n
natural frequencies of the system. Moreover, these approximate values will
be greater than the true frequencies of the system [3.7].

Corresponding to each eigenvalue w2, there exists a unique solution (to
within an arbitrary constant) to equation (3.18) for {A"}. These solutions
are known as `eigenvectors'. When combined with the prescribed functions
Oj(x) they define the shapes of the modes of vibration in an approximate
sense. The approximate shape of a mode of vibration is given by (see
equation (3.4)):

"
u"(x)

=
Y_ 4j(x)A; (3.20)
j=l
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The solution of equation (3.18) is known as an `eigenproblem'. Numerical
methods of determining the solutions of eigenproblems, as defined by this
equation, are presented in Chapter 8. These solutions, as indicated above,
give approximate solutions for the natural frequencies and modes of free
vibration. Convergence to the true frequencies and mode shapes is obtained
as the number of terms in the approximating expression (3.4) is increased.
This statement is illustrated by means of the examples below.

Example 3.1 Use the Rayleigh-Ritz method to estimate the lower
frequencies and mode shapes of the clamped-free rod shown in Figure 3.1.
Compare the results with the exact solution.

For free vibration, the equation of motion of the rod is (see equation
(2.115))

32u 32uEAax2-pAat2=0

Assuming harmonic motion

u(x, t) = p(x) sin wt

Substituting (3.22) into equation (3.21) gives

d 2o
axe2(E)0

The boundary conditions are (see Section 2.11)

u(0, t)=0,
au(L, t)-0

ax

Substituting (3.22) into the boundary conditions (3.24) gives

0(0) =0,
dqi(L)0

dx

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

The solutions of equation (3.23) subject to the boundary conditions (3.25)
are

wr- (2r 21)or( E21'/2

PJ
ITXOr(x)=sin (2r-1)
2L

r=1,2,...
(3.26)
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To obtain an approximate solution using the Rayleigh-Ritz method,
assume the prescribed functions in (3.4) to be

0;(x) = x3 (3.27)

Note that each of these satisfy the geometric boundary condition 4,(0) = 0.
The elements of the stiffness and inertia matrices in equation (3.18) are,

from equations (3.11)
L

K;k = EAj k xj+k-2 dx =
jk EAL'+k-,

o (j+k-1)
1L

M;k = pAx;+k dx = I
pAL'+k+i

o (j+k+l)

One term solution
Using only one term in the series (3.4), equation (3.18) reduces to

(EAL_W2)A=0

the solution of which gives w, = 1.732(E/pL2)112.

(3.28)

Two term solution
Increasing the number of terms to two in the series (3.4), gives the following
equation:

Letting w2pL2/E = A, the above equation simplifies to

1(1-A/3) (1-A/4) A; -0
(1-A/4) (4/3-A/5)] A2L]

This equation has a non-zero solution provided

(1-A/3) (1-A/4) -0
(1-A/4) (4/3-A/5)

Expanding gives

A2 13A+ 1- -=0
240 90 3

The two roots of this equation are

A = 2.486 and 32.18



60 Finite element displacement method

and the natural frequencies of the system are

/E /E\ "2
w, =,1,1/2 1 PL2)

"2
=1.577 1P

and

E 1/2 E 1/2
w2 = A21/2 (TL2) = 5.673 PL)

From the homogeneous equations

2- (1-A/3) 2A2
(1-A/4)LA'

When
2

A = 2.486, A2 = -0.4527 L

AZ
A = 32.18, A2 = -1.3806

Lt

The modes of vibration are therefore given by

u =A,L j L-0.4527
(L)2}

and

rr

u=AL{
-1.3806(x)2}

The approximate values of w(pL2/E)1/2 are compared with the exact
values in Table 3.1. As postulated, the approximate frequencies are greater
than the exact ones and approach the exact ones as the number of terms
is increased.

The approximate mode shapes for the two term solution are compared
with the exact mode shapes in Figure 3.2. The differences between the
approximate and exact shapes for the first mode are too small to show up
on the scale used.

Example 3.2 Use the Rayleigh-Ritz method to estimate the lower
frequencies of the cantilever beam shown in Figure 3.3. Compare the results
with the exact solution.
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Table 3.1. Comparison of approximate frequencies with exact
solution for a rod

R-R solutions

Mode 1 term 2 term Exact solution

1 1.732 1.577 1.571
2 - 5.673 4.712

Mode 1

Mode 2

Figure 3.2 Axial modes of vibration of a rod. - Exact; - - - approximate
(R-R).

V

4

x

Figure 3.3 Cantilever beam.
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From Section 2.11 the equation of motion of the beam is
a4V z

EIzaxa+pAatz=0

and the boundary conditions are

v(0,t)=0, av(0,t)=0

z

Ti
a

(L' t) = 0,
T--3

(L, t) = 0

(3.29)

(3.30)

The solutions of equation (3.29) subject to the boundary conditions (3.30)
are given by [3.8]:

vr(x, t) = lllr(x) sin wrt

where
1/2

co, = (0,L)' (
ALEI,

(3.31)

iPr(x) = {cosh Nrx - cos Yrx - rir(sinh Nrx - sin I3rx)}

and (3.32)
cos NrL+cosh,l3rL

77, = sin RrL+sinh (3rL

From Section 2.3 the energy functions are
L

T = Z pAvz dx
0

azv\z
U=z EIZ zl dxI ax/fOL

(3.33)

To obtain an approximate solution using the Rayleigh-Ritz method,
assume an expansion of the form

vn(x, t) = Z O;(x)A; sin wt (3.34)
J=I

where
Oj(x) = x;+1

Each of the functions Oj(x) satisfy the geometric boundary conditions
at x = 0, that is

00)=0, a0'(0)=0
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Table 3.2. Comparison of approximate frequencies with exact
solution for a beam

Approximate solutions

Mode 1 term 2 term Exact solution

1 4.472 3.533 3.516
2 - 34.807 22.035

Substituting (3.34) into the energy expressions (3.33) gives the elements
of the inertia and stiffness matrices in equation (3.18), namely

J
L

M;k =
pAx'+k+2 dx = 1 pAL'+k+3

(j+ k+3)
(3.35)

EIz(j+1)j(k+1)kx'+k-2dxK;k fL
0

(j+ 1)j(k+ 1)k
EIzLj+k-1

(j+k-1)

The approximate values of o, (pAL4/ EIz )1/2 are compared with the exact
solutions in Table 3.2 for various values of n.

3.2 Finite element displacement method

When analysing either structures of complex shape or built-up structures,
difficulties arise in constructing a set of prescribed functions which satisfy
the geometric boundary conditions. These difficulties can be overcome by
using the Finite Element Displacement Method. This method provides an
automatic procedure for constructing the approximating functions in the
Rayleigh-Ritz method.

The prescribed functions are constructed in the following manner:

(1) Select a set of reference or `node' points on the structure.
(2) Associate with each node point a given number of degrees of freedom

(displacement, slope, etc.).
(3) Construct a set of functions such that each one gives a unit value for

one degree of freedom and zero values for all the others.

This procedure is illustrated for the axial motion of a rod in Figure 3.4
and the bending vibration of a beam in Figure 3.5.
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01(x)

4)2X)

4)4X)

46(X)

1 2 3 4 5

(2) (

Figure 3.4 Prescribed functions for a rod.

1

O AX)

4)2(X)

4)3X)

4)4(X)

4)5X)

4)6X)

4)7X)

4)8X)

2 3 4

Figure 3.5 Prescribed functions for a beam.
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In Figure 3.4 five node points have been selected at equal intervals. The
region between each pair of adjacent nodes is referred to as an `element'.
It is shown in the previous section that only the prescribed functions
themselves need be continuous for a rod. (This implies that the first deriva-
tive, which appears in the strain energy expression, can be discontinuous.)
Therefore, the axial displacement, u, is the only degree of freedom required
at each node point. In the figure, five prescribed functions are illustrated.
They have been constructed by giving each node point in turn a unit axial
displacement, whilst maintaining zero displacement at all other nodes. If
these functions were to be used to analyse a clamped-free rod, then the first
function, (A,(x), would be omitted, since it does not satisfy the geometric
boundary condition at x = 0. For a clamped-clamped rod both 0,(x) and
p5(x) would be omitted.

In Figure 3.5, four node points have been selected at equal intervals.
Thus the beam has been divided into three elements. The highest derivative
appearing in the energy expressions for a beam is the second (see equations
(3.33)). Therefore, the Rayleigh-Ritz procedure requires the prescribed
functions and their first derivative to be continuous. Hence, it will be
necessary to take v and av/ax as degrees of freedom at each node. In the
figure the odd numbered prescribed functions have been constructed by
giving each node point in turn a unit lateral displacement, whilst maintaining
zero displacement at all other nodes. At the same time the rotations are
kept zero at all nodes. The even numbered prescribed functions are
constructed by giving each node in turn a unit rotation, whilst the rotations
at all other nodes are kept zero. In addition, the displacements at all nodes
are zero. Again, the geometric boundary conditions are satisfied by omitting
the appropriate functions. For example, the functions ¢,(x) and 42(x) are
omitted when analysing a cantilever beam.

Referring back to Figure 3.4, it can be seen that the variation of axial
displacement over each element is zero except for two cases, the number
being equal to the number of nodes (2) multiplied by the number of degrees
of freedom at each node (1) for a single element. These two displacement
variations are identical for each element. In the same way, each element of
the beam in Figure 3.5 deforms in only four of the prescribed functions,
being equal to the number of nodes (2) multiplied by the number of degrees
of freedom at each node (2). Again the displacement variations for each
element are identical. Because of this feature, it is simpler to evaluate the
energy expressions for each element and then add the contributions from
the elements together. This technique is illustrated in the following sections
where explicit expressions for the prescribed functions over a single element
are derived. These functions are referred to as `element displacement func-
tions'. In some texts the term `shape function' is used, but it will not be
used here.
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In order to satisfy the convergence criteria of the Rayleigh-Ritz method,
the element displacement functions should satisfy the following conditions:

(1) Be linearly independent.
(2) Be continuous and have continuous derivatives up to order (p -1)

both within the element and across element boundaries. An element
which satisfies this condition is referred to as a `conforming' element.

(3) If polynomial functions are used, then they must be complete poly-
nomials of at least degree p. If any terms of degree greater than p are
used, they need not be complete. (A complete polynomial of degree
n in m variables has (n + m) !/ n ! m ! independent terms.) However, the
rate of convergence is governed by the order of completeness of the
polynomial. The element displacement functions need not be poly-
nomials, but this possibility is not considered in this book.

(4) Satisfy the geometric boundary conditions.

In the Rayleigh-Ritz method, convergence is obtained as the number of
prescribed functions is increased. To increase the number of prescribed
functions in the finite element method, the number of node points, and
therefore the number of elements, is increased. A complete discussion of
the convergence of the finite element method is given in reference [3.9].

3.3 Axial vibration of rods

There are a number of ways of determining the displacement functions of
a single element. The most common of these are as follows:

(1) By inspection.
(2) Assume a polynomial function having the appropriate number of

terms. Then evaluate it and, if necessary, its derivatives at the nodes
to obtain the coefficients in terms of the nodal degrees of freedom.

(3) Solve the equations of static equilibrium to determine the deformation
of the element due to prescribed boundary displacements.

In practice the most appropriate method is used for each type of element.
All three procedures are now illustrated using an axial element.

It is shown in Figure 3.4 that the deformation of an axial element is
given by the combination of two linear functions. Using the non-dimensional
coordinate = x/ a, defined in Figure 3.6, it is easily seen that the displace-
ment variation for such an element is given by

u = I (1- f)u,+ i(1 + f)u2 (3.36)

where u1, u2 are the axial displacements of nodes 1 and 2.
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2a

PX

1 7-12
x=-a
e=-1

x=a
f=1

u

Figure 3.6 Geometry of a single axial element.

Alternatively, since the element has 2 nodes and 1 degree of freedom at
each node, the displacement variation can be represented by a polynomial
having 2 constants, namely

u = a,+a2i; (3.37)

Note that the highest derivative which occurs in the energy expressions is
the first (see equations (2.11) to (2.13)), and so a polynomial of at least
degree one must be used to satisfy the convergence criteria.

Evaluating (3.37) at f = ::Fl gives

u1=al -a2i u2=a, +a2

Solving for a, and a2 gives

(3.38)

a1=2(ul+u2, a2=2(u2-u1) (3.39)

Substituting (3.39) into (3.37) gives

u=2(u1+u2)+2(u2-u1)

= 2(1- 4)u, +2(1 + )u2 (3.40)

An expression which is identical to (3.36) has therefore been obtained.
The equation of static equilibrium for the element can be deduced from

equation (2.115) to be

d2u
= 0 (3.41)

dx2

(It is assumed that there is no distributed loading, only end forces necessary
to sustain prescribed displacements.) Changing to the non-dimensional
coordinate a gives

d2u
d2=0 (3.42)

The general solution of this equation is

u = a, + (3.43)
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The constants of integration a, , a2 are found from the boundary conditions

u(-1)=u,, u(+1)=u2

as before, to give expression (3.40).

(3.44)

The static displacement of an element is used in preference to the dynamic
displacement because of its simplicity. An expression for the dynamic
displacement can be obtained by solving the equation of motion (see
equation (2.115))

a2u 1 a2u-0
axe c2 at2

(3.45)

where c2 = E/ p, subject to the boundary conditions

u(-a, t) = u,(t), u(+a, t) = u2(t) (3.46)

Changing to the non-dimensional coordinate , equations (3.45) and
(3.46) become

(9 2u a 1a2u-0
a2-(c) at2

and

(3.47)

u(-1, t) = u,(t), u(+1, t) = u2(t) (3.48)

The solution to equations (3.47) and (3.48) is [3.10]

u(E, t)=
a nE1

(-1)n+l sin1
2

(1-)

x l u,(,) sin J"'c(t-r)Idr

+
a

Y (-1)"+l sin f2 (1+r 1

x u2(r) sin { 2ac(t -T)} dr (3.49)

From this expression it can be seen that the displacement at f depends
upon the past history of the displacements at e = 1.

The penalty to be paid in using the static deformation of an element, in
obtaining an approximate solution for the dynamic response, is an increase
in the number of elements required for a given accuracy of solution.
However, this is more than offset by the simplicity of the mathematical
analysis it provides.

n zr
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The expressions (3.36) and (3.40) can be written in the alternative form

u=N1(6)u1+N2( )u2 (3.50)

where

(3.51)

In (3.51) f; represents the coordinate of node point j. Figure 3.6 indicates
that e1= -1 and e2 = +1. The expression (3.50) can be rewritten in matrix
form as follows

u = [N1O N2( )] [:1 = LN(6)] Jul, (3.52)

The energy expressions for the single element shown in Figure 3.6 are
from section 2.1

T = 2
J

pAuz dx (3.53)

JUe = EA(- I dx (3.54)
ax

SWe
= J +a px

6u dx (3.55)
a

Substituting the displacement expression (3.52) into the kinetic energy
(3.53) gives

Te=zJ+apAuzdx

+l

= Z pAuza d

i{ti}eTpAa J
+1 LN(e)JT[N(e)]

df{u}e (3.56)

Therefore, the kinetic energy can be expressed in the form

Te = 2{U}eT[m]e{U}e

where

[m]e = pAa
J

+1

T LN(6)J d f

(3.57)

(3.58)

which is referred to as the `element inertia matrix'. Substituting for the
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functions N,(e) from (3.51) and integrating gives

[m]e=pAa
J
_'

Lz(1+f)J[Z(1- ) z(1+ )J d

3 3I I ]= pAa
1 2
3 3

(3.59)

Note that the sum of the terms in the matrix is pA2a, which is the total
mass of the element.

Substituting the displacement expression (3.52) into the strain energy
(3.54) gives

z

Uez EA(au)

dx
ax

-z +' EA lz (au)2a d

a ae

EA
=z{ueT

a
d6{u}e (3.60)

where [N'(f)] = [aN()/aJ. Therefore, the strain energy can be expressed
in the form

Ue = i{u}eT[K]e{u}e

where

(3.61)

[K]e = aA J )]T[N'(6)] de (3.62)

is the `element stiffness matrix'. Substituting the functions N,(e) from (3.51)
gives

EA +1 [-j[k]e=- z
a +

EA z -z
I

a 2 2

(3.63)

Note that the sum of the terms in each row of this matrix is zero. This
indicates that when the element moves as a rigid body, the elastic restoring
forces are zero.
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The virtual work done by the distributed forces is from (3.55),

SWQ =
f+a

pxSu dx
a

+ de= JPxa

{Su}eTa Jpx()iTde (3.64)

This can be expressed in the form

SWe = {SU}eT{f}e (3.65)

where

+1

I fl, = a JpN()]Td i; (3.66)

is the `element load matrix'. Substituting for the functions N,(f) and
assuming px to have the constant value pX over the element gives

{f}e=pxa f_,'
Li(1+e)J d

(3.67)

The energy expressions for a complete rod are obtained by adding
together the energies for all the individual elements. Before carrying this
out it is necessary to relate the degrees of freedom of a single element, Jul,,
to the set of degrees of freedom for the complete rod, Jul. For the rod
shown in Figure 3.4 this is

{U}T = [u1 U2 U3 U4 US] (3.68)

For element e the relationship is

Jul, = [a]e{u} (3.69)
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The transformation matrices [a]e for the four elements are as follows

1 0 0 0 0_
[a]' 0 1 0 0 0

[a]2 = [0
0

1

0 0,

0 0 1

(3.70)

[a]3 = 10 0 0 1 01

[a]4= 10 0 0 0 I

Substituting the transformation (3.69) into (3.57), (3.61) and (3.65) and
summing over all elements gives

a
T = 2{d}T E [a]eT[m]e[a]e{u}

e=1

= 2{u}T[M]{u}

a
U = 2{u}T Y_ [a]eT[k]e[a]e{u}

e=1

= 2{u}T[K]{u}

and

(3.71)

(3.72)

SW={$u}T r [a]eT{f}e
e=1

_ {Su}T{f} (3.73)

[M], [K] and {f} are the inertia, stiffness and load matrices for the
complete rod.

It will be left to the reader to verify the following results

2 1

1 4 1

[M]= 63a 1 4 1

1 4

1

1

2

1 -1

1 2 -1
[K] = 2a -1 2 -1

-1 2 -1

-1 1

(3.74)

(3.75)
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(3.76)

The matrix product [a]eT[m]e[a]e in (3.71) effectively locates the positions
in [M] to which the elements of [m]e have to be added. In practice it is
unnecessary to form [a]e and carry out the matrix multiplication. The
information required can be obtained from the element node numbers.
Element number e has nodes e and (e + 1). Therefore, the two rows and
columns of the element inertia matrix (equation (3.59)) are added into the
rows and columns e and (e+1) of the inertia matrix for the complete rod.
This procedure is known as the `assembly process'. This procedure also
applies to the stiffness matrix. In the case of the load matrix, the two rows
of the element load matrix (equation (3.67)) are added into rows e and
(e+1) of the load matrix for the complete rod.

The next step in the analysis is to ensure that the geometric boundary
conditions are satisfied. As it stands, the analysis refers to a free-free rod.
If the rod is now clamped at node 1, then the nodal displacement u, is
zero. This condition can be introduced by omitting u, from the set of degrees
of freedom for the complete rod, equation (3.68), and at the same time
omitting the first row and column from the inertia and stiffness matrices
for the complete rod, equations (3.74) and (3.75), and also the first row of
the load matrix (3.76).

The energy expressions (3.71) to (3.73) are now substituted into
Lagrange's equations (Sections 1.4 and A2) which give the equations of
motion

[M]{a}+ [K]{u} = {f} (3.77)

Methods of solving these equations are described in Chapters 9 and 10.
The physical significance of equations (3.77) will be illustrated by con-

sidering node 2. The equation of motion of node 2 is the second of the
equations in (3.77), namely

EA
(3.78)

The forces acting at node 2 are illustrated in Figure 3.7. The set (a) arise
from element I and the set (b) from element 2. These forces are obtained
by substituting the element energy expressions (3.57), (3.61) and (3.65) into
Lagrange's equations. Equilibrium of the forces shown in Figure 3.7 gives
equation (3.78).
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pAa

3

3
EA

2a
(-u,+u2)

(u +2a )

pAa (2ii2 + u3) 4

2a
(U2-U3)

EA 2iPpxa

a

(a)

(b)

Figure 3.7 Forces acting at node 2.

Example 3.3 Use the finite element displacement method to estimate the
lower frequencies and mode shapes of the clamped-free rod shown in Figure
3.1. Compare the results with the exact solution.

One element solution
The kinetic and strain energies of an element of length L are, from equations
(3.57), (3.59), (3.61) and (3.63)

1
T=!t[U,

U2J p6L [1 2] [a2z

U = zLut u2J
zLA [-1 1] [u'1

Imposing the condition that u, = 0 and substituting into Lagrange's
equations gives the equation of free vibration

[
6

where w is the frequency of vibration. The solution of this equation is

E 121.7322)
(oL

Two element solution
If the rod is now divided into two elements of length L/2, then the equation
of motion becomes, from equations (3.74) and (3.75)

2E
LA [-1

11 2 P12L
[1 2] J [A,] =0
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Letting (w2pL2/24E) = A, the above equation simplifies to

1(2-4A) -(1+A) A2
0

-(1+A) (1-2A) [A,]=
This equation has a non-zero solution provided

-(1+A) (1-2A)

Expanding gives

7A2-10A+1=0

The two roots of this equation are

A = 0.108 and 1.320

and the natural frequencies of the system are

(E)h/2
2

1.610 I
E )./2

(24A, )'/2 PLz

'i2 ( E v2
W2 = (24A2 )1/2

E

GL
2) = 5.628 1 E2)

From the homogeneousequations \

_ (1+A)
AZ

(2-4A) A3

When

A = 0.108, A2 = 0.707A3

A = 1.320, A2 = -0.707A3

The modes of vibration are therefore given by

(2-4A) -(1+A) =0

A, 0 A, 0

A2 = 0.707 A3 and A2 = -0.707 A3
A3 1.0 A3 1.0

The approximate values of w (pL21E) 1/2 are compared with the exact
values (see Example 3.1) in Table 3.3. The approximate frequencies are
greater than the exact ones and approach the exact ones as the number of
elements is increased.
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Table 3.3. Comparison of approximate frequencies with exact
solution for a rod

FEM solutions

Mode 1 Element 2 Elements Exact solution

1 1.732 1.610 1.571
2 - 5.628 4.712

Mode 1

Mode 2

Figure 3.8 Axial modes of vibration of a rod. Exact; - - - approximate
(FEM).

The approximate mode shapes obtained using two elements are compared
with the exact mode shapes in Figure 3.8.

If the analysis is repeated using three and four elements it will be
necessary to use one of the methods described in Chapter 8 to solve the
resulting eigenproblem. Comparing the results obtained with the exact
frequencies gives the percentage errors indicated in Figure 3.9.

The application of the finite element method to non-uniform structures
adds no more complications, as illustrated by the following example.

Example 3.4 Determine the inertia and stiffness matrices for the non-
uniform rod shown in Figure 3.10.
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e

0L
1

10

8

6

4

2

2 3

Number of elements

Figure 3.9 Axial vibration of a clamped-free rod.

1 2 3L+ L --I
M

0
2A A

Figure 3.10 Non-uniform rod.

4

From equation (3.59) the inertia matrices for elements 1 and 2 are

3
2 5[MI, =PAL 13

3
[m]2=PAL [6

3J

Element 3 is a lumped mass and its kinetic energy is

T3=2Mu32

The inertia matrix is therefore

[m]3 = M (a scalar)
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Assembling these three element matrices and applying the condition
u, = 0 gives

[MI- r(2pAL/3+pAL/3) pAL/6 1

L pAL/6 (pAL/3+M)J

_ pAL pAL/6
pAL/ 6 (pAL/ 3 + M)

jFrom equation (3.63) the stiffness matrices for elements I and 2 are

2
]' [k]2= EL [-1 1 -1 1][k],=EL [-2 2

Element 3 is considered to be a rigid mass and so does not contribute to
the stiffness matrix of the complete structure. Assembling the two stiffness
matrices and applying the condition u1= 0 gives

_EA 2+1 1

KJ L -1 1

EA[ 3 -1]
L -1 1

To determine the stress distribution when using the finite element method,
the distribution of stress is determined for each element in turn.

From equations (2.8) and (2.10) the axial component of stress, Qx, is
given by

au
ax = E -

ax
(3.79)

For element number e the displacement variation is given by equation
(3.52), namely

u = [N(e)] Jul,

Substituting (3.80) into (3.79) gives

(3.80)

ox = E [aN(e)/aCJ {u}e = Lsi a{u}e
a

(3.81)

where LsJ a is the `stress matrix' for the element. Substituting for the functions
N;(e) from equation (3.51) gives

[s]EH
+z1 (3.82)

a

Thus the stress is constant within each element.
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Example 3.5 Use the two element solution for a clamped-free rod given in
Example 3.3 to determine the stress distribution when the rod is vibrating
in its lowest frequency mode. Compare the results with the exact solution.

For element 1

E
QX= L -2 +2] [0.707]A3

E
=1.414 L A3

For element 2

vx =
L

[-2 +2] [0.0
.707

E
0.586L- A3

From Example 3.1 the exact solution for the displacement is given by

7rx
+1,(x) = sin

2L

The axial stress is therefore

a 4i, _ 7r E arx
Qx=E cos

ax 2 L2L
The distributions of o, ,LIE given by the two methods are shown in

Figure 3.11. Using the finite element method the stress distribution is
constant within each element, as noted before. In addition, it can be seen
that the stress distribution is discontinuous at the junction between elements.
This is a feature of the finite element displacement method, since the
convergence criteria require that the displacement functions be continuous

1 2 3

Figure 3.11 Distribution of axial stress for the first mode of vibration of a
clamped-free rod. Exact; - - - approximate (FEM).
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and have continuous derivatives up to order (p - 1) across element boun-
daries. The strain components, and hence the stresses, involve derivatives
up to order p which can be discontinuous.

The reason why the predicted stresses in the above example are poor,
even when the predicted displacements are good, is because the equations
of motion and natural boundary conditions are only approximately satisfied.

This can be seen by considering the equilibrium of part of an element
as shown in Figure 3.12. The introduction of an inertia force of magnitude
pAu per unit length in the opposite direction to the acceleration allows the
concepts of static equilibrium to be used (see Section 1.1). For equilibrium

Ao,x(x)=AQx(-a)+ J x pAu dx (3.83)
a

Dividing by A, converting to the coordinate and assuming harmonic
motion gives

Qx(f) = o (-1) -Pw2a f u(6) d f (3.84)

Since the displacement u(e) has been assumed to vary linearly over the
element, then from equation (3.84) the stress ax(e) will vary quadratically.
However, equations (3.81) and (3.82) give only constant stress.

An improved estimate of the stress distribution can be obtained using
equation (3.84). Substituting for u(e) from (3.50) and (3.51) gives

x()=Qxl-1)-Pw2a f [12(1-f) 12(1+e)} df{u}e

=vx(-1)-Pw2a !( -i 2+z) z( +i 2+z)}{u}e (3.85)

The stress at the first node can be calculated from the total force
acting on the element. This force is obtained by substituting the element

a+x

pAuL--L. LLLL
Aox(-a) 4----

x=-a
e=-1

--- A-.,-(x)

--x,

Figure 3.12 Equilibrium of part of an axial element.
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energy expressions into Lagrange's equations. This process gives (compare
Figure 3.7(b))

Force at node 1mix(-1) _
Area

=
E

l 2 2J {U}e +pw 2a L3 3J {u}e
a

Using the same method, the stress at the second node is

Force at node 2
U,(+1) =

Area

E
= t.2 U {U}e pw2a 1 3 3J {U}e

a

(3.86)

(3.87)

This expression can also be derived by evaluating equation (3.85) at =+1
and using (3.86).

Example 3.6 Use equations (3.85) and (3.86) to determine the stress distribu-
tion for the clamped-free rod given in Example 3.3 when it is vibrating in
its lowest frequency mode. Compare the results with the exact solution.

For element 1

( 4E 1 , r0 1Qxl-1)=
L z d LO.7O7JA3

2 L 2 1
0

+Pco
4

3 3 0.707]A3

Since

A = pw2L2/24E = 0.108,

Therefore

pce2L/4 = 0.648E/L

mix(-1)=1.567
EA3

Qx(0)=Qx(-1)-pw24 ,a 110
4]

0.707
A3

E
=1.452

L
A3
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14E ,

'1
0

mix(+1)= L2 z L0.707JA3

_ 2 L' 1 2 0
PW 4 13 3i [707]A3

E
=1.108L- A3

For element 2

4E , 1] 0.707
Ox(-1)= L L-2 2J 11.0 ]A3

2 L 2
1] 11.0

0.707]
+Pco 4 [3 3 A3

E
=1.108L- A3

0_x(0)=vx(-1)-PW24L[ 3
4

141
0.707

1.0
A3

E
= 0.605

L
A3

4E
I 1 1

[0.7o7]
fix(+1) = L L 2 2] 11.0 A3

_(02 L 1 2] [0.707]P4 13 3
1.0 A3

= 0.0

Note that o- (-1) for element 2 is equal to o- (+1) for element 1. This
is because the stresses at the node points have been calculated from the
nodal forces which are in equilibrium.

The approximate values of (oL/E), corresponding to a unit displace-
ment at the tip, are compared with the exact values (see Example 3.5) in
Table 3.4. The modified procedure for calculating stresses has produced
accurate estimates at all positions of the rod.

If an element is subjected to an applied load of magnitude px per unit
length, as well as the inertia force of magnitude pAu per unit length (see



Axial vibration of rods 83

Table 3.4. Comparison of
approximate and exact stresses in
the fundamental mode of a rod

Stresses

x1 L FEM E xact

0.0 1.567 1. 571

0.25 1.452 1. 451

0.5 1.108 1. 111

0.75 0.605 0. 601

1.0 0.0 0. 0

Figure 3.12), then for equilibrium

xAQx(x)=Ao-x(-a)+ J (pAu -px)dx (3.88)

Dividing by A, and converting to the t= coordinate gives

u (f) = ox(-I) +pa u(e) de-(a/A) px(e) dr= (3.89)

It should be remembered that all the force, displacement and stress
quantities in (3.89) are time dependent also. Substituting for from
(3.50) and (3.51) and assuming px to have the constant value px over the
element gives

Qx() ox(-1)+pa 22+ z) 2( + 2 2+ 2)J {U}e

- (pxa/A)(e+ 1) (3.90)

The stresses at the two nodes of the element are again calculated from
the total forces acting, which gives

Qx(-1) _ EA 1 -1 {u}e+
pAa 2

A mix(+1)) 2a [-1 1 3 11
2]{u}e pxa [1]

(3.91)

The values of the nodal displacements Jul, are obtained from the solution
of equation (3.77).
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2a

mx

1 2

x= -a
f_ -1

x=a
=1

Figure 3.13 Geometry of a single torque element.

3.4 Torsional vibration of shafts

The energy expressions for the single torque element shown in Figure 3.13
are from Section 2.2

+a

TQ = 2 pI,Ox2 dx
-a
('+a 2

Ue=2 J
GJ(,O_

J
dx

a ax

8We =
Jr+a

mx56x dx
a

(3.92)

(3.93)

(3.94)

The highest derivative appearing in these expressions is the first and so
only the rotation about the x-axis (i.e., the twist), 9x, need be continuous.
Therefore, Bx is the only degree of freedom required for each node point.
This means that the variation of ex with x is the same as the variation of
u with x for an axial element, that is, linear. The element displacement
function is therefore

0x= [N1(f) N2(e)] [::1 = LN(e)J{e}e (3.95)

where

N;(f) = 2(1 +ee) (3.96)

with f, _ -1 and 62 = +1.
Note that

aex 1 +lI
2

ZJ
exl

(3.97)
ax a x2

which is constant within the element.
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Substituting the functions (3.95) to (3.97) into the energy expressions
(3.92) to (3.94) gives the following results

Te = 2{e}eT[m]e{9}e (3.98)

Ue = 21{9}eT[k]e{9}e (3.99)

swe = {se}eT{f}e (3.100)

where

[m]e = plxa
12 1

3 3

L1 2
3 3

(3.101)

GJ 1 1-[k]e =
a

-
-z z

(3.102)

{f}e = mxa I1] (3.103)

where mx is the constant value of mx for the element.
These results are also obtainable from those for an axial rod by replacing

pA, EA, px by pI, GJ, mx respectively. The assembly and application of
geometric boundary conditions is exactly the same as for the axial vibration
of rods.

The shear stresses are shown in Section 2.2 to be given by

[r] a+G/ay-z
= G y] ax

(3.104)

where iIi(y, z) is the warping function. Methods of determining this are
given in reference [3.11].

The total moment about the x-axis, Mx, is

M. =
J

(yTxz - zTxy) dA (3.105)
A

Substituting for Txy, r,

ly

fr(3.104) int(_)}o (3.105)) gives

Mx=G-
J y-za"zdA (3.106)

ax' A az

It can be shown that the integral in this expression is equivalent to the
expression for J as given by equation (2.21) [3.12]. Equation (3.106) there-
fore becomes

Mx = GJ a0- (3.107)
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Substituting for aOx/ax in equation (3.104) from (3.107) gives

Txy _ a+G/ay - z Mx
TXZ] J

(3.108)

The twisting moments at the nodes are obtained by substituting the
element energy expressions (3.98) to (3.100) into Lagrange's equations. This
gives

Mx(-1) _ GJ 1

-1101,Mx(+1)] 2a [-1 11

+P3a11 2]191e-mXa [11] (3.109)

The twisting moment at any section can be obtained by considering
equilibrium of part of the element between -1 and .

Mx( )=-Mx(-1)+pIxa
J J

mx(6) de (3.110)
I

Substituting for ex from (3.95) and assuming mx is constant gives

MW(e)=-Mx(-1)+pIxati(6-z 2+i) i( +z 2+i)]{e}e
- mxea(e+ 1) (3.111)

The shear stresses are given by equations (3.108) and (3.111) combined.

3.5 Bending vibration of beams

It is shown in Section 3.2 that it is necessary to take v and av/ax as degrees
of freedom at each node of a beam element. Therefore the element shown
in Figure 3.14, which has two nodes, has a total of four degrees of freedom.
The displacement function can thus be represented by a polynomial having
four constants, namely

v = a1 + a2'+ a3e2+ (3.112)

This expression can be written in the following matrix form

1a,

v = 11 e
2 3J I a2

a3

a4

(3.113)
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2a

1py

+4+44 4 4 4 4

ip

1tT 4 - x,
x=-a x=a
=-1 =1

Figure 3.14 Geometry of a single beam element.

or

v = [P()J {a} (3.114)

Differentiating (3.112) gives

av av 2aOz = a
ax

=
a

= a2+2a3e+3a4

Evaluating (3.112) and (3.115) at 6 = R 1 gives

v, 1 -1 1 -1 a,
aez, _ 0 1 -2 3 a2

V2 1 1 1 1 a3

a0,2 0 1 2 3 a4

or

{V}e = [A]e{a}.

Solving for {a} gives

{a} = [A]e'{v}e

where

2 1 2 -1
_ 1 -3 -1 3 -1

[A]e'
4 0 -1 0 1

1 1 -1 1

(3.115)

(3.116)

(3.117)

(3.118)

(3.119)

Equation (3.118) can be written in the alternative form

{a} = [C]e{v}e (3.120)

where

{V}eT= [U, 6z, V2 0z21 (3.121)
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and

2 a 2 -a
_ 1 -3 -a 3 -a

[Cle 4 0 -a 0 a

1 a -1 a

Substituting (3.120) into (3.114) gives

v = [POJ [Cle{v}e

This can be expressed in the form

v = [N(f)] {v},

where

(3.122)

(3.123)

(3.124)

[N(e)J = [N1(e) aN2(e) N3(e) aN4(e)J (3.125)

The displacement functions in (3.125) are given by

4(2-3e+f3)
N2(e)=4(1-6-e2+ 63

)

N3()= a(2+36- ;`3 )
N4(e)=a(-1-1;+f2+63

The energy expressions for the single element shown
from Section 2.3

Te=zf+apAv2dx

EIZ
(a2v\2

Ue 2

f a
dxi

SWe=
J+ap5vdx

a

(3.126)

in Figure 3.14 are

(3.127)

(3.128)

(3.129)

Substituting the displacement expression (3.124) into the kinetic energy
(3.127) gives

+ +1

Te = z
_

pAv2 dx = i J 1 pA62a de

= 2{i}eTpAa
1

[N(S)] T[N(S)J d6{$},J 1 (3.130)
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Therefore the element inertia matrix is given by

t

[mle =pAa f
+

d (3.131)

Substituting for the functions N,(f) from (3.126) and integrating gives

78 22a 27 -13a
_ pAa 22a 8a2 13a -6a2

mle
105 27 13a 78 -22a

-13a -6a2 -22a 8a2

(3.132)

In deriving this result, it is simpler to use the expression (3.123) for the
displacement v. This approach requires the integral f+,' [P(e) j T [P(i; )l de
to be evaluated, which is much simpler than the expression (3.131).

Substituting the displacement expression (3.124) into the strain energy
(3.128) gives

+a 2V 2 1

Ue = 12 EI= z) dx = 12 EIZ 4
(,2V)2

a de
ax a

g2
+

= i{v}eT
EIQ3Z

[N"( )j T[N"(e)] de{v}e

The element stiffness matrix is therefore

[kle =
aIZ J T

de

(3.133)

(3.134)

Substituting for the functions from (3.126) and integrating gives

3 3a -3 3a

=
EIZ 3a 4a2 -3a 2a

2

kle 2a3 -3 -3a 3 -3a (3.135)

3a 2a2 -3a 4az

The virtual work done by the distributed forces becomes, after substituting
(3.124) into (3.129)

fa +1

SWe =
a

pvSv dx p,5v a de

={Sv}eTa (3.136)
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The element load matrix is therefore

{f}e = a JvN()JTdf (3.137)
1

Substituting for the functions N;(6) from (3.126) and assuming p,, to have
the constant value pY over the element gives

13

{f}e = py 3
3

(3.138)

-aa
The assembly process for a beam element is similar to that of an axial

element. For element e with nodes e and (e + 1), the four rows and columns
of the inertia matrix (3.132) are added into rows and columns (2e - 1) to
(2e+2) of the inertia matrix for the complete beam. The stiffness matrix is
treated in the same way. The four rows of the element load matrix are
added into rows (2e-1) to (2e+2) of the assembled load matrix.

Example 3.7 Use the finite element displacement method to estimate the
lower frequencies of the cantilever beam shown in Figure 3.3. Compare the
results with the exact solution.

One element solution
The kinetic and strain energies of a beam of length, L, which is represented
by a single element, are given by the expressions (3.130) to (3.135) with
a = L/2. Imposing the conditions that v, = 0,1= 0 and substituting into
Lagrange's equations gives the equation of free vibration

E
L LIZ

[
6L 4L2 ]

21p

0

L

[-11L 2L ]] Lg 2J -0
Letting (w2pAL4/210EIZ) = A, this equation simplifies to

(12-78A) (-6+11A) v2 -0
(-6+11A) (4-2A) LOZz

This equation has a non-zero solution provided

(12-78A) (-6+11A) _0
(-6+11A) (4-2A)

Expanding gives

35A2-204A+12=0
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The two roots of this equation are

A = 0.0594295 and 5.76914

and the natural frequencies of the system are

and

(2101 , )1/2 ( El
4

(EI ) 1/2
pAL

P
4 f = 3.533

AL4

( EI )'/2 ( EI l
1/2

m2=(210.12)'/2
pAL4

=34.807
PAL4)

Table 3.2 shows that the values of the coefficient for these two frequencies
should be 3.516 and 22.035 respectively. The errors produced by a one
element solution are therefore 0.48 and 58% respectively.

Repeating the analysis using two, three and four elements gives the errors
shown in Figure 3.15 when compared with the exact solution. Notice that
the convergence in this case is better than that obtained for the rod (Figure
3.9). This is in keeping with the observation made in reference [3.13] that
the convergence of the Rayleigh-Ritz method is improved if the order of

5

4

3

2

1

0
1 2 3

Number of elements

4

Figure 3.15 Flexural vibration of a cantilever beam.
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the derivatives in the energy expressions is higher. Results for a variety of
boundary conditions are presented in reference [3.14].

The shear force and bending moment at the two nodes are obtained by
substituting the element energy expressions (3.130) to (3.138) into
Lagrange's equations. This gives

Q(-1)
MZ(-1)

= [k]e{v}e+[m]e{i}e - {f}e (3.139)
Q(+1)

M,(+1)

where [k]e, [m]e, {f}e and {v}, are defined by equations (3.135), (3.132),
(3.138) and (3.121) respectively.

The shear force and bending moment at any section can be obtained by
considering equilibrium of the part of the element between -1 and f. This
gives

Q() = Q(-1)+ pAa J v(,) d, - a
J

pv(i) d, (3.140)
I

M(i)=M(-1)-Q(-1)a(1+ )-pAa2J 6(f, ) (- l ) d1

+a2 J (3.141)

The integrals are evaluated after substituting for v from (3.124). Some
applications of this method can be found in reference [3.15].

The distribution of the direct stress component, ax, over a cross-section
can be calculated using a combination of equations (2.126) and (2.127),
namely

ax=-yMJI. (3.142)

The method of determining the distribution of shear stress depends upon
the shape of the cross-section [3.16].

3.6 Vibration of plane frameworks

Consider a plane framework, such as the one shown in Figure 3.16, which
is vibrating in its own plane. It can be seen that the framework consists of
members which are inclined to one another at various angles. When applying
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Figure 3.16 Example of a plane framework.

y, V

Figure 3.17 Geometry of a plane framework element.

the finite element method to such a structure, the following procedure is
used:

(1) Divide each member into the appropriate number of elements.
(2) Derive the energy expressions for each element in terms of nodal

degrees of freedom relative to a `local' set of axes.
(3) Transform the energy expressions for each element into expressions

involving nodal degrees of freedom relative to a common set of `global'
axes.

(4) Add the energies of the elements together.

Figure 3.17 shows a typical element together with its local axes x and y
which are inclined to the global axes X and Y. The local axis of x lies
along the centroidal axis which joins nodes 1 and 2. The local y-axis is
perpendicular to the x-axis and passes through the mid-point of the line
joining 1 and 2.

Each member of a plane framework is capable of both axial and bending
deformations. Therefore the energy functions for an element are a combina-
tion of the energy functions derived in Sections 2.1 and 2.3. These are, in
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terms of local coordinates, as follows:

Te=2 pA(u2+v2)dx

(+a au \z (+a a

ax

z axv\z

ue2 J EAI dx+2 J EIII 2) dx
a a

+

5W p,,Sv dxe = pSu dx+f-+.a

(3.143)

In these expressions u, v are the displacement components of the centroid
of a cross-section and px, p, are the components of the load per unit length,
both relative to the local axes x and y.

Since the axial and bending deformations are uncoupled, they can be
treated separately as in Sections 3.3 and 3.5. The displacement functions
can therefore be taken to be the ones defined by equations (3.52) and
(3.124), which are

u = [Nu(6)] {u}e

v = {v},
(3.144)

The subscripts u and v are introduced here to differentiate between axial
and lateral displacements.

Substituting equations (3.144) into the kinetic energy expression in
(3.143) gives, on integration, the sum of the kinetic energies given in Sections
3.3 and 3.5, namely

]T
[

[2
1

T
2 u 2 uz

v, T 78 22a 27 -13a v,
1 9Z, pAa 22a 8a2 13a -6a2 9Z,

2 vz 105 27 13a 78 -22a tie

0z2 -13a -6a2 -22a 8a2 A2.

This expression can also be written in the more compact form

(3.145)

U1 7 0 0 0 35 0 0 U,

0 7 8 22a 0 27 -13a v,

6r, pA a 0 2 2a 8a2 0 13a -6a 2 6.,
TT = 2

U2 105 35 0 0 70 0 0 142

62 0 2 7 13a 0 78 -22a 62

°z2 L 0 -1 3a -6a2 0 -22a 8a 2 0z2

(3.146)2{U}eTIUe{U}e
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Substituting the displacement functions (3.144) into the strain energy
function (3.143) gives

Ue =j z{u}eT[k]e{u}e (3.147)

where

(a/rz )2 0 0 -(a/rz )2 0 0

0 3 3a 0 -3 3a

EIz
k

0 3a 4a2 0 -3a 2a2
[ 1 e = 2a3 -(a/rz )2 0 0 (a/rz )2 0 0

0 -3 0 0 3 -3a

0 3a 2a2 0 -3a 4a2

(3.148)

and rz2 = I'/A. (Note, rz represents the radius of gyration of the cross-section
about the z-axis.)

Similarly, the virtual work done by the applied loads is

SWe = {U}eT{ f}e

If the applied loads are constant, then the load matrix is

e
PX

Py,

aP',/3
PX

Py
-apyl3

(3.149)

(3.150)

The next step is to transform the energy expressions (3.146), (3.147) and
(3.149) into expressions involving nodal degrees of freedom relative to the
global axes.

The vector displacement u of a single node is given by

u = uz + 0 (3.151)

relative to the local axes, where i and y are unit vectors in the x- and
y-directions. Relative to global axes, this same vector displacement is

u"= UX+VY (3.152)

where X, f and U, V are unit vectors and displacement components in the
direction of the global axes X and Y (see Figure 3.17).
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Taking the scalar product of equations (3.151) and (3.152) with i and y
respectively gives

x"- YV

=cos (x, X)U+cos (x, Y)V (3.153)

and

y

cos (y, X) U + cos (y, Y) V (3.154)

where cos (x, X) denotes the cosine of the angle between i and X, etc.
Since the local z-axis is parallel to the global Z-axis, then

Z=Z and 0z= Oz

Combining equations (3.153) to (3.155) together in matrix
u cos (x, X) cos (x, Y) 0 U
v = cos (y, X) cos (y, Y) 0 V

oz 0 0 1 Oz

U
V=[L2]

6Z

where [L2] is a direction cosine array.

(3.155)

form gives

(3.156)

The degrees of freedom at both the nodes of the element can therefore
be transformed from local to global axes by means of the relation

u, U,

VI [L2] [0] V,

e=, oz,

U2 U2

V2 [0] [L2 ] V2

ez2 °Z2

or

(3.157)

Jul, = [R]e{U}e (3.158)

Substituting (3.158) into the energy expressions (3.146), (3.147) and
(3.149) gives

Te = z{U}eT[m]e{U}e

Ue = z{U}eT[k]e{U}e (3.159)

SWe = {U}eT{f}e
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where

[m]e = [R]eT[m]e[R]e

[k]e = [R]eT[k]e[R]e (3.160)

{f}e = [R]eT{ f}e

In order to evaluate the expressions (3.160) it is necessary to calculate
the element length, 2a, and the elements of the direction cosine array, [L2 ],
from the global coordinates of the nodes 1 and 2. The position vectors of
nodes 1 and 2 are (see Figure 3.17)

V1=X,X+Y,Y

and (3.161)

V2=X2X+Y2Y

The length of the element is equal to the magnitude of the vector (V2- fl),
and so

2a=IV2-V1l (3.162)

Substituting (3.161) into (3.162) gives

2a={(X2-X,)2+(Y2-Y,)2}1/2

= {X21z + Y212}1/2
(3.163)

where

X21=X2-X,, Y21= Y2 - Y, (3.164)

Now

(V2-V1)X21 Y21_
X

+x
(3.165)

7V2 - V1I 2a 2a

Therefore

I X2112a, x Y = Y21/2a

Since y is perpendicular to x", then

y""=Znx=-2a1X+Xa1 Y (3.166)

where (n) denotes a vector product. Thus

X =-Y2,/2a, y Y=X21/2a (3.167)
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1 2

Figure 3.18 Example of a plane framework.

The direction cosine array, which is defined in (3.156) is therefore

X21/2a Y21/2a 0

[L2]= -Y21/2a X21/2a 0

0 0 1

(3.168)

The assembly process for an element of a plane framework is slightly
different from that used for the previous elements. The reason for this is
that the nodes at the two ends of an element do not always have consecutive
numbers as shown by the example in Figure 3.18. The general rule in this
case is that for an element with node numbers n1 and n2, then columns 1
to 3 and 4 to 6 of the element matrices are added into columns (3n, -2) to
3 n, and (3 n2 - 2) to 3 n2 of the matrices for the complete framework respec-
tively. At the same time, rows 1 to 3 and 4 to 6 are added into rows (3 n, - 2)
to 3n, and (3n2-2) to 3n2 respectively. To illustrate this the positions of
the terms representing the framework element 1-3 in Figure 3.18 are indi-
cated in Figure 3.19.

The example shown in Figure 3.18 will now be used to illustrate two
types of constraint which are frequently encountered. These consist of linear
relationships between the degrees of freedom, either at a single node or at
two or more nodes.

First of all consider node 6 which is supported by an inclined roller. The
condition to be applied here is that the displacement in the Y'-direction is
zero, that is

(U6X+V6 Y) Y'=0 (3.169)

Now

f'= -sin aX + cos aY (3.170)
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1 2 3 4 5 6 789

18

Figure 3.19 Illustration of the assembly process.

18

Substituting (3.170) into (3.169) gives

-sin aU6+cos aV6=0 (3.171)

This is a linear relationship between the degrees of freedom at a single
node. It may be used to eliminate U6 from the energy expression using the
method described in Section 1.5.

Reference [3.17] shows that when the members of a framework are
slender, the axial deformation of each member can be neglected. This fact
can be used to reduce the number of degrees of freedom in the following
manner.

Since node 5 is clamped, then

U5 = 0, V5 = 0, 0Z5=0 (3.172)

The axial deformation of members 1-3 and 3-5 can be neglected by imposing
the conditions

V,=0, V3=0 (3.173)

The axial deformation of the remaining members can be neglected by
applying the constraints

U,- U2=0, U3- U4=0

V2-V6=0, V4-V6=0
(3.174)

The constraints (3.172) and (3.173) are applied in the manner described in
Section 3.3. Equations (3.174) are linear relationships between degrees of
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freedom at two nodes. They may be used to eliminate four degrees of
freedom, say U1, U3, V2 and V4, from the energy expressions using the
method described in Section 1.5.

Example 3.8 Calculate the first five antisymmetric frequencies and modes
of the two-dimensional, steel framework shown in Figure 3.20. Compare
the results with the analytical solution [3.18]. Take E = 206.84 GN/m2 and
p=7.83x103kg/m3.

Since the framework has one axis of symmetry, the antisymmetric and
symmetric modes can be calculated separately by idealising half the structure
and applying appropriate boundary conditions on the axis of symmetry
(see Chapter 8). The results presented in reference [3.14] indicate that
modes which involve the individual vertical members and half the horizontal
members deforming in not more than one complete flexural wave, can be
represented adequately by three elements per member. Figure 3.21, there-
fore, indicates an adequate idealisation for the modes to be predicted.

7245 .

T
22.86 1 lo- 0.3175 x 1.27

22.86 y 0.3175

X

Figure 3.20 Geometry of a two-dimensional framework. Dimensions are in
centimetres.

11 12 13
10

8

6
5 7 9

4

3

2

1
y

1 X
Figure 3.21 Idealisation of half the framework.
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Table 3.5. Comparison of predicted frequencies (Hz) with exact
ones for the antisymmetric modes of a framework

Mode FEM Analytical [3.181 % Difference

1 15.14 15.14 0.00
2 53.32 53.32 0.00
3 155.48 155.31 0.11
4 186.51 186.23 0.15
5 270.85 270.07 0.29

There are three degrees of freedom at each node, namely, linear displace-
ments U and V in the X- and Y-directions and a rotation O. about the
Z-axis, which is orthogonal to X and Y. Since node 1 is fully fixed, all
three degrees of freedom there are constrained to be zero. The antisymmetric
modes are obtained by setting the V displacement to zero at nodes 9 and 13.

Reference [3.17] indicates that the framework is slender and so the axial
deformation of each member can be neglected. The axial deformation of
the vertical members can be eliminated by setting the V displacement to
zero at nodes 2, 3, 4, 6, 8 and 10. For the horizontal members, the U displace-
ment at nodes 5, 7 and 9 are set equal to the U displacement at node 4 and
the U displacement at nodes 11, 12 and 13 are set equal to the U displace-
ment at node 10.

The predicted frequencies are compared with the analytical ones in Table
3.5 and the corresponding mode shapes are shown in Figure 3.22. The
predicted frequencies are in very close agreement.

3.7 Vibration of three-dimensional frameworks

The procedure for analysing a three-dimensional framework is the same as
the one described in Section 3.6 for a plane framework. Figure 3.23 shows
a typical element together with its local axes x, y and z and global axes
X, Y and Z. The local x-axis lies along the centroidal axis which joins
nodes 1 and 2. The local y- and z-axes coincide with the principal axes of
the cross-section of the element.

In this section it will be assumed that the shear centre of a cross-section
coincides with the centroid. This assumption is restrictive only when both
properties are important in the same problem. The modifications required
when the shear centre does not coincide with centroid is discussed in Section
3.11.

Each member of a three-dimensional framework is capable of axial
deformation, bending in two principal planes, and torsion about its axis.
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3

5

2

4

Figure 3.22 Antisymmetric mode shapes of a framework.

z, w

Ox

Figure 3.23 Geometry of a three-dimensional framework element.
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The energy functions are, therefore, a combination of the energy functions
derived in Sections 2.1 to 2.3. These are, in terms of local coordinates, as
follows:

+

Te=z
J+a

pA(uz+vz+4z)dx+2
Ja

plx9x2dx
a a!

1
2Ue 2 Qa EA (ax

)Z
dx+ z. J-aa j EIZ (ax

2

2

2

+a

f
GJ(Jzdx

(3.175)

+a +a +a

6We= px6u dx+ (py&+pz8w) dx+ f
-a

dx
a -a

In these expressions u, v and w are the displacement components of the
centroid of the cross-section relative to the local axes, x, y and z, and 0x
the rotation of the cross-section about the local x-axis. Also px, py and pZ
are the components of the load per unit length relative to the local axes
and mx the twisting moment per unit length about the local x-axis.

Since the axial, bending and twisting deformations are uncoupled, they
can be treated separately as in Sections 3.3 to 3.5. The displacement functions
can therefore be taken to be the ones defined by equations (3.52), (3.124)
and (3.95), which are

v =

[N
(((fi)

] (w),

0x [Nx tt(S)] {Ox}e

Note that

[Nx(S )] = [Na()J

and (3.177)

[NW(h)] = [N1(h) -aN2( ) N3(e) -^(e)]
where the functions N,() to N,() are defined by equations (3.126). The
change in signs from the expression for [Nv(f)] (see (3.124)) is because
0y = -aw/ax, whilst 0Z =+av/ax.

Substituting equations (3.176) into the kinetic energy expression in
(3.175) gives, after integration:

Te = z{d}eT[III]e{u}e (3.178)
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where

and

fill
[m]e = T

fn12

W1 0x, ey, 0z1 U2 V2

ill, 21

m22

W2 Ox2 ey2 0Z2]

(3.179)

(3.180)

where

70 0 0 0 0 0

0 78 0 0 0 22a

pAa 0 0 78 0 -22a 0

m"
_

105 0 0 0 70rx2 0 0

0 0 -22a 0 8a2 0

0 22a 0 0 0 8a2J

35 0 0 0 0 0

0 27 0 0 0 -13a
pAa 0 0 27 0 13a 0

m12

_
105 0 0 0 35rx2 0 0

0 0 -13a 0 -6a2 0

0 13a 0 0 0 -6a2

70 0 0 0 0 0

0 78 0 0 0 -22a
pAa 0 0 78 0 22a 0

M22
_

105 0 0 0 70rx2 0 0

0 0 22a 0 8a2 0

0 -22a 0 0 0 8a2

(3.181)

(3.182)

(3.183)

and rx2 = Ix/A.
Similarly, substituting equations (3.176) into the strain energy expression

in (3.175) gives

Ue = z{U}eT[k]e{u}e (3.184)

where

1 2
T k'21

(3.185)[k]e =
[kHk, k22J
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and

_ AEk
8a3

4a2 0 0 0 0 0

0 12rz2 0 0 0 12arz2

0 0 12r,,2 0 -12ar,,2 0

0 0 0 2a2r,2/(1+v) 0 0

0 0 -l2ar,,2 0 16a2r,,2 0

0 12arz2 0 0 0 16a2r,2

(3.186)

AE
k12 _ 8a3

_AEk22 8a3

-4a2 0 0 0 0 0

0 -12rZ2 0 0 0 12arZ2

0 0 -12r,,2 0 -12ar,,2 0

0 0 0 -2a2rj2/(l+v) 0 0

0 0 12ar,,2 0 8a2ry2 0

0 -12arZ2 0 0 0 8a2rZ2

(3.187)

4a2 0 0 0 0 0

0 12r22 0 0 0 -12ar,2
0 0 12r,,2 0 12ar,,2 0

0 0 0 2a2rj2/(1+v) 0 0

0 0 12ar,,2 0 16a2ri2 0

0 -12ar.2 0 0 0 16a2rz2

In the above ry 2 = I,,/A, r22 = Iz/A and r,2 = J/A.
The work done by the applied loads is

S We = {u} eT{ f}e

If the applied loads are constant, then the load matrix is given by

{f}eT=a4Px py p=

PX Py P=

(3.188)

(3.189)

Me -pza/3 pea/3

mX pza/3 -pea/3J (3.190)

The energy expressions (3.178), (3.184) and (3.189) are now transformed
into expressions involving nodal degrees of freedom relative to the global
axes.

The vector displacement ii of a single node is given by

u= UX+VY+WZ (3.191)
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relative to the global axes, where X, f and Z are unit vectors along the
X, Y and Z-axes. The components of u relative to the local axes are given
by

u=x ii=x4 XU+x I'V+z Zw
= cos (x, X) U+cos (x, Y)V+cos (x, Z) W (3.192)

v=y d=y XU+y YV+y ZW
= cos (y, X) U+cos (y, Y) V+cos (y, Z) W (3.193)

w=z" a=z XU+z YV+z ZW
=cos(z,X)U+cos(z, Y)V+cos(z,Z)W (3.194)

Equations (3.192) to (3.194) can be combined in the following matrix form

u cos (x, X) cos (x, Y) cos (x, Z) U

v = cos (y, X) cos (y, Y) cos (y, Z) V

w cos (z, X) cos (z, Y) cos (z, Z) W

U

=[L3] V
w

It can be shown in a similar manner that

ex eX

0y = [L3 ] 0Y

Oz Oz

(3.195)

(3.196)

The degrees of freedom at all the nodes of the element can therefore be
transformed from local to global axes by means of the relation

{u}, = [R]e{U}e (3.197)

where

We T= [U1 V1 W1 Ox1 0yl Bzl U2 V2 w2 0x2 0y2 0z2J (3.198)

{U}eT = [Ul V1 W1 OX1 0Y1 0Z1 U2 V2 W2 0X2 0Y2 0Z21
(3.199)

[R]e = [L3 ] (3.200)

[L3]



Vibration of three-dimensional frameworks 107

Substituting the transformation (3.197) into the energy expressions
(3.178), (3.184) and (3.189) gives expressions of the same form as (3.159)
and (3.160).

In order to evaluate these expressions it is necessary to calculate the
element length, 2a, and the elements of the direction cosine array [L3 ]. The
position vectors of nodes 1 and 2 are

V1=X,X+Y,Y+Z,Z
V2=X2X+Y,Y+Z2Z

(3.201)

The length of the element is given by

2a =I V2- V11 = {X212+ Y212+2212}'/2 (3.202)

where

X21=X2-X,, Y21=Y2-Y1, Z21=Z2-Z, (3.203)

Now

(V2-V1)_X21 Y21 221

V2- V1l 2a 2a 2a
z

Therefore

z X = 2Q'
X Y 2a1, x Z= a

(3.204)

(3.205)

The orientation of the local yz-axes can be defined by specifying the
position of any convenient point in the local xy-plane but not on the x-axis.
This point will be referred to as node 3 and its position indicated by the
vector V3. Since the local z-axis is perpendicular to both (V2- V1) and
(V3 - V 1), then

_ (V2-V1)A(V3-V1)
Z

1(V2-V1)A(V3-V1)l
(3.206)

Now the position of node 3 is defined by

V3=X3X+Y3Y+Z4

Substituting the expressions (3.201) and (3.207) into (3.206) gives

1
(_7Z= 2A{(Y21Z31- Y31_-7 21)X+1X31-Z31X21)Y

123

(3.207)

+(X21Y31-X31Y21)Z} (3.208)
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where
2 2

2A123=((Y21231- Y31_72, ) +(221X31 -231X21)

+ (X 21 Y31- X 31
Y21)21112

(3.209)

In equations (3.208) and (3.209) the following notation has been used

X;;=X;-X;, Y;=Y,-Y;,
Z;;=Z;-Z;, i,j=1,2,3

Using (3.208) it can be seen that

Z'X=
2A123

2 XX (3 210)Z' Y= (1 31- 31 21) .

2A123

7Z' Ii= (X21Y31-X31Y21)
2A123

Since y" is perpendicular to both x and z then

y=ZAX (3.211)

This relationship gives

cos (y, X) = cos (z, Y) cos (x, Z) -cos (z, Z) cos (x, Y)

cos (y, Y) = cos (z, Z) cos (x, X) -cos (z, X) cos (x, Z) (3.212)

cos (y, Z) = cos (z, X) cos (x, Y) - cos (z, Y) cos (x, X)

The right hand sides of these expressions can be evaluated using (3.205)
and (3.210).

The assembly process for an element of a three-dimensional frame is
similar to that for an element of a plane framework. For an element with
node numbers n, and n2, then columns 1 to 6 and 7 to 12 of the element
matrices are added into columns (6n,-5) to 6n, and (6n2-5) to 6n2
respectively. An identical rule applies to the rows.

Example 3.9 Calculate the frequencies and shapes of the first two swaying
modes of the three-dimensional, steel framework shown in Figure 3.24. All
vertical members are square and all horizontal members are rectangular,
as shown. Take E = 219.9 GN/m2 and p = 7.9 x 103 kg/m3.

Since the framework has two planes of symmetry, the swaying modes
can be calculated by idealising one quarter of the structure and applying



Increasing the accuracy of elements 109
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15 cm

5 cmJ Section BB

Figure 3.24 Geometry of a three-dimensional framework.

symmetric boundary conditions on one plane of symmetry and antisym-
metric conditions on the other plane. Figure 3.25 shows an idealisation of
one quarter of the framework using two elements per member.

There are six degrees of freedom at each node namely, linear displace-
ments U, V and W in the X, Y and Z-directions and rotations 9X, O and
OZ about the same axes. Since node 1 is fully fixed, all six degrees of freedom
there are constrained to be zero. Motion which is symmetrical about the
XZ-plane is obtained by setting V, Ox and Oz to zero at nodes 3 and 7.
Antisymmetric motion about the YZ-plane is obtained by setting V, W and
OX to zero at nodes 5 and 9.

The predicted frequencies and mode shapes are shown in Figure 3.26.

3.8 Techniques for increasing the accuracy of elements

The accuracy of the solution of a given problem can be increased by either
increasing the number of elements, as demonstrated in previous sections,
or by increasing the order of the polynomial representation of the displace-
ments within each element. This latter course of action results in an increased
number of degrees of freedom for an element. The additional degrees of
freedom can be located either at existing nodes or at additional node points.

To illustrate these procedures, consider the axial element shown in Figure
3.6. Taking u and au/ax as degrees of freedom at the two nodes, the
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Figure 3.25 Idealisation of one quarter of the framework.

11.8 Hz

Figure 3.26 Swaying modes of a framework.

34.1 Hz

displacement function can be expressed in the form

u = N,(e)u,+aN2(e)
ax +N3(e)u2+aN4(f) az (3.213)

where the functions N,(e) to N4(6) are defined by (3.126). Since the element
has four degrees of freedom, the displacement is approximated by a cubic
polynomial.
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Figure 3.27 Geometry of a three node axial element.

With this displacement function it is possible to satisfy the natural
boundary condition au/ax = 0 at a free end as well as the geometric boundary
condition u = 0 at a fixed end. This will result in increased accuracy since
all the boundary conditions will be satisfied exactly and only the equations
of motion will be satisfied approximately. However, the function does have
the disadvantage that when adjacent elements have different cross-sectional
areas or elastic properties, then continuity of au/ax cannot be enforced at
nodes. This follows from the fact that EAau/ax must be continuous to
satisfy equilibrium.

In Figure 3.27 the number of nodes for an axial element have been
increased to three. Taking u as the only degree of freedom at each node
gives a total of three degrees of freedom for the element. This means that
the axial displacement can be represented by a quadratic function, which
can be written in the form

u=N,(e)u,+N2( )u2+N3(e)u3 (3.214)

where

N;(W) = lejf(1 + j = 1, 2 and N3(f) = (1- e2)

(3.215)

These functions are illustrated in Figure 3.28.
Substituting the displacement function (3.214) into the energy expressions

(3.53), (3.54) and (3.55) gives the following element matrices

1 4 -1 2

[m]e
= PEAa -1 4 2

15
2 2 16

7 1 -8
EA

1 7 -8
6a -8 -8 16

(3.216)

(3.217)
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3 2 1 3

(a) N1(f) (b)

Figure 3.28 Quadratic displacement functions for an axial element.

C
1

{ f}e =
p3a

1

4

(3.218)

In evaluating the element load matrix it has been assumed that px is constant
over the element.

The accuracy obtained when using the quadratic element to predict the
first two natural frequencies of a clamped-free rod is shown in Figure 3.29.
The figure also shows the results obtained with a linear element. It can be
seen that six linear elements are required to predict the lowest frequency
with a better accuracy than the estimate obtained with one quadratic
element.

Since the displacement u is the only degree of freedom at the nodes,
then non-uniform rods, such as the one illustrated in Figure 3.10, can be
analysed with the quadratic, three-node element without any complications.

This technique of increasing the number of nodes in an element can also
be used for analysing shafts in torsion. Results for clamped-free shafts using
2, 3 and 4 node elements are given in reference [3.19]. The bending vibration
of slender, clamped-free beams are also analysed using a three node element.
The degrees of freedom at each node are v and O. Using only one element,
the errors for the first three frequencies are 0.0, 0.56 and 2.68%. The
corresponding errors obtained when using two elements with two nodes
each are 0.04, 0.85 and 21.82%. Note that this increase in accuracy, obtained
with the three node element, has been achieved without any increase in the
total number of degrees of freedom.

The displacement functions for elements requiring continuity of the
dependent variables, but not their derivatives, can be constructed using
Lagrange interpolation functions [3.20, 3.21]. The mth order Lagrange inter-



Increasing the accuracy of elements 113

1.0

0.8

el

0.6

0.4

0.2

0.0
1 2 3 4 6 8 10

Number of degrees of freedom

Figure 3.29 Axial vibration of clamped-free rod. A-A Linear element;
O-O quadratic element.

polation function, is defined as:

(f-l)...(f-fi-1)(S-fill )...(h - 2193O_ tt
( . )(4- rrSl)...(fi-fi-1)(J-fill (Si-fm+l

This function has the following properties:

{ k)=
1 for k =j
0 for kojfor

(3.220)

For an element with (m + 1) nodes, whose coordinates are l , f2, , Sm+l,
the function l; has the same properties as the displacement function
corresponding to node j.

To illustrate this procedure, consider the axial element with two nodes
-1, 2 = +1) as shown in Figure 3.6.

(d)=
(e-e2) _ (f-1)_

z(1- )
(e1-e2 (-2)

i(f)= (r-Sl)_( +1)_z(1+
)(r2-1) 2

These agree with the functions defined in (3.51).

(3.221)
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For the axial element with three nodes (6l = -1, 62 = +1, 3 = 0), as shown
in Figure 3.27, the interpolation functions become:

tt11(f)= (6 - e2 )(f, - 3 )

li(d)= (e- 3) =(+1)=i(1+)
(3.222)2(1)

13(6)=
(S- l)(6-e2)

3 - 1 ) ( 3 - 2 ) 1(-1)

These expressions are identical to the ones defined in (3.215).
The displacement functions for elements requiring continuity of both

the dependent variables and their first derivative can be constructed using
Hermitian, osculating interpolation functions. Details are given in refer-
ences [3.20, 3.21].

3.9 Shear deformation and rotary inertia effects

Section 2.4 indicates that shear deformation and rotary inertia effects become
important when analysing deep beams at low frequencies or slender beams
at high frequencies. In this case the appropriate energy expressions for the
element shown in Figure 3.30 are

J
+a fa

TQ = z pAv2 dx+ i pIz9Z2 dx (3.223)

f+a ae \2 fa /av \2
UQ

2

El (ax I dx+2
a

KAG I
ax-Oz

f dx (3.224)

3WQ =
f +a

p,,Sv dx
a

V

x = -a
i;=-1

(3.225)

Figure 3.30 Geometry of a single beam element.
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In this section two methods of deriving suitable displacement functions
are presented. The first one involves solving the equations of static equilib-
rium. The second method uses assumed polynomials with the correct number
of terms.

The highest derivative, of both v and OZ, appearing in the energy
expressions is the first. Therefore, v and 0Z are the only degrees of freedom
required at the node points.

The equations of static equilibrium for a beam, including shear deforma-
tion effects, are

2V_

KAGxKAG dOz=O

2

KAGdv+EIZ
d

9Z-KAGUZ
=0

(3.226)

(3.227)

These can be derived using the method illustrated in Section 2.11, assuming
no time variation.

Eliminating 0Z and v in turn gives
4V 3

=0dx=0 and
d

0

respectively. Changing to the e coordinate (e=x/a) yields
4V 3

df=0 and de3=0

The general solutions of these two equations are

(3.228)

(3.229)

v = a, + a2f+ a,e3 (3.230)

(3.231)

The seven constants of integration are not independent since the solutions
(3.230) and (3.231) must also satisfy equation (3.227), which represents
moment equilibrium. This gives rise to the following relationships:

1 68b,=-a2+-a4,
a a

where

2 3
b2 = - a3, b3 = - a4

a a
(3.232)

a =
EIZ

2
(3.233)

KAGa

This leaves only four independent constants which can be determined by
evaluating (3.230) and (3.231) at f =±1. The resulting displacement
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functions are:

v= aN2(e) N3(e) aN4(eJ {v}e

0 = C 1 N5(6) N6( ) 1N7(4) Ns(6)]{v}e
a a

where

(3.234)

{v}e= Lv, 0zt V2 6z21 (3.235)

and

4(1+3/3) {2+6/3

N2(e)= 4(1+3/3)
{1+3/3-e-(1+3/3)e2+e3}

N3(6) 4(1+3a)
{2+6/3+3(1+2/3)4-e3}

N4(f) 4(1+3(3)
{-(1+3/3)-f+(1+3/3)

N5(f) 4(1+3/3) (-3+3e2)

N6(f) 4(1+3/3){-1+6/i-(2+6p)f+3f2}

N7(e) =
4(1+1

30)
(3-3e2)

N8(e) 4(1+3/3) {-1+6/3+(2+6/3)e+ e2}

(3.236)

Note that in the case of a slender beam, when /3 = 0, the functions N, (i; )
to N4(e) reduce to the functions given in (3.126) and N5(4) to N8(e) are
such that 0z = av/ax, as required.

Substituting the displacement functions (3.234) into the energy
expressions (3.223) to (3.225) gives the following element matrices.

pAa

MI

m2 m5 Sym
[m]e =

2
(3.237)

210(1+3/3) m3 -M4 MI

m4 m6 -m2 m5
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where

m7

+ PIi m8 m9

30a(1+3/3)2 -m7 -m8 m7

m8 m,a -m8

m, = 156+882/3+1260(32

M2 = (44+231/3 +315/32)a

m3 = 54+378/3 +630/32

m4=(-26-189/3-315/32)a

m5=(16+84/3+126/32)a2

m6=(-12-84/3-12662)a2

m7=18

m8=(3-45/3)a

mg =(8+30/3+180/32)a2

m10= (-2-30/3+90/32)a2

Sym

m9

3

3a (4+3/3)a2 Sym[k]e2a3(1+3/3)
-3 -3a 3

3a (2-3/3)a2 -3a (4+3/3)a2

and

3

{f}e=py3
3

-a

117

(3.238)

(3.239)

(3.240)

for a constant value of p,, over the element.
There are a number of ways of deriving the element matrices. A survey

of the various methods, together with an indication of their equivalence is
given in reference [3.22].

Note that (3.240) is identical to the corresponding expression for a slender
beam, (3.138). Also, when /3 = 0, the matrices (3.237) and (3.239) reduce
to the ones given in (3.132) and (3.135) respectively.
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Example 3.10 Use the finite element displacement method to estimate the
lower frequencies of a cantilever beam having the following properties:

rZ/L=0.08, K =2/3, E/G=8/3
Compare the results with the exact solution.

For a deep beam, the equations of free vibration can be derived using
the technique illustrated in Section 2.11 (see Problem 2.7). These are:

av av aeZ
KAG axe - pA at2 - KAG

ax
= 0

ze ze
KAGax+EIZ Z-KAGOZ-pi=ar=0

ax 2

and the boundary conditions for a cantilever are

v(0, t)=0, 0z(0, t)=0

aa,(L,t)=o, ax(L,t)t)=0

(3.241)

(3.242)

The solutions of equations (3.241) subject to the boundary conditions
(2.242) are given in references [3.23, 3.24].

One element solution
Representing a beam, of length L, by one element means that a = L/2 and

R G (a)z K G
(L)2-0.1024

K

Imposing the conditions that v, = 0Z, = 0, the equations of motion are
obtained using equations (3.238) and (3.239). This gives

[ IZL 1.3072 [-1.5L 1.0768L21

2 pAL 262.7545 -35.3346E v2 _
420(1.3072)2 -35.3346L -7.0613L ] ] L ez2 ] - 0

Letting w2pAL4/2196.096EIZ = A, this equation simplifies to

(3 - 262.7545A) -(1.5 - 35.3346A) v2
0

[-(1.5-35.3346A) (1.0768-7.0613A)] L0Z2

The eigenvalues of this equation are given by the roots of the equation

606.8544A 2 -198.1141 A + 0.9804 = 0
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which are

A = 0.0050260 and 0.3214346

The natural frequencies are

3.322
(

EI4
)

1/2

(2196.0961,
EIpAL°

1/2

= pAL)
and

1/2EI
(02 = (2196.096A2) 112

GAL)
1/2

=
pAL

26.569 (-4)/
The exact values of the coefficient for these two frequencies are 3.284

and 15.488. The errors produced by a one element solution are therefore
1.16 and 71.54%.

Repeating the analysis using two, three and four elements gives the errors
shown in Figure 3.31 when compared with the exact solution.

The effect of changing the slenderness ratio, r/L, on the accuracy of
the solutions is indicated in Table 3.6. The results have been obtained using
three elements and A = pAL4w2/EI1. The values of K and E/G remain
unchanged.

10

el

tc1

2 3

Number of elements

4

Figure 3.31 Flexural vibration of a deep cantilever beam.
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Table 3.6. Effect of changing the slenderness ratio on the accuracy of the
frequencies of a cantilever beam

r_/L=0.08 r,/L=0.02

Mode A1/2 Exact % Error A`/2 Exact % Error

1 3.284 0.12 3.500 0.02
2 15.488 2.47 21.353 0.59
3 34.301 8.80 57.474 2.37

It can be seen that the accuracy of the predicted frequencies increases
as the slenderness ratio decreases. Equation (3.233) shows that as r/L
decreases 6 decreases also.

In order to increase the accuracy of the element, reference [3.25] rep-
resents the lateral displacement by a quintic polynomial and the cross-
sectional rotation by a quartic as follows:

v = a,+a2e+a3e2+a4 e3+a5e4+a6 e5

0z = b,+b26+b3 e2+b463+b5 e4

(3.243)

(3.244)

The eleven coefficients are not independent since the expressions (3.243)
and (3.244) are required to satisfy the equation of static, moment equilibrium
(3.227). This gives

b' _ 1 a2+ 6/3 a4+ 120/32
a6

a a a

b2 = 2 a3+ 24a a5
a a

b3 = 3 a4+
60/3

a6
a a

b4 =
4
-a5
a

b5 =
5-a6
a

(3.245)

Only six of the constants are independent. They are determined by
evaluating (3.243) and (3.244) at l; = F1, 0. The element has, therefore, three
nodes with two degrees of freedom at each node.

Using only one element to represent a cantilever beam, for which rz/L=
0.08, the errors for the first two modes are less than 2%. This element is
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much more accurate than the previous one which produces an error of
71.54% for the second frequency.

When /3 = 0, the element reduces to the three node, slender beam element
of reference [3.19]. In this case the errors for the first two modes of a
cantilever represented by one element are less than 1%.

A simpler technique, which is used extensively for thick plates and shells,
is to use independent functions for v and 0:. The number of terms in each
function is therefore equal to the number of nodes, since v and 0z are the
only degrees of freedom at each node. Reference [3.19] presents a four
node deep beam element. Both v and 0z are represented by cubic poly-
nomials. The element displacement functions can easily be derived using
the Lagrange interpolation functions presented in Section 3.8. A one element
solution for a cantilever with rz/L= 0.05 gives errors of 0.17% and 18.15%
for the first two modes. Although not as accurate as the previous element,
in spite of an increased number of degrees of freedom, convergence is very
rapid with an increase in the number of elements. The main disadvantage
with this approach is that the elements of the stiffness matrix increase as (3
decreases and a slender beam element is not obtained when /3 = 0. Methods
of overcoming this are presented in the next section.

3.10 Numerical integration

Exact integration of the expressions for the inertia, stiffness and load
matrices is often tedious, time consuming and prone to human error. In
some instances, as can be seen in the following chapters, it is impossible
to carry out the integration exactly. These difficulties are overcome by using
numerical integration. There are a number of techniques available, but only
the Gauss-Legendre method [3.20, 3.21] will be discussed here.

The integral of a function can be evaluated using the formula

f
1

g(f) d = E Hig(ei) (3.246)
-I i=1

where the H; are weight coefficients and the f; are sampling points. If the
positions of the sampling points are located so as to achieve the best
accuracy, then it is easy to see that a polynomial of degree (2n -1) will be
integrated exactly by a suitable choice of n sampling points and n weight
coefficients.

Consider first a linear function as shown in Figure 3.32(a). This is to be
integrated by means of the formula

J

+I

de = H1g(f1) (3.247)
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Figure 3.32 Numerical integration of (a) a linear function, (b) a cubic function.

The function can be represented by

g(f) = a, +a2
The exact integral of this is

J

I

de = 2a,

(3.248)

(3.249)

Therefore, it can be seen that taking e, =0 and H, = 2 in (3.247) will give
the exact value of the integral.

Now consider a cubic function as shown in Figure 3.32(b). This is to be
integrated using n = 2 in equation (3.246).

A linear function, G(f), can be constructed, using Lagrange interpolation
functions, to coincide with g(f) at the sampling points f, and e2, namely,

G(f) =
(i;2-e) g(61)+ (f-f,

g(f2) (3.250)(2-Sl) (S2-6i)
The function g(f) can therefore be expressed in the form

g(f)=G(e)+p2(f)(bi+b2f) (3.251)

where p2 is a quadratic polynomial whose roots are , and f2. The integrals
of the functions g(r;) and will be equal if

f , P2(e)(b, + b2 e) de=0 (3.252)

This equation can be used to determine P2(e) and hence the positions of
the sampling points , and f2. These will be independent of b, and b2 if

f P2(f) d6 = 0 and E p2(O f d4 = 0 (3.253)
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Letting

PAC) =a,+ a2e+ f2

and substituting into (3.253) gives

2Q,+ z3=0, 3a2=0,

giving

P2(ir) =
e2

- 3 (3.254)

The roots of p2() = 0 are therefore e, = 1/3'2, 62 = +1/3''2. The weight
coefficients are given by

H,= (f2-6) d tt2i;2
1

(f2 1) (52- 1)

and (3.255)

H2= (6-C1 de 1

(e2e1) (e2- 1)

The validity of the above result can be checked by considering the function:

g(S) = C1 + C2 e + C3
62+

C4
63 (3.256)

The exact integral of this function is
+

1- g(S)dS=[c,S+2C2S2+3C3 3+4C4 4]±1
,

= 2c, + 3C3 (3.257)

Using the formula (3.246) the value of the integral is

+' 1 1 1 l
J

C1+C2 3172+C3 3+C4 3(31 /2)/

= 2c, ± 3C3. (3.258)

The above approach can be used for other values of n. In general, n
sampling points are given by the roots of the Legendre polynomial of degree
n, which can be generated by means of the relation

P;+1(S)= (j+1){(2j+1)fP;(ir) -jPj-l (3.259)

(j=1,2,...,n-1)
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Table 3.7. Integration points and weight coefficients for
the Gauss integration formula

N T1:; Hi

1 0 2

2 1/31/2 1

3 (0.6)'/2 5/9
0 8/9
r3+(4.8)1/211/2 I1 (30)1/21

4
L 7 J 2 36 J

(L3-(4.8)1/21/2 i

+

(30)x/2 1

7

I I236

with

PO(W)=1, P,( )=e (3.260)

The corresponding weight coefficients are given by the integrals of the
n Lagrange interpolation functions of order (n - 1). Table 3.7 gives the
positions of the sampling points, which are usually referred to as integration
points, and the corresponding weight coefficients for n =1 to 4. The integra-
tion points are positioned symmetrically about 6 = 0 and so only the numeri-
cal values are given.

Example 3.11 Use numerical integration to derive the element matrices for
the two node axial element described in Section 3.3.

The inertia matrix is given by equation (3.59), namely

[m].=PAa
J Lz(1+

i(1+ )1d (3.261)

The integrand is a quadratic polynomial and so it is necessary to use two
integration points. These are positioned at t;, = -1/31/2, t;2 = +1/31/2 both
with a weight coefficient of 1. Therefore

(1+1/3 )/2 1121 [(1+1/3 )/2 (1-1/3'/2)/2][in], = pAa 1(1 - 1/3:%2)/2

1(1+1/3
(1-1/32)/21 [(1-1/31/2)/2 (1+1/3 1/2)/2]+pAa 1/'/2)/2,

2 1

3 3=pAa
1 2
3 3

(3.262)



Numerical integration 125

The stiffness matrix is given by equation (3.63), namely

EA r
+ i +i d[k]e =

J L J
(3.263){- ]

a
+

z

The integrand is constant and so only one integration point is necessary.
This is located at f, = 0 and has a weight coefficient of 2. Therefore

[k)e = QA 21-2 11-z +z}

EA r `1'2 zJL

a z 2
(3.264)

The load matrix is given by equation (3.67), namely

{f}e=Pa
J [1(1+ )J d (3.265)

In this case the integrand is a linear function which can also be integrated
using one integration point. This gives

I
I

'- 1

{f}e=PXa2 zJ =Pxa [1] (3.266)

The use of too many integration points does not affect the result. For
example, if the stiffness matrix in the example above is evaluated using two
integration points instead of one, then

[k]e
aAI

+;J[-z z]+
EA +1 [-i z}

L 2 z

1EA r -'2 '

zJa I I
L z 2

(3.267)

as before. However, the use of too few integration points should be avoided.
To illustrate this, consider the stiffness matrix for a slender beam element
as given by equation (3.134). The row matrix [N"(6)] is linear and so two
integration points are required to evaluate the stiffness matrix exactly. If,
however, only one integration point was used then the resulting stiffness
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matrix would be

[k]e =
QIZ

2

0

O 2 [0 -a/2 0 +a/2]

+a/2

0 0 0 0

EIz 0 1 0 -1_
(3.268)2a 0 0 0 0

0 -1 0 1

This clearly does not agree with (3.135).
In general, when using numerical integration, the correct result will not

be known beforehand. However, a check can be made on the resulting
matrix to ensure that a sufficient number of integration points have been
used. The stiffness matrix (3.268) should be positive semi-definite. This
means that its eigenvalues should be either positive or zero. The number
of zero eigenvalues should be equal to the number of rigid body displace-
ments the element is capable of performing. In this case the number is two,
a translation and a rotation. The eigenvalues, A, of the matrix (3.268) are
given by the roots of the equation

0 0 0

0 (1-A) 0 -1
0 0 0-a
0 -1 0 (1-A)

=0 (3.269)

where A = 2aA / EIZ. Expanding the determinant gives

A3(A -2) = 0 (3.270)

Therefore, the stiffness matrix (3.268) has three zero eigenvalues and one
positive eigenvalue, which indicates that it is incorrect.

Element inertia matrices should be positive definite. Hence, all their
eigenvalues should be positive.

Section 3.3 demonstrates the fact that the finite element displacement
method predicts the nodal displacements accurately, whilst the element
stress distributions, which are calculated from the derivatives of the element
displacement functions, are less accurate and discontinuous between ele-
ments. However, at certain points of the element, the stresses are more
accurate than at any other point.

If the predicted stress distribution, e, is given by a polynomial of order
m, then it can be considered to be a least squares approximation to a more
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accurate distribution, o, of order (m + 1). Now any polynomial can
expressed as a linear combination of Legendre polynomials, and so

m+l
Q= E

j=o

Expressing the distribution, j, in the form
m

be

(3.271)

0 = bF,O (3.272)
j=o

the coefficients bj are found from the condition that the integral

I =
f +a (Y- bjPj(e)}2 d

J a j=0

is a minimum, that is

a7
=0 j=0, 1,...,m

abj

This gives

bj
= (2j2 1)

J

r+ uPj(f)

d-,

since

J
+' Pj(f)Pk(e) de=0 for k O j

(3.273)

(3.274)

(3.275)

(3.276)

and

f +'1{i()}2d= 2

(2j+ 1)
(3.277)

Substituting (3.271) into (3.275) and using (3.276) and (3.277) gives

bj=aj j=0,1,...,m
Therefore

m

(3.278)

Y, ajPj() (3.279)
j=0

Expressions (3.271) and (3.279) have the same value whenever

Pm+t( ) = 0 (3.280)

This equation has (m + 1) real roots. At these (m + 1) points the accuracy
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f=-1 y11 :=+1

Figure 3.33 Linear approximation to a parabolic stress distribution.

of the distribution, 5, is higher than at all other points. This is illustrated
for the case m = I in Figure 3.33.

When m = I equation (3.280) becomes
P2(C)=z(3f2-1)=0 (3.281)

and so in Figure 3.33

1 I
61-31311/2, en=+3i/2 (3.282)

These points are the same as the integration points used in Gauss-Legendre
integration. Thus an approximate stress distribution of order m has higher
accuracy at (m + 1) Gauss-Legendre integration points.

The axial element described in Section 3.3 gives a constant stress distribu-
tion (see Figure 3.11) and so m = 0 and the most accurate stress occurs at

= 0. The slender beam element of Section 3.5 produces a linear variation
of stress which gives the best results at the points 1/3'/2.

The above statements strictly apply to uniform elements. In the case of
non-uniform elements, if the size of the element is sufficiently small, then
the variation of the element properties will be slight and the above technique
can again be used. Further discussions of this technique are presented in
references [3.26-3.29].

In Section 3.9 it is indicated that if independent functions are used for
v and 0, when developing a deep beam element, then problems arise if the
element is used to analyse a slender beam problem. This is because the
elements of the stiffness matrix increase without limit as the beam becomes
more slender. This problem can be overcome by using numerical integration
techniques.

The strain energy of a deep beam element (Section 2.4) is

f+a

GX

oZ\2 1+n /av \2
UQ

=
2

J a
EIZ I dx + Z Ia KAG I ax -

Oz

I dx (3.283)
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The first term is the strain energy due to bending and the second term the
strain energy due to shear.

Consider an element with two nodes, as shown in Figure 3.30, with v
and 0. as degrees of freedom at each node. If independent functions are
used for v and 0z, then each one will be linear, that is

N, (6) N2(6)J [v'J,
L'2

0z= [N,(f) N2(f)]
Bz

(3.284)

where

N,( )= 2'(1- ), N2(l;)= z(1+ )

Therefore

a8z-
L0 -1/2a 0 1/2aJ{v}e

ax

and

(3.285)

(3.286)

av - Bz=L-1/2a -(1-)/2 1/2a -(1+e)/2J{v}e (3.287)
ax

where

{V}T= (v, Bz, v2 8z2J (3.288)

These equations indicate that the bending strain is constant and the shear
strain varies linearly. On substitution into the strain energy expression
(3.283), the integrals can be evaluated exactly by using one integration point
for the bending strain energy and two integration points for the shear strain
energy. However, this procedure produces an element which is too stiff as
already noted. The reason for this is that the presence of the linear term in
the expression for shear strain places too much emphasis on the shear strain
energy in comparison with the energy due to bending. This effect increases
if the beam is slender, which is just the opposite of the true situation since
the shear strain in a slender beam is negligible. To overcome this difficulty
the linear shear strain distribution is replaced by a constant one using a
least squares fit procedure. These two distributions coincide at the single
integration point = 0, and so the constant value of shear strain is obtained
by evaluating the linear variation at this point. Since the shear strain is now
constant, the integral for the shear strain energy can be evaluated using one
integration point. Thus a better element can be obtained by evaluating both
integrals in (3.283) by means of one integration point.
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Substituting the displacement functions (3.284) into the strain energy
expression (3.283) gives [3.30]

Ue = z{v}eT[k]e{v}e (3.289)

where

[k]e = [k]b+ [k]5

Using one integration point gives the exact value of [k]b, namely

0 0 0 0

_ EIZ 0 a2 0 -a2
[k]b 2 7 0 0 0 0

0 -a2 0 a2

Exact integration of the shear strain energy gives

[kls =

1 a -1 a
EIZ a 4a2/3 -a 2a2/3

2a3/3 -1 -a 1 -a
a 2a2/3 -a 4a2/3

where /3 = EIZ/KAGa2.
Using one integration point produces the following result

[k]s =

1 a -1 a
EIZ a a2 -a a2

a3,6 -1 -a 1 -a
a a`' -a a2

2

(3.290)

(3.291)

(3.292)

(3.293)

Combining these results shows that exact integration produces the following
stiffness matrix

3 Sym

3a (4+3/3)a2
[k]e - 2a3(3/3) -3 -3a 3

3a (2-3/3)a2 -3a (4+3/3)a2

(3.294)

and that reduced integration (using one point) produces the following result

[k]e =

3

EIZ 3a (3+3/3)a2
Sym

2a3(3/3) -3 -3a 3

3a (3-3/3)a2 -3a (3+3/3)a2

(3.295)
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Both these results should be compared with the one given by equation
(3.239).

Example 3.12 Calculate the tip displacement of a cantilever beam subject
to a static tip load. Use both one and two point integration and compare
the results with the exact solution for both a deep and a slender beam
having the following properties:

rZ
8(3)112, = 6, G- 3 and 3 x 10-5

The exact solution can be obtained by using one element and the stiffness
matrix given by equation (3.239). In the case of static analysis the inertia
and damping forces are zero and so the application of Lagrange's equations
results in the following equation

EIZ 3 -3a v _ P
2a3(1+3/3) -3a (4+3/3)a2 BZ 0

where P is the tip load. Solving for v gives

vv,= 2a3 (4+3,a)P.
3EIZ

Using one element and the stiffness matrices given by equations (3.294)
and (3.295) results in the following solutions

3/3 (3+3/3)
V2 (1+3/3) vex V1 - (4+3/3) vex

Representing the beam by one element means that a = L/2 and so

EI E r 2 4 E r 2

KAGa2 KG (a) K G (L)
10

5

= 5 (deep beam) or 15 (slender beam).

Taking /3 = 1/15 gives

v2
= 0.1667 v' = 0.7619

vex vex

Taking /3 = 10-5115 gives

v2
= 0.2 x 10-5 v' = 0.750

Vex vex
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2 4 6 8 10 12

Number of elements
14 16

Figure 3.34 Static deflection of cantilevers using both 1 and 2 point integration.

It can be seen that the results which have been obtained using a single
integration point are more accurate than those obtained with two.

Repeating the analysis for an increasing number of elements gives the
results shown in Figure 3.34. It can be seen that exact, two point integration
gives reasonable results for a deep beam, but for a slender beam the
displacements approach zero. When reduced, one point integration is used
the results are greatly improved in both cases.

The kinetic energy of a deep beam element (Section 2.4) is
f+a +a

T = z
a

pAv2 dx+ z f-a pIZ9Z2 dx (3.296)

Substituting the displacement functions (3.284) into the kinetic energy
expression (3.296) gives [3.31]

Te = z{v}eT[m]e{v}e (3.297)

where {v}, is defined by (3.288) and

2 0 1 0

pAa 0 2rZ2 0 rZ2_
[m] (3 298)e

3 1 0 2 0
.

0 rZ2 0 2rZ2

2where rZ=IZ/A.
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Figure 3.35 Flexural vibration of a deep hinged-hinged beam [3.31].

Example 3.13 Use the element matrices (3.295) and (3.298) to estimate the
lower frequencies of a hinged-hinged beam having the following properties:

rz/L=0.08, K =0.85, E/G=2.6

Compare the results with the exact solution.
The equations of motion for a deep beam are (3.241). The boundary

conditions for a hinged end are:

v(x,t)=0, 0z(x,r)=0 (3.299)

The solutions of equations (3.241) subject to the boundary conditions
(3.299) at x = 0 and x = L are given in references [3.23, 3.24].

Finite element solutions using 7, 8 and 9 elements are quoted in reference
[3.31]. A comparison between the two sets of results is given in Figure 3.35.

3.11 Other considerations for beams

When analysing frameworks, it has been assumed so far that each individual
element has a constant cross-sectional area, its node points lie on its
centroidal axis, the shear centre of a cross-section coincides with the
centroid, and cross-sections are free to warp without restraint during torsion.
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In particular applications these assumptions may be too restrictive and
some of the following features may have to be included in the analysis:

(1) Node points offset from the centroidal axis
(2) Shear centre offset from the centroid
(3) Warping restraint
(4) Variable cross-section
(5) Twist
(6) Curvature

In many practical applications the centroids of beam members do not
coincide at joints. This is the case when two or more members are joined
by means of a rigid gusset plate. One way of dealing with this is to assume
the various beams meeting at the joint to have different node points. The
rigid constraint provided by the gusset plate can then be introduced by
means of linear relationships between the degrees of freedom at the various
node points as discussed in Section 3.6. An alternative way is to transform
the beam element into one with nodes which are off-set from the centroidal
axis.

Consider first the case of a plane framework element as shown in Figure
3.36. The element matrices referred to node points 1 and 2 on the centroidal
axis are derived in Section 3.6. A transformation is applied to these matrices
so that the resulting element matrices refer to the offset nodes 3 and 4.
This transformation is obtained by expressing the displacement components
at node 1 in terms of the displacement components at node 3. A similar
relationship will hold between the displacement components at nodes 2
and 4. From geometrical considerations

U1 = U3-(Y1- Y3)BZ3

V1= V3+(Xl-X3)BZ3 (3.300)

BZI = BZ3

X, U
ez

Figure 3.36 Plane framework element with offset nodes.
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or, in matrix form

U 0

V = 0
0Z , 0

0 - Y13 U
1 X13 V

0 1 9Z

where Y13 Y, - Y3 and X13 = X1- X3. Similarly, for node 2

U 1 0 -Y24 U
V = 0 1 X24 V

0Z 2 0 0 1 OZ 4

(3.301)

(3.302)

The inertia, stiffness and load matrices referred to nodes 3 and 4 are
[T]eT[m]e[T]e, [T]eT[k]e[T]e and [T]eT{f}e respectively, where

[T]e -

1 0 -Y13

0 1 X13 i [0]
0 0 1 1-----------

1 - Y"

[0] 0 1 X24

0 0 1

(3.303)

This procedure is not recommended when beams are used as plate
stiffeners [3.32]. The techniques to be used in this situation are presented
in Chapter 7.

In general, the shear centre of a thin-walled, open section beam does
not coincide with the centroid. Also, in many cases, the restraint of cross-
sectional warping is an important consideration. Thus, it is convenient to
develop an element which includes both these features. It is beyond the
scope of this book to present details of such an element. Further information
can be found in reference [3.33].

Three-dimensional beam elements with variable cross-sections can be
obtained by treating A, I,, I, and J as functions of x in the energy
expressions (3.53), (3.54), (3.92), (3.93), (3.127) and (3.128). This technique
has been used to develop a beam bending element in reference [3.34].

Some beams are twisted about their axis. Reference [3.35] derives several
twisted beam elements and compares their performance. Such elements are
used to analyse the vibration of turbine, compressor and helicopter rotor
blades, and aircraft propellers.

There is a large number of references dealing with curved beam elements.
Typical examples are references [3.36, 3.37] which include shear deforma-
tion and rotary inertia effects for in-plane and out-of-plane vibrations
respectively. Such elements can be used for analysing arches and piping
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Figure 3.37 In-plane vibration of a circular ring [3.38].

12

systems. Such components can be represented by an assemblage of straight
beam elements, but many more elements are required in order to obtain
acceptable accuracy. This can be illustrated by considering the in-plane
vibrations of a circular ring. A circular ring has two perpendicular axes of
symmetry. Therefore, it is necessary to represent only one-quarter of the
ring by an assemblage of elements of the type described in Section 3.6.
Comparing the frequencies obtained with the exact frequencies gives the
percentage errors shown in Figure 3.37. In this figure n indicates the number
of waves around the complete ring. The axial and bending actions of a
curved beam are coupled. These actions are uncoupled with a straight beam
element. When analysing curved beams using straight beam elements, the
necessary coupling is obtained only at the node points. This necessitates
the use of more elements for acceptable accuracy.

Problems

Note: Problems 3.12-3.15 require the use of a digital computer.

3.1 Use the functions

0 1(x) = (L2-x2), 42(x) = (L2-x2)x
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where - L < x _ + L, in a Rayleigh- Ritz analysis to estimate the two lowest
frequencies of axial vibration of a uniform rod which is fixed at both ends.
Compare these values with the analytical solution

E
W, _

\ 2 11

\ ,/z
and (02 = 'rr

( E \ ,/z

P
P z Jt

3.2 Use the functions

.01(x) = x, 42(x) = x2

where 0 < x _ L, in a Rayleigh-Ritz analysis to estimate the two lowest
frequencies of axial vibration of a non-uniform rod which is fixed at x = 0
and free at x L, given that the cross-sectional area at position x is
A(x) = A0(1-0.2x/L) where AO is the area at x = 0. Compare these values
with the analytical solution

/ E 'l2 / E ,/2
W, =1.6421 PLz I and w2 = 4.737 PLZ)

3.3 Use the functions

Y',(x)(L2-x), 02=(L2-x2)x
where - L _ x +L, in a Rayleigh-Ritz analysis to estimate the two lowest
frequencies for flexural vibration of a uniform beam which is simply
supported at both ends. Compare these values with the analytical solution

W,
= (5)2

(
EIZ4),/2

and W2 = 7r2 (
EIz4),/2

2 pAL pAL

3.4 Use the functions

Ol(x) _ (L2 - x2)2, 42(x) = (L2 - x2)2x

where -L _ x +L, in a Rayleigh-Ritz analysis to estimate the two lowest
frequencies for flexural vibration of a uniform beam which is clamped at
both ends. Compare these values with the analytical solution

,/z
W, = 5.593

(
pAL4) and W 2 = 15.482

EIZ

pAL4

)1/2

3.5 A tall chimney of height L is fixed at x = 0 and free at x = L. The
cross-sectional area, A(x), and second moment of area of the cross-section,
I,(x), at position x are given by

A(f)=A0(1-1.46+0.48f2)

IZ(f) = I0(1-2.6i; +2.52e2-1.08e3+0.1728f4)
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where f = x/ L and A0, Io are the area and second moment of area at x = 0.
Use the functions

01(x) = X2,
42(x) = x3

in a Rayleigh- Ritz analysis to estimate the two lowest frequencies for flexural
vibration, neglecting shear deformation and rotary inertia. Compare these
values with the analytical solution

/ EI 1/2 EI 1/2

w, = 5.828 (pAoL4) and w2 = 20.393 \pAo0
4/

3.6 Analyse Problem 3.1 using three axial finite elements having two nodes
each.

3.7 Estimate the lowest frequency of axial vibration of a uniform rod of
length 2L which is free at both ends using one axial finite element. Compare
this value with the analytical solution w, = (a/2)(E/pL2)1/2. What does the
second solution of the equations of motion represent?

3.8 Analyse Problem 3.3 using one beam bending finite element having two
nodes.

3.9 Analyse Problem 3.4 using two beam bending finite elements having
two nodes each.

3.10 Show that the cubic polynomial (3.112) satisfies the equation of static
equilibrium for a uniform beam subject to forces and moments at its ends.

3.11 Use the inertia and stiffness matrices (3.132) and (3.135) to calculate
the kinetic and strain energy of a beam element when it undergoes (i) a
rigid body translation, v, and (ii) a rigid body rotation, 0, about its centre
of mass. What can be deduced from the results? Check the answers by
direct calculation.

3.12 A one-dimensional model of a stringer stiffened panel, as used in
aircraft construction, consists of a uniform beam on equally spaced simple
supports, as shown in Figure P3.12. Calculate the first five lowest natural
frequencies and mode shapes using 20 beam elements. Take A =
2.438 x

10-5
m2, Iz = 3.019 x 10-12 m4, E = 68.9 x 109 N/m2 and p =

0.1

Figure P3.12
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4 1 m 1 m

Figure P3.13

2720 kg/m3. Compare the frequencies with the analytical values
102.2, 113.4, 141.8, 178.6, 214.4 Hz.

3.13 Figure P3.13 shows a two-dimensional framework which consists of
two identical inclined members which are rigidly joined together. The other
two ends are fully fixed. Their cross-sectional area is 24 x 10-4 m2 and the
second moment of area of the cross-section is 48 x 10-8 m4. Take E =
206 x 109 N/M2 and p = 7830 kg/m3. Calculate the four lowest frequencies
and mode shapes for in-plane vibration using 8 elements. Compare the
frequencies with the analytical values 88.9, 128.6, 286.9, 350.9 Hz.

3.14 Figure P3.14 shows a three-bay portal frame which consists of 7
identical members having an area of 6.048 x 10-5 m2 and a second moment
of area of 1.143 x 10-10 m4. E is 207 x 109 N/M2 and p is 7786 kg/m3. The
vertical members are fully fixed at their lower end. Calculate the four lowest
frequencies and mode shapes using 3 elements for every member. Compare
these frequencies with the analytical values 138.3, 575, 663, 812 Hz.

3.15 Calculate the frequencies and mode shapes of the first two modes
which are antisymmetrical with respect to both the YZ-, ZX-planes for the
three-dimensional framework of Example 3.9.

0.1524 m

1524 m0.

I

7771- 77- 7 71

Figure P3.14
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3.16 Calculate the eigenvector corresponding to the first mode of vibration
of a fixed-free rod of length L using one three-node axial element. Use this
eigenvector to determine the distribution of direct stress in the element.
Calculate the stress at the two Gauss integration points = 1/31/2. Com-
pare the result with the exact solution given in Section 3.3.

3.17 Show that the displacement functions for a four node axial element are

N;(e) = 1
1

6(1+eif)(9i;2-1) for 5; = F1

N;()= 6(1-X2)(1+9;e) for f;=R1/3

3.18 Verify that a quintic polynomial can be integrated exactly using three
Gauss integration points.

3.19 Show that the inertia and stiffness matrices of a tapered axial element
of length 2a, having two nodes and whose cross-sectional area is given by

A(f)=A(0)(1+a,f+a2e)

_ pA(0)a [10 -5a,+4a2) (5+a2)m
15 (5+a2) (10+5a,+4a2)J

_ EA(0) r (3+a2) -(3+a2)
Lk 6a L-(3+a2) (3+a2)

3.20 Analyse Problem 3.2 using two tapered axial elements with two nodes
each.
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In-plane vibration of plates

Flat plate structures which vibrate in their plane, such as shear wall build-
ings, can be analysed by dividing the plate up into an assemblage of
two-dimensional finite elements, called membrane elements. The most com-
mon shapes of element used are triangles, rectangles and quadrilaterals.
These elements can also be used to analyse the low frequency vibrations
of complex shell-type structures such as aircraft and ships. In these cases
the membrane action of the walls of the structures are more predominant
than the bending action.

In Chapter 3 it is shown that in order to satisfy the convergence criteria,
the element displacement functions should be derived from complete poly-
nomials. In one dimension the polynomial terms are 1, x, x2, x3, ..., etc.
Complete polynomials in two variables, x and y, can be generated using
Pascal's triangle, as shown in Figure 4.1. Node points are normally situated
at the vertices of the element, although additional ones are sometimes
situated along the sides of the element in order to increase accuracy. (This
technique is analogous to having additional node points along the length
of a one-dimensional element, as described in Section 3.8.) When two
adjacent elements are joined together, they are attached at their node points.
The nodal degrees of freedom and element displacement functions should
be chosen to ensure that the elements are conforming, that is, the displace-
ment functions and their derivatives up to order (p - 1), are continuous at
every point on the common boundary (see Section 3.2). In some cases it is
not possible to achieve the necessary continuity using complete polynomials
[4.1, 4.2]. This is overcome by using some additional terms of higher degree.
When selecting these terms care should be taken to ensure that the displace-
ment pattern is independent of the direction of the coordinate axes. This
property is known as geometric invariance. For the two-dimensional case,
the additional terms should be chosen in pairs, one from either side of the
axis of symmetry in Figure 4.1. As an example, consider the derivation of
a quadratic model with eight terms. Selecting all the constant, linear and
quadratic terms plus the x2y and xy2 terms, produces a function which is
quadratic in x along y = constant and quadratic in y along x = constant.
Thus the deformation pattern will be the same whatever the orientation of

141
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Constant

x Y Linear

x2 xy Y2 Quadratic

x3 x2y
XY2

Y3 Cubic

x4 x3y x2y2
xy3

Y4 Quartic

Axis of symmetry

Figure 4.1 Complete polynomials in two variables.

the axes. This would not be true if the terms x3 and x2y had been selected.
In this case the function is cubic in x along y = constant and quadratic in
y along x = constant. Therefore, the deformation pattern depends upon the
orientation of the axes. Note that complete polynomials are invariant.

The energy (expressions for a membrane element are, from Section 2.5

TQ=z J ph(u2+v2)dA (4.1)
A,

UQ = z fAe h{e}T[D]{e} dA

with

(4.2)

au/ax
{e} = av/ay (4.3)

au/ay+av/ax

[D] is a matrix of material constants which is defined by (2.45), (2.49) or
(2.51) depending upon whether the material is anisotropic, orthotropic or
isotropic. Also

SW, =
f,

(pxsu+p,,8v) ds (4.4)
s

The highest derivative appearing in these expressions is the first. Hence,
it is only necessary to take u and v as degrees of freedom at each node to
ensure continuity. Also, complete polynomials of at least degree 1 should
be used (see Section 3.2).
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Figure 4.2 Geometry of a triangular element.

4.1 Linear triangular element

The simplest way of idealising a flat plate of irregular shape is to use an
assemblage of triangular elements. Figure 4.2 shows a triangular element
with three node points, one at each vertex. There are two degrees of freedom
at each node, namely, the components of displacement, u and v, in the
directions of the x- and y-axes respectively. Each component can, therefore,
be represented by polynomials having three terms each. Figure 4.1 shows
that a complete linear function, which is the minimum requirement,
has three terms. Therefore, the displacement variation can be represented
by

u=a,+a2x+a3y
V = a4+ a5X + a6y

Since the functions for u and v are of the same form, only one need be
considered in detail. Evaluating the expression for u at the three nodes gives

U, a,
U2 = [A] a2
u3 a3

(4.6)

where u,, u2, u3 are the x-components of the displacement at the three
nodes and

1 x, YJ

[A] = 1 x2 Y2 (4.7)
1 x3 ys
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(x;, y;) are the coordinates of node i (i =1, 2, 3). Solving equation (4.6) gives

In-plane vibration of plates

a, u,

a2 - [A] ' U2

a3 U3

where

A°
'

a[A] 2A
,

b,

A°2 A3°

a2 a3

b2 b3

in which

A;0 = x;Y' - xy,

a;=Y;-Y,
b;=x,-x;

(4.8)

(4.9)

(4.10)

with the other coefficients obtained by a cyclic permutation of the subscripts
in the order i, j, 1. Also, A is the area of the triangle, which is given by

A = 2' det [A] = 2(Ao+A2+ A°) ='(a, b2 - a2b,) (4.11)

Substituting (4.8) into the expression for u, (4.5), gives

u = [NJ
U'

u2

U3

(4.12)

where

[NJ = [N1 N2 N3]=[l x YJ [A]-' (4.13)

hence

Ni =2A (A°+a;x+by) (4.14)

Similarly

v = [NJ
v,

V2 (4.15)

V3

where vi, v2, v3 are the y-components of the displacement at the three nodes.
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N,

Figure 4.3 Displacement function N,.

Combining (4.12) and (4.15) gives

ru l _ [Ni 0 N2

LvJ 0 N, 0

0

N2

N3

0
(4.16)

The function N,(x, y) varies linearly, has a unit value at node i and zero
values at the other two nodes. These features are illustrated in Figure 4.3
for the function N, .

If the displacement functions (4.16) are evaluated at a point on the side
joining nodes 2 and 3, then N, will be zero. This means that the components
of displacement will be uniquely determined by the values of the displace-
ments at nodes 2 and 3, the nodes at the the two ends of the side being
considered, and the position of the point on the side. Also, the variation
of displacement along the side 2-3 is linear. Therefore, if the element is
attached to another triangular element at nodes 2 and 3, then no gaps will
occur between the two elements when the nodes are displaced, as illustrated
in Figure 4.4. This means that the displacements are continuous along the
common side, as required.

The expression (4.16) is now written in the form

[:1 =

for convenience. Substituting (4.17) into (4.1) gives

Te = i{u}eT[m]e{u}e (4.18)
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1

Undeformed
- - Deformed

Figure 4.4 Continuity of displacements between adjacent elements.

where

[ML = J , ph[N]T[N] dA (4.19)
A

is the element inertia matrix. Using (4.14) and (4.16) in (4.19) gives the
following result:

2 0 1 0 1 0

0 2 0 1 0 1

phA 1 0 2 0 1 0
[m] (4 20)e

12 0 1 0 2 0 1

.

1 0 1 0 2 0

0 1 0 1 0 2

The details of this calculation are not given as they are rather tedious. A
more elegant formulation is given in Section 4.5.

Substituting (4.17) into (4.3) and (4.2) gives

Ue = 2{u}eT[k]e{u}e

where

(4.21)

[k]e =

is the element

h[B]T[D]
fAe

stiffness matr

a/ax 0

[B] dA

ix, and

(4.22)

[B]=

is the element

0 a/ay

.9/ay a/ax

`strain matrix

[N]

'. Using (4.14) and (4.16) gives

(4.23)

[B] 2A
[a,

0

0 a2

b, 0

0

b2

a3

0

0

b3 (4.24)

b, a, b2 a2 b3 a3
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Therefore, in this case, [B] is a constant matrix. Thus (4.22) becomes

[K]e = hA[B]T[D][B] (4.25)

A constant [B] matrix implies that the strain components are constant
within the element. Because of this, the element is sometimes referred to
as a `constant strain triangle'.

As an example of the calculation of equivalent nodal forces, consider
the case of a distributed load applied to the side 2-3, as illustrated in Figure
4.5. This load has components (px., p,,) per unit length in the x- and
y-directions. Equation (4.4) can be written in the form

SWe=Jse []["] svds (4.26)

Substituting (4.17) into (4.26) gives

SWe = {Su}eT{f}e (4.27)

where

{f}e = Js
e

[N]2_3T[Pxl ds (4.28)
Py

is the element equivalent nodal force matrix. Assuming px and p,, to be
constant, (4.28) gives

100 1

{f}e =2'12-3
Px

(4.29)
py

P.

PY

y

0

X

x
Figure 4.5 A triangular element subject to boundary loading.
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where 12-3 is the length of/ the side 2-3 which can be calculated from

12-3 = {(x3 - x2)2+ (Y3 Y2)2}'/2 (4.30)

Since the components of the total force on side 2-3 are p,12-, and Py12-3,
it can be seen that (4.29) represents the application of half the total force
at each node on the side.

The assembly process for a triangular, membrane element is as follows.
If the element has node numbers n,, n2 and n3, then columns 1 and 2, 3
and 4, 5 and 6 of the element matrices are added into columns (2n, -1)
and 2n,, (2n2-1) and 2n2, (2n3-1) and 2n3 respectively. An identical rule
applies to the rows.

The stress components within the element are given by (2.44), namely

{v} = [13]{e}

Using (4.3) and (4.17) to evaluate the strain components gives

{Q} = [D][B]{u}Q

(4.31)

(4.32)

where [B] is given by (4.24). The stresses are, therefore, constant within
the element. It is usual to assign these constant values to the centroid of
the element. It is shown in Section 3.10 that predicted stresses are more
accurate at the integration points. Numerical integration of a constant
function over a triangle requires one integration point, at the centroid (see
Section 5.5).

Example 4.1 Calculate the first five natural frequencies and modes for
in-plane vibration of the cantilever shear wall shown in Figure 4.6(a).
Compare the results with an analytical solution obtained by treating the
wall as a deep beam [4.3]. Take E = 34.474 x 109 N/m2, V=0.11, p =
568.7 kg/m3 and the thickness to be 0.2286m. Use the idealisation shown
in Figure 4.6(b).

There are two degrees of freedom at each node, namely, linear displace-
ments U and V in the X- and Y-directions. Since nodes 1, 2 and 3 are
fully fixed, both degrees of freedom there, are constrained to be zero.

The predicted frequencies are compared with the analytically derived
ones in Table 4.1. The corresponding mode shapes are shown in Figure 4.7.
The agreement between the two sets of frequencies is not particularly good
for the flexural modes 1, 2 and 4, the differences being greater than 20%.
This result is obtained in spite of using 32 elements in the idealisation.
Satisfactory results can only be obtained by increasing the number of
elements. This would suggest that the linear triangular element does not
provide an efficient method of solution. On the other hand, the frequencies
of the longitudinal modes 3 and 5 agree quite closely.
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Table 4.1. Comparison of predicted frequencies (Hz)
using triangular element with analytical beam frequencies

Mode FEM Analytical [4.3] % Difference

1 6.392 4.973 28.53
2 32.207 26.391 22.04
3 32.010 31.944 0.21
4 74.843 62.066 20.59
5 96.900 95.832 1.11

a
25

26
27

22 24

60.96 m

H
15.24 m

(a)

Figure 4.6 Geometry of a cantilever shear wall.

21

18

15

12

9

4.2. Linear rectangular element

The analysis procedure can be made more efficient by using rectangular
elements as far as possible and filling in with triangular elements where the
shape of the boundary makes it necessary. Figure 4.8 shows a rectangular
element with four node points, one at each corner. There are two degrees
of freedom at each node, namely, the components of displacement, u and
v, in the directions of the x- and y-axes respectively. Each component can,

19

16

13

10

7

(b)
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therefore, be represented by polynomials having four terms each. Figure
4.1 shows that a complete linear function has three terms. Therefore, it is
necessary to choose one of the three quadratic terms. The xy term is chosen
in order to ensure that the displacement functions are invariant. This choice
results in the displacement variation being linear along lines x = constant
and y = constant. The displacements can, therefore, be represented by

u =a, + azx+ a3y + aaxy

v = a5+a6x+a7y+a8xy

'''I,,,,,7

Mode 1
TT7'17777

Mode 2

7777777771 7777777/77
Mode 4 Mode 5

Mode 3

(4.33)

Figure 4.7 Mode shapes of cantilever shear wall.
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y, ri

2b

2a

x,6

Figure 4.8 Geometry of a rectangular element f = x/ a, 17 = y/ b.

The coefficients a, to a8 can be expressed in terms of the components of
displacement at the four nodes by evaluating (4.33) at the four node points
and solving the resulting equations, as demonstrated in the last section.
However, in this case it is simpler to write down the displacement functions
by inspection. The displacement functions are required in a similar form
to (4.12) and (4.15), that is

4 4

u = Y_ Nu;, v = Y_ Njvj
j=1 j=1

(4.34)

The function N; is required to have a unit value at node j and zero values
at the other three nodes. Noting that the expressions (4.33) can also be
written in the form of a product of two linear functions, namely (/3,+/32x)
and (/33+ f34y), then it can easily be seen that the four functions, N;, can
be obtained by taking products of the linear displacement functions derived
for axial vibrations of rods in Section 3.3. This gives

N1=a(1- )(1-77)

N2=410 +0(1-77)
(4.35)

N3=410 +0 (1+77)

N4=41(1-6)(1+77)

Denoting the non-dimensional coordinates of node j by (;, 77;), then the
function N; can be written in the form

Nj =a(l+eje)(1+77;77) (4.36)

Like the linear triangle, the displacements vary linearly along each side
of the element and are uniquely determined by the values of the displace-
ments at the nodes at the ends of the side. Therefore, the displacements
will be continuous between elements.
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The expressions (4.34) can be written in the combined form (4.17), where

{U}eT = [U1 U, U2 V2 U3 V3 U4 v4]

and

[N' _ [
N, 0 N2 0 N3 0 N4 0

IL

1

0 N, 0 N2 0 N3 0 N4 J

(4.37)

(4.38)

The inertia matrix is again given by (4.19). A typical element of this
matrix is

+1 +1

phab N;N; d drl

phab 11 (1+f;f)(1+;f) d6 J 11 (1+n;r1)(1+,Y7;r1) di7 (4.39)

The first integral has the following value

I

di; =2(1+3,6;) (4.40)

The second integral can be evaluated in a similar manner. Using these
results gives the following inertial matrix:

4 0 2 0 1 0 2 0

0 4 0 2 0 1 0 2

2 0 4 0 2 0 1 0

phab 0 2 0 4 0 2 0 1

[mle = (4.41)
9 1 0 2 0 4 0 2 0

0 1 0 2 0 4 0 2

2 0 1 0 2 0 4 0

L0 2 0 1 0 2 0 4

The stiffness matrix is given by (4.22). Using (4.23), (4.36) and (4.38)
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gives the strain matrix

[_(I-rl)

[B]
4

-

,

0

0

(1+ )
b

(1-i) (1-rl) -(I+ Q (1-'7)
b a b a

(1+77)

a
0

(1+i)
a

0

0
0+0

0
(I-a)

b b

(1+ ) (l+rt) (1-i) (1+i)
F, a b a)

(4.42)

Substituting (4.42) into (4.22) and integrating will give the element stiffness
matrix. However, this is a tedious process. It is far simpler to use numerical
integration. In terms of (, n) coordinates (4.22) becomes

+1 +1

[k]e = abh[B]T[D][B] d dfl (4.43)f
Section 3.10 describes how to integrate a function in one dimension

between -1 and +1 using Gauss-Legendre integration. This method can
be extended to square regions as follows. Consider the integral

I= g(,fl)ddf7 (4.44)

First evaluate JI g(, q) d keeping constant. Using (3.246) gives
+1 n

g(, n) de= H,g( fn)=+/(fn) (4.45)
l r=1

where H; are the weight coefficients,; the sampling points and n the
number of sampling points. Next evaluate 1 + 1 , ii(n) d-q. Again (3.246) gives

r+1

1

0
(1-rt)

a a

0

m

J=1

Combining (4.45) and (4.46) gives

(4.46)

n m

I = 1) (4.47)
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o4 I o3

01 02

Figure 4.9 Integration points for n = m = 2 in a square region.

The number of integration points n and m in the and q directions will
depend upon the degree of the function g(e, 77) in l; and 77. For example,
if 77) is cubic in both i; and 77, then n = m = 2. There are, therefore, a
total of four integration points. Table 3.7 and equation (4.47) indicate that
the integration points will be at (1/3112, 81/31/2) and all the weight
coefficients are 1. The positions of the integration points are illustrated in
Figure 4.9.

Substituting (4.42) into (4.43) indicates the presence of terms which are
quadratic in either f or 77. Therefore, it will be necessary to take n = m = 2
when using (4.47). However, in some situations, this procedure leads to
unrepresentative properties. This can be illustrated by subjecting the element
to nodal displacements which are consistent with pure bending in the
i-direction, that is

U 1 = U3 = U, U2 = U4=-U

V1 = V2 = V3 = V4 = 0
(4.48)

The deformation of the element, when subject to these displacements, is
shown in Figure 4.10(a). The components of strain are given by

{e} = [B]{u}e (4.49)

where [B] is given by (4.42) and {u}, is defined by (4.37). Substituting (4.48)
into (4.49) gives the following distribution of strain

Ey = 0, (4.50)

The exact deformation, according to slender beam theory, is shown in Figure
4.10(b) and the corresponding strain distribution is

Ex = 77, Ey = 0, YXy = 0 (4.51)
a
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(a) (b)

Figure 4.10 Rectangular element subject to pure bending: (a) Deformation given
by (4.38), (b) exact deformation.

The element, therefore, predicts the direct strains correctly. However, there
exists a parasitic shear strain which is only correct along 4 = 0. Similarly,
by considering pure bending in the q-direction, it can be shown that there
exists a parasitic shear which is only correct along ij = 0. In general, the
element will predict the correct shear strain at the point E = 0, 11= 0 only.
Therefore, an improvement can be obtained by evaluating the shear strain
at the point (0, 0) in (4.42). This gives

(1 il) 0 (1 i)
0

a a

[B]
4

0
-(1-0) 0 (1+)
b b

1 1 1 1

b a b a
(1+77) 0 _(1+r1) 0

a a
0 (1+ ) 0 (1-)

b b

1 1 1 1

b a b a

(4.52)

Using (4.52) the integral in (4.43) is evaluated using a (2 x 2) array of
integration points as illustrated in Figure 4.9. The stiffness matrix is, there-
fore, given by

4

[k]e = Y_ 7j)]T[D][B(e;, n;)] (4.53)

where 71;) are the coordinates of the jth integration point. Applying this
procedure results in a non-conforming element. In this case, eigenvalues
do not necessarily converge monotonically from above, as previously illus-
trated.
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Section 3.10 indicates that for one-dimensional elements the stresses are
more accurate at the integration points. Reference [4.4] shows that in the
present case the best position is at the single point (0, 0). The stresses at
this point are obtained by evaluating (4.52) there and then substituting the
result into (4.32).

The equivalent nodal forces can be obtained in the way described in the
last section. For example, if there is a distributed load of magnitude px per
unit length along side 2-3 in Figure 4.8, then the equivalent nodal force
matrix is

{f}e=bpx (4.54)

assuming px to be constant. Equation (4.54) represents the application of
half the total force at each node on the side.

Example 4.2 Calculate the first five frequencies of the shear wall shown in
Figure 4.6(a) using the idealisation shown in Figure 4.11.

25

4

26

22

19

16

13

10

7

6

1 2 3

Figure 4.11 Idealisation of a cantilever shear wall.
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Table 4.2. Comparison of predicted frequencies (Hz)
using rectangular elements and analytical beam frequencies

Mode FEM Analytical [4.3] % Difference

1 5.250 4.973 5.57
2 27.991 26.391 6.06
3 32.016 31.994 0.23
4 67.518 62.066 8.78
5 97.250 95.832 1.48

As in Example 4.1, there are two degrees of freedom at each node. These
two degrees of freedom are constrained to be zero at nodes 1, 2 and 3.

The predicted frequencies are compared with the analytically derived
ones in Table 4.2. The mode shapes are the same as those given in Figure
4.7. These results have been obtained using the strain matrix (4.42).

The idealisations in Figures 4.6(b) and 4.11 have the same number of
node points. The solution in Example 4.1 and the present one, therefore,
have the same number of degrees of freedom, that is 48. Comparing the
results in Tables 4.1 and 4.2, it can be seen that the use of linear rectangular
elements as opposed to linear triangles, leads to greater accuracy.

This time the frequencies of the flexural modes 1, 2 and 4 agree to within
9% of the analytical results. Again the frequencies of the longitudinal modes
3 and 5 are much more accurate than the flexural ones.

Examples 4.1 and 4.2 between them, illustrate the fact that it is better to
use rectangular elements as far as possible and only use triangular ones
where the shape of the structure requires them.

4.3 Linear quadrilateral element

The rectangular element presented in the previous section will be much
more versatile if it can be transformed into a quadrilateral element, as
shown in Figure 4.12(a). Any point (t, rl) within the square element, shown
in Figure 4.12(b), can be mapped on to a point (x, y) within the quadrilateral
element, shown in Figure 4.12(a), by means of the relationships

4 4

x = Y_ Nj (f, 71) xj, y = E Nj 77)Y;
j=1 l=1

(4.55)

where (x;, y;) are the coordinates of node point j and the functions N; rl)
are defined by (4.36).
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Note that putting = 1, q = -1 in (4.55) gives x = x2 and y = Y2. Similarly
= 1, i = 1 gives x = x3 and y = y3. Also, putting = 1 into (4.55) gives

x=2(1--17)x2+2(1+'11)x3
(4.56)

Y=z(1-n1)Y2+2(1+r1)Y3

Rearranging (4.56) gives

X = 2(X2+x3) +2'1(x3 -X2)

1

(4.57)

Y =2(Y2+Y3)+2 n(Y3

Eliminating 71 gives

Y2)

(Y3 - Y2) f{x - 2(X2+X2)tt 58)I (4Y 2(Y2+Y3) = .- X2)(

which is the equation of a straight line through the points (x2i Y2) and
(x3, y3). Thus, the side 2-3 in Figure 4.12(b) maps onto the side 2-3 in
Figure 4.12(a). Similarly for the other three sides.

The variations in displacement can be expressed in (e, q) coordinates
using (4.34). Notice the similarity between (4.34) and (4.55). The same
functions have been used to define both the geometry of the element and
its deformation. Because of this, the element is referred to as an
`isoparametric element'.

The position and displacement of any point, 77, on the side 2-3 in Figure
4.12(a), is uniquely determined from the coordinates and displacements of
nodes 2 and 3 using (4.55) and (4.34). Two adjacent elements, having the
side 2-3 as a common side, will have the same nodes and the same variation
with 71 along 2-3. Therefore, the displacements will be continuous between
elements.

Y
A

0

(-1, 1)
1

(1, 1)

4 1 3

1 2

(-1, -1) (1, -1)

(b)

Figure 4.12 Geometry of a quadrilateral element: (a) physical coordinates,
(b) isoparametric coordinates.



Linear quadrilateral element 159

The inertia matrix is again given by equation (4.19), that is

[Mb = J e ph[N]T[N] dA (4.59)

where [N] is defined by (4.38). Because the Ni in (4.38) are expressed in
77) coordinates, it is simpler to evaluate (4.59) if the integral is trans-

formed from (x, y) coordinates to 77) coordinates. In general, the lines
f = constant and rl = constant in the x-, y-plane will not be orthogonal. The
vectors

ax ayd
= \a , ag) d

ax ay
ddid _ -, on

a77 7 a77

(4.60)

are directed along the lines Y7 = constant and e = constant respectively. The
element of area in (e, 77) coordinates is given by the modulus of their vector
product, that is

dA=IdjAd7jI

(ax ay ay ax
de di7

ae a77 ae a77

This can be written in the form

(4.61)

dA = det [J] de d,7 (4.62)

where

ax ay

ae ae
[J]

ax aY

077 a?7

is known as the Jacobian matrix.
Substituting (4.55) into (4.63) gives

IJI=

aN, aN2 aN3
of a a

aN aN aN
1 2 3

a,7 077 077

Yi

Y2

Y3

Y4

The expression for the inertia matrix, (4.59), now becomes

(4.63)

(4.64)

[m]Q = f-
"

f, ph[N]T[N] det [J] d d-q (4.65)
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The integral in (4.65) can be evaluated using numerical integration, as
described in the previous section. In order to determine the number of
integration points required, it is necessary to determine the order of the
function det [J]. Substituting (4.36) into (4.64) gives

l(el+e211) (f1+f211)]
[J] 41 (e3+e26) (f3+J2e)

where

el = (-X1 +x2+ X3 - X4)

e2=(X1-X2+X3-X4)

e3=(-X1-X2+X3+X4)

fi = (-Y1 +Y2+Y3 -Y4)

f2 = (Y1-Y2+Y3 -Y4)

A = (-Y1 -Y2+Y3+Y4)

Therefore

det [J] =1'66(c1 + C317 )

where

c1= e1f3 - e3f1

(4.66)

(4.67)

(4.68)

C2 = elf2 - e2f1 (4.69)

C3 = e2f3 - e3f2

In general, det [J] is a linear function of (f, 71). However, in the case of
either a rectangle or parallelogram, c2 = c3 = 0, and so det [J] is a constant.

[N] is a bi-linear function of (f, 17) and so [N]T[N] is a bi-quadratic
function. This means that [N]T[N] det [J] is either a bi-quadratic or bi-cubic
function. In either case (4.65) can be evaluated using a (2 x 2) array of
integration points.

The stiffness matrix is given by (4.22), that is

[k]e =
J e

h[B]T[D][B] dA (4.70)

where [B] is defined by (4.23). Transforming to (f, 77) coordinates using
(4.62) gives

+1

[k]e = h[B]T[D][B] det [J] df di1 (4.71)
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In evaluating the matrix [B], it is necessary to express the differentials
in the (6, 17) coordinates, since the matrix [N] is expressed in terms of these.

Noting that

a _ ax a ay a
a a ax ae ay

and (4.72)

a ax a ay a
aq7 a,7 ax a17 ay

can be expressed in the matrix form

where [J] is the Jacobian matrix defined in (4.63), then

a a

ax
[J]-' as

ay al.

(4.73)

(4.74)

The elements of [B] require aN;/ax and aN;/ay to be evaluated for j = 1,
2, 3, 4. These can be calculated using the expression

ON,

ax
ON,

ay

ON, aN3 aN, ON, aN2 ON, aN4
ax ax ax a of a a

ON, aN3 aN, [J]
ON, aN2 aN3 aN4

ay ay ay a77 a17 a77 a77

(4.75)

Notice that the second matrix on the right hand side of (4.75) is also required
in (4.64) for evaluating [J].

Expressions (4.66), (4.68) and (4.75) show that the elements of [B] are
obtained by dividing a bi-linear function of 6 and 9 by a linear function.
Therefore, the elements of [B]T[D][B] det [J] are bi-quadratic functions
divided by a linear function. This means that [k] cannot be evaluated exactly
using numerical integration.

From practical considerations it is best to use as few integration points
as is possible without causing numerical difficulties. A smaller number of
integrating points results in lower computational cost. Also, a lower order
rule tends to counteract the over-stiff behaviour associated with the displace-
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ment method. A lower limit on the number of integration points can be
obtained by observing that as the mesh is refined, the state of strain within
an element approaches a constant. In this case the stiffness matrix, equation
(4.71), becomes

[k]e = [B]T[D][B] J h det [J] d d77 (4.76)

The integral in (4.76) represents the volume of the element. Therefore, the
minimum number of integration points, is the number required to evaluate
exactly the volume of the element. Taking the thickness, h, to be constant
and noting that det [J] is linear, indicates that the volume can be evaluated
exactly using one integration point. However, in the present case, one
integration point is unacceptable since it gives rise to zero-energy deforma-
tion modes. These are modes of deformation which give rise to zero strain
energy. This will be the case if one of these modes gives zero strain at the
integration point. The existence of these modes is indicated by the stiffness
matrix having more zero eigenvalues than rigid body modes (see Section
3.10). Experience has shown that the best order of integration is a (2 x 2)
array of points. As in the case of the rectangular element, Section 4.2, the
shear strain should be evaluated at = 0, 17 = 0 when forming the matrix
[B] in (4.71).

The equivalent nodal forces are obtained in the same way as in previous
sections. For example, if there is a distributed load having components
(pr, p,,) per unit length along side 2-3 in Figure 4.12(a), then the equivalent
nodal force matrix is

1 Je = 212-3

0

0

P.

PV

PX

Py

0

0

(4.77)

if pX and p,, are constants. 12-3 is the length of the side 2-3.
The best position to evaluate the stresses is at the single point = 0,

17 = 0 as indicated in Section 4.2 for the rectangle. These are obtained by
evaluating the matrix [B] there, using (4.23), (4.38) and (4.75), and then
substituting into (4.32).
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Y
A

(0, 0, 1)

0 x
(b)(a)

Figure 4.13 Definition of area coordinates for a triangle.

4.4 Area coordinates for triangles

In dealing with triangular regions it is advantagous to use area coordinates.
Referring to Figure 4.13(a), the area coordinates (L,, L2, L3) of the point
P are defined as

L, = A,/A, L2 = A2/ A, L3 = A3/A (4.78)

where A,, A2, A3 denote the areas of the sub-triangles indicated and A is
the area of the complete triangle. Since

A, +A2+A3 = A (4.79)

then the three area coordinates are related by the expression

L, + L2 + L3 =1 (4.80)

It can easily be seen that the coordinates of the three vertices are (1, 0, 0),
(0, 1, 0) and (0, 0, 1) respectively.

Area coordinates can also be interpreted as ratios of lengths. For example

_ distance from P to side 2-3
L' distance from 1 to side 2-3

(4.81)

This definition indicates that the line L, = constant is parallel to the side
2-3 whose equation is L, = 0, as shown in Figure 4.13(b).

Cartesian and area coordinates are related by

x=x,L,+X2L2+x3L3

y =YjL,+Y2L2+Y3L3
(4.82)

where (x;, y;) are the Cartesian coordinates of vertex i. Combining (4.80)
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and (4.82) gives

1 1 1 1 L,

=[A]T
LL,2

Lx = xl x2 x3 2

Y Yi Y2 Y3 L3 L3

(4.83)

where [A] is defined in (4.7). Inverting this relationship gives

L, 1

L2 = [A]-T x (4.84)

L3 Y

Using (4.9) in (4.84) shows that

L; =2I (A°+a;x+by) i=1,2,3 (4.85)

where A°, a;, b; are defined in (4.10).

4.5 Linear triangle in area coordinates

The linear triangle is presented in Section 4.1 using Cartesian coordinates.
It is shown there that the inertia matrix is given by

where

and

[m]e =
JA,

ph[N]T[N] dA (4.86)

[Ji 0 N2 0 N3 0 ]
[N]

0 N, 0 N2 0 N3
(4.87)

N;=2A(A°+a;x+by) (4.88)

Comparing (4.88) with (4.85) shows that in terms of area coordinates

Ni = L. (4.89)

This means that a typical element of the inertia matrix is of the form
ph JA L;L; dA. Integrals of this form can be evaluated using the following
formula [4.5]

J L1mL2nL3°dA= m!n!p! 2A (4.90)
A (m+n+p+2)!
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where ! is the factorial sign. Remember that 0! = 1. Therefore

1.

and

1. 1 2A_

L;L; dA=
1.

4! 12

2A_A
Li2dA=2!0!0!

A 4! 6

Substituting (4.91) and (4.92) into (4.86) gives (4.20).
The stiffness matrix is given by

(4.91)

(4.92)

[k]e =
TA,

h[B]T[D][B] dA (4.93)

where

a/ax 0

[B]= 0 a/ay [N]

a/ay a/ax

(4.94)

Functions expressed in area coordinates can be differentiated with respect
to Cartesian coordinates as follows

a_ 3 aL; a
ax j=1 ax aL,'

Using (4.85) these become

a 1 3 aY_ a.-
ax 2A;-, ' aL;'

a 3 aL; a
ay ;-, ay aL;

3a 1 a

ay 2Aj-1 'aL;

(4.89) and (4.96) together show that

aN; a; aN, b;

ax 2A' ay 2A

(4.95)

(4.96)

(4.97)

Substituting (4.97) into (4.94) gives the strain matrix (4.24) which is constant.
Thus, again, the evaluation of (4.93) is a trivial matter. The result is given
by (4.25).

When the displacement functions are evaluated along one side of the
triangle, in order to calculate the equivalent nodal force matrix, the area
coordinates become one-dimensional natural coordinates. This is illustrated
for side 2-3 in Figure 4.14.

The natural coordinates of P are defined as

L2 = 12/ 12-3, L3 = 13/ 12-3 (4.98)
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Figure 4.14 One-dimensional natural coordinates.

with

L2+L3= 1 (4.99)

Evaluation of (4.28) involves integrals of the form 1, L, ds. These can be
evaluated using the formula [4.5]

I L2"L3° ds =
n!p!

12-3 (4.100)
s (n+p+1)!

12-3

13

P 2 (1,0)

12

(0, 1) 3

Thus

Is

1!0!
12-3=

2.3L,ds=2!
2

(4.101)

This gives the result (4.29).

4.6 Increasing the accuracy of elements

In Section 3.8 it is shown that the accuracy of rod and beam elements can
be increased by increasing the order of the polynomial representation of
the displacements within the element. This results in an increased number
of degrees of freedom which may be either at existing nodes or at additional
nodes. These ideas can be extended to membrane elements.

The accuracy of the linear rectangular element shown in Figure 4.8 can
be increased by assuming that the displacements are given by [4.6]

4

u= Y, N;uj+al(1 2)
J=1

4
(4.102)

v= Y_
1

where the functions N,(e, 71) are defined by (4.35). Comparing (4.102) with
(4.34), it can be seen that the previously used bi-linear functions have been
augmented by two quadratic functions each. This will ensure that in pure
bending situations the deformations are more like Figure 4.10(b) than Figure
4.10(a).
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The parameters a, to a, are not nodal displacements. However, since
the functions (1- 2) and (1- rig) are zero at the four node points in Figure
4.8, a, to a4 can be considered to be generalised coordinates associated
with the interior of the element.

On substituting (4.102) into (4.23) and (4.22) a stiffness matrix of order
(12 x 12) will be obtained. In order to reduce this to an (8 x 8) matrix, the
element strain energy is minimised with respect to the additional degrees
of freedom a, to a,. Writing the strain energy in partitioned form as follows

(4.103)
[kau] [kaal {a}

where Jul, is defined as in (4.37) and {a}T = [a,a2a3a4J , then a Ue/a{a} = 0
gives

[k]aa {a} = 0

Solving for {a} gives

lot) =

(4.104)

(4.105)

Introducing (4.105) into (4.103) shows that the strain energy can be
expressed in terms of the following (8 x 8) stiffness matrix

[k] = [k].. -[k]ua[k]aa-'[k]au (4.106)

This procedure is known as static condensation. Since the additional degrees
of freedom are not node point degrees of freedom, displacements will not
be continuous between elements and so the element will be non-conforming
one.

The displacement functions (4.102) are only used to calculate the element
stiffness matrix. The inertia matrix is evaluated using (4.34) as described
in Section 4.2.

If the shear wall shown in Figure 4.11 is analysed using this modified
stiffness matrix, then the results obtained are as shown in Table 4.3. Compar-
ing these with those given in Table 4.2, which were obtained using the
unmodified stiffness matrix, shows that the accuracy of the flexural modes
has increased substantially.

An alternative way of increasing the accuracy of a rectangular element
is to introduce additional node points at the mid points of the edges as
shown in Figure 4.15. The additional node points 5 to 8 have two degrees
of freedom each, namely the components of displacement u and v, just like
nodes 1 to 4. The displacements are given by [4.7]

8

u = Y_ N; (e, i1)u1,
j=1

8

v= Y _ N,( , r7)v;
j=1

(4.107)
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Table 4.3. Comparison of predicted frequencies (Hz)
using rectangular elements with extra displacement functions
and analytical beam frequencies

Mode FEM Analytical [4.3] % Difference

1 4.984 4.973 0.22
2 26.882 26.391 1.86
3 32.014 31.944 0.22
4 65.376 62.066 5.33
5 97.234 95.832 1.46

Y,'1

Figure 4.15 Geometry of an eight node rectangular element f = x/ a, 17 = y/ b.

where

N;(?;, rl)=all+ ;)(l+rlirl)(f; +71;77-1) (4.108)

for nodes 1 to 4

N;(, r1)=2(1-2)(1+rlirl) (4.109)

for nodes 5 and 7, and

N;(, rl)=2(1+ ;e)(1-r72) (4.110)

for nodes 6 and 8, where 77;) are the coordinates of node j.
The stiffness matrix should be evaluated using either (2 x 2) or (3 x 3)

array of Gauss integration points depending upon the application [4.6].
The inertia matrix can be evaluated exactly using a (3 x 3) mesh of integration
points.

If the shear wall of Example 4.2 is analysed using the idealisation shown
in Figure 4.16, then the results obtained using a (3 x 3) array of integration
points for both stiffness and inertia matrices are as shown in Table 4.4.
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Table 4.4. Comparison of predicted frequencies (Hz)
using rectangular 8-node elements and analytical beam frequencies

Mode FEM Analytical [4.3] % Difference

1 4.986 4.973 0.26
2 26.327 26.391 -0.24
3 31.964 31.944 0.06
4 62.648 62.066 0.94
5 95.955 95.832 0.13

20

15

Figure 4.16 Idealisation of a cantilever shear wall.

Comparing Tables 4.4 and 4.3 shows that an improvement in both the
flexural and longitudinal mode frequencies has been obtained. In addition
the total number of degrees of freedom has reduced from 48 to 40.

The element shown in Figure 4.15 can be transformed into a straight
sided quadrilateral, as shown in Figure 4.17, using the relationships (4.55).
Such an element is referred to as a `sub-parametric' element. In this case
the inertia matrix can be evaluated exactly using a (3 x 3) array of Gauss
integration points. It is also recommended [4.8] that a (3 x 3) array be used
for the stiffness matrix.

The accuracy of the triangular element described in Sections 4.1 and 4.5
can also be increased by introducing additional node points at the mid-points
of the sides as shown in Figure 4.18. In this case the components of
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Figure 4.17 Geometry of a higher order quadrilateral element.

Figure 4.18 Geometry of a higher order triangular element.

displacement are given by [4.7]

6 6

u = Y _ Nu;, v = Y_ N;v;
3=1 i=I

where

N;=(2L;-1)L; forj=1,2,3
and (4.112)

N4=4L,L2, N5 = 4L2L3, N6 = 4L3L,

The inertia and stiffness matrices can be evaluated in the way described in
Section 4.5.

If the above elements are used to idealise a membrane with a curved
boundary (e.g., the boundary of a cut-out), then the curved boundary will
be replaced by a polygonal one. The number of straight line segments can
be increased until a desired geometrical accuracy is obtained. However, an
accurate geometry does not necessarily indicate an accurate numerical
solution, as discussed in reference [4.9] and the many references cited. In
such a situation, it is better to use elements with curved sides near the
curved boundary and straight sided elements elsewhere.
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(b)

Figure 4.19 Geometry of elements with curved boundaries: (a) quadrilateral,
(b) triangle.

The eight node rectangle (Figure 4.15) can be transformed into a quadri-
lateral with curved sides, as shown in Figure 4.19(a), using the relationships

8

x= N1(6, rl)x1,
1=,

B

y = E N, q)y1
i=1

(4.113)

where the functions N,(6, 71) are defined by (4.108) to (4.110). Hence the
element is an isoparametric one. In this case the determinant of the Jacobian,
det [J], is cubic [4.8]. Therefore, the inertia matrix can be integrated exactly
using a (4 x 4) array of integration points. The stiffness matrix should be
integrated using either a (3 x 3) or a (4 x 4) array.

The six node triangle (Figure 4.18) can be transformed into one with
curved sides, as shown in Figure 4.19(b), using the relationships

6 6

x = Y_ N1x1, y = Y_ Ny1
j=1 1=,

(4.114)

where the functions N; are defined by (4.112).
The inertia and stiffness matrices can be evaluated using (4.65) and (4.71)

in Section 4.3 if the 77) coordinates are defined by

L,= , L2=77, L3=1- -71
This gives

a_a_a a_a_a
a aL, aL3' a77 aL2 aL3

(4.115)

(4.116)

The expressions (4.65) and (4.71) are again evaluated using numerical
integration. Details of some numerical integration schemes for triangles are
given in Section 5.5. The displacement functions are quadratic and so is
det [J]. The inertia matrix can, therefore, be evaluated exactly using twelve
integration points [4.10]. At least three integration points should be used
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for the stiffness matrix in order to evaluate the volume of the element
correctly. It may be that in some situations more may be necessary to obtain
good accuracy. More details regarding these elements can be found in
references [4.7] and [4.10].

Problems

Note: Problems 4.11 and 4.12 require the use of a digital computer.

4.1 Explain why the sum of the elements in the first, third and fifth rows
and columns of the inertia matrix of the constant strain triangle (4.20), is
equal to the mass of the element.

4.2 Show that the sum of the first, third and fifth columns of the stiffness
matrix of the constant strain triangle (4.25) is zero. Explain this result.

4.3 Show that when the strain matrix (4.52) is used the stiffness matrix of
the linear rectangle is

Eh k k2, T

2 4 ( 1
V 2 )

k21 k22 J

where

8)9 +3a(1- v) Sym

_
k"

3(1+v) 8a+3/(1-v)
-8/3+3a(1-v) -3(3v-1) 8/3+3a(1-v)

3(3v-1) 4a-3/3(1-v) -3(l+v) 8a+3/3(1-v)

where a=a/b, 0 =b/a.

-4/3 - 3 a (1- P) Sym

- -3(l+v) -4a-3f3(1-v)
k21 4/3 -3a(1- v) 3(3v-1) -4f3 -3a(1- v)

-3(3v-1) -8a+3/3(1-v) 3(1+v) -4a-3/3(1-v)
k22 = k11

4.4 An alternative proceudre for eliminating parasitic shear in a rectangular
element, Figure P4.4(a), is to divide it into four overlapping triangles as
shown in Figure P4.4(b) [4.11]. Each triangle is treated as a linear triangle
(Section 4.1) and a weighted average shear strain defined by

4

yxy - 4

where A;, y; are the area and shear strain of an individual triangle.
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3

2

Figure P4.4

Show that this procedure gives the same shear strain as the third row of
(4.52).

4.5 Show that rigid body motions do not cause any strain in the linear
quadrilateral element (Section 4.3).

4.6 Show that the inertia matrix of the six node triangle is

m miz
[M], =

IM12T m22

where

6 0 -1 0 -1 0

6 0 -1 0 -1

m = pAh
Sym

6 0 -1 0

180 6 0 -1

6 0

6

0 0 -4 0 0 0

0 0 0 -4 0 0

pAh 0 0 0 0 -4 0

m12

_
180 0 0 0 0 0 -4

-4 0 0 0 0 0

0 -4 0 0 0 0

32 0 16 0 16 0

32 0 16 0 16

M22 Sym
32 0 16 0

180

3

16

32 0

32]
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4.7 Show that the stiffness matrix of an isotropic linear triangular element
whose thickness varies linearly is

[k]e = hA[B]T[D][B]

where [B] and [D] are given by (4.24) and (2.51) respectively, A is the area
of the triangle and h the mean thickness 3(h,+h2+h3), where h,, h2 and
h3 are the nodal thicknesses.

4.8 Show that the inertia matrix of a linear triangular element whose
thickness varies linearly is

(6+4a,)
0 (6+4a,) Sym

_ phA (6-a3) 0 (6+4a2)
[m]e

60 0 (6-a3) 0 (6+4a2)
(6-a2) 0 (6-a,) 0 (6+4a3)

0 (6-a2) 0 (6-a,) 0 (6+4a3)

where p is the density, A the area, h the mean thickness and aj = h;/h for
j = 1, 2, 3.

4.9 If the thickness variation of a linear rectangular element is given by
471)

= Y_ N; h;
J=1

where the N; are defined by (4.36) and the h; are the nodal values of
thickness, how many Gauss integration points are required to evaluate the
inertia and stiffness matrices?

4.10 If the thickness variation of a linear quadrilateral is the same as the
rectangular element in Problem 4.9, how many Gauss integration points
are required to evaluate the inertia matrix exactly? How many Gauss
integration points are required to integrate the volume exactly?

4.11 Repeat Example 4.2 using the stiffness matrix given in Problem 4.3.

91.44 m

137.2 in -'_ 137.2 m

Figure P4.12
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4.12 Figure P4.12 shows the cross-section of an earth dam which is assumed
to be rigidly fixed at its base. Assume that a plane strain condition exists,
that E is 5.605 x 10$ N/ M2, v is 0.45 and p is 2082 kg/m3. Calculate the
four lowest frequencies and mode shapes using linear triangles. Compare
the frequencies with the values obtained using 100 elements [4.12] 1.227
(A), 1.993 (S), 2.324 (A), 3.073 (A) Hz, where A and Sindicate antisymmetric
and symmetric modes respectively.

Note: A plane strain element can be derived from a plane stress element
2by replacing E by E/(1- v) and v by v/(1- v).
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Vibration of solids

Solid type structures, such as machinery components, can be analysed using
three-dimensional finite elements. These can be either tetrahedral, penta-
hedral or hexahedral in shape. However, if the structure is axisymmetric,
the three-dimensional analysis can be replaced by a sequence of two-dimen-
sional problems by expanding the loading and displacements as Fourier
series in the circumferential coordinate. These two-dimensional problems
can be solved by techniques similar to those described in Chapter 4.

5.1 Axisymmetric solids

An axisymmetric solid can be generated by rotating a plane area, Figure
5.1(a), through a full revolution about the z-axis, which lies in the plane
of the area. The resulting solid is shown in Figure 5.1(b).

The energy expressions for an axisymmetric solid are, from Section 2.9

Te=2 Jvp222) dV (5.1)

z z
a'

A

r

(a) (b)

Figure 5.1 Solid of revolution.

176



Applied loading

({El}T[Dl]{El}+{rZ}T[DZ]{EZ}) d VUQ = z
fV

with

fel}=

au

aw

az

au aw-+-
az ar

1 au av v

IF-21 =
r aB ar r

av 1 aw

az r ae

177

(5.2)

(5.3)

I

(1-v) v v 0

E v (1-v) v 0
[D1] (1+v)(1-2v) v v

(5.4)(1-v) 0

0 0 0 2(1-2v)

and

E 1 0[D2] _
2(1+v) 0 1]

Also

SW= J (prSu+pe6v+pzSw)dSS

(5.5)

(5.6)

5.2 Applied loading

Even though the solid is axisymmetric, the applied loading need not be. If
this is the case, then the loading distribution is represented by means of a
Fourier series in the angular coordinate 0. This means that the components
of the applied load can be expressed in the following form:

IPi= Y Pr" cos n9+ E Pr" sin nB
P= n=o Pzn n=1 Pzn

(5.7)

Pe = Y_ pen sin nO - Y pen cos nO
n=1 n=0

The terms without a bar represent loading which is symmetric about
0 = 0 and those with a bar represent loading which is antisymmetric about
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0 = 0. The terms (pro, Pro) represent axisymmetric loading and P,,, represents
pure torsion.

Using the following relationships

m9 sinnOd0=
rr m=n 54 0

{0

m=n=0
I7r m=nO0
0 m0- 0

sin m0 cos n9 dO = 0 all m and n

It can be shown that the coefficients in (5.7) are given by

P,O

LPZoJ 21r J ±,r LPZJ
d9

[;;:]=JT[:]cos0d0
Prn1=1
Pzn IT J-n LPZ

1 I
Pen= J pesin nBdB n0 0

IT

1 +,r

Poo=2rr ped9

1 +,r

Pen= - pecosnOd0 n00
,r

Example 5.1 Find the Fourier series representation of the loading

Pr =

IT IT
1-pcosO -2<e<+2

7r-,r<0<-20
7r,2<0<IT

(5.9)

which is illustrated in Figure 5.2.
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Figure 5.2 Pressure loading distribution.

The relationships (5.9) give

1

pcos0dOPPro=-2or
E/2

/2 1r

+,r/2Pry=p cos2odo=-p
-n/2 2

1 +7r/2

Prn=pcos9cosn6dO forn>1
-/2

Now

+,r/2

-n/2

Therefore

cos 0 cos nO dO

(n2-1)

/2

fcos(n+1)0+cos(n-I)e
z

dO

fsin (n + 1)or/2+sin (n -1)or/2(n+1)

(n-1)
2 cos (nor/2)

0

Prn = 2p( )n/2

ar(n2-1)

nodd

n even
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-7r

(a)

-P.

0

(b)

n=0
n=2

0

n=1

IT

Figure 5.3 (a) Harmonic components; (b) Fourier series representation.

The Fourier series expansion is, therefore

p,=-a-2 cos 0-3p cos20+ 15-cos40

The harmonic components are illustrated in Figure 5.3(a) and the Fourier
series representation in Figure 5.3(b).

5.3 Displacements

The displacement components can be represented in a similar manner to
the applied loading, that is

rU runt un
I J=

L
Jcosn0 sin n8

L w n=0 wn n=1 wn
(5.10)

v = I vn sin no - vn cos nO
n=1 n=0
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where the unbarred and barred terms represent motion which is symmetric
and antisymmetric about 0 = 0. The reason for using a negative sign in the
expression for v is explained below equation (5.12).

5.4 Reduced energy expressions

The expressions (5.7) and (5.10) are substituted into (5.1), (5.2) and (5.6)
and integrated with respect to 0 between the limits -7r and +7r. Using the
relations (5.8) reduces the energy expressions to sums of the energies
corresponding to each harmonic component. That is, there is no coupling
between them. Thus, the motion corresponding to each harmonic component
can be determined separately. The energy expressions for a single harmonic
component are, for n 3-- 0.

T=2i
A

U=2Tf J (5.11)
A

8W=7r
J

ds
s

where

aun

ar

u
+

nv
r r

aW
az

au aW
+

az ar

nu aV Vn

r ar r
{E2} =

avn nw
Oz r

(5.12)

rs is the value of r on the surface S, ds is an element of arc along the
generator curve of the surface, and A is the area of the generator plane
(see Figure 5.1).

When considering the barred terms in (5.10) the strain matrix {E,}
remains unchanged and {E2} changes sign. This means that the energy
expressions (5.11) are the same for both symmetric and antisymmetric
motion. (This is the reason for taking the negative sign in the expression
for v in (5.10).) The case n = 0 needs to be considered separately.
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For axisymmetric motion

T = ' 2 ( 2 a )
J

P + w '2 dA
A

E1}oT[D1]{l}ordAU=2(2rr)
JA

{

'SW=21T

J (p,oSuo+p.oSwo)rs ds
s

For antisymmetric motion (pure torsion)

T =1(21r) f
A

r dA

E,}0T[D,]{e,}or dAU =' 2(2,7r) JA {

'SW=2a

f,
Peo&vors ds

s

(5.13)

(5.14)

The motion corresponding to a single harmonic component is obtained
using a two-dimensional finite element idealisation. Any of the element
shapes and associated displacement functions used for membrane analysis
in Chapter 4 can be used. The procedure is illustrated in the next section.

5.5 Linear triangular element

Figure 5.4 shows a triangular element with three node points, one at each
vertex. There are three degrees of freedom at each node, namely, v
and w corresponding to the harmonic component n. u and w are in the
directions of the r- and z-axes as indicated. v is in the B-direction which
is perpendicular to both r and z.

Following the procedure presented in Section 4.5 for a linear membrane
triangle, the displacement functions can be expressed in the form

3

Y_ N1u;
l=1

3

Y_

1=1

3

w = I

(5.15)

j=1
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z, wn
1

0 w r, Un

Figure 5.4 Geometry of a triangular element.

where

N3=L; (5.16)

(Remember that the L; are area coordinates for the triangle), and (un;, v;,
wn;) are the displacement components at node j.

The expression (5.15) can be written in the combined form

Un

vn = [N]{un}e (5.17)

Wn

with

and

{Un}eT- LUnI vnl

N, 0 0 N, 0 0 N3 0 0

[N] = 0 N, 0 0 N2 0 0 N3 0 (5.19)

0 0 N, 0 0 N2 0 0 N3

wnl Un2 vn2 wn2 Un3 Vn3 Wn31 (5.18)

Considering the case n 0 0, the energy expressions are obtained by
substituting (5.17) into the expressions (5.11) and integrating over the area
of the element.

The kinetic energy is given by

Te = z{un}eT[m]e{u}e

where

(5.20)

N]T[N]r dA[m]e = 7rp fA [

and A now denotes the area of the element.

(5.21)
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A typical element of the inertia matrix is of the form irp JA L,L3r dA. By
analogy with (4.82), r can be expressed as

r =r, L, + r2L2 + r3L3 (5.22)

where r; is the value of r at node j. Therefore

7 r p J L;L,r dA= irp f L,L;(r1L,+r2L2+r3L3) dA
A A

Integrals of the form f, L,L;L, dA can be evaluated using (4.90). After
evaluating these integrals, the inertia matrix is given by

Il[Il 112(11 113[I1

[mle = 60 112[11 122[11 123[11

I13[Il 123[11 133[1]

where [I] is a unit matrix of order 3 and

711 = 2(3r, + r2+ r3)

112 = (2r, +2r2+ r3)

113 = (2r, + r2 + 2r3)

122=2(r1+3r2+r3)

123 = (r, +2r2+2r3)

133 = 2(r, + r2 + 3 r3)

Note that the inertia matrix is independent of n.
The strain energy is given by

Ue = 2{un}eT[k]e{un}e

where

(5.23)

(5.24)

(5.25)

[k]e = it
J

[BI]T[Dll[Bi]r dA+ iT fA [B2]T[D2][B2]r dA (5.26)
A

is the element stiffness matrix.
The strain matrices [B1] and [B2] are of the form

[1311=[BI, B12

[B21 = [B21

B131

B231

(5.27)
B22
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where

aN,/ar 0 0

N;/r nN,/r 0
B,; _

0 0 aN,/az
aN;/az 0 aN;/ar

and

(5.28)

B21-nN;/r (aN;/ar-N;/r) 0
(5.29)=

0 aN;/az -nN;/r
Now from (5.16)

Ni = L; (5.30)

Following the techniques presented in Section (4.5), differentiation with
respect to r and z can be carried out as follows:

a-3aL; a a- l aL; a
(5 31)ar ;_, ar aLi' az ;-, az aL;

By analogy with (4.85)

L , = 2A (A°+ ajr+ bjz)

.

(5.32)

where A is the area of the triangle and

A° = rz, - r,z,

a;=z,-z; (5.33)

b;=r;-r,

with j, 1, i being a cyclic permutation of 1, 2, 3.
Relations (5.30) to (5.32) together give

aN, a; aN, b,
(5.34)

ar 2a' az 2a

Substituting (5.34) into (5.28) and (5.29) gives

a; 0 0

1 2AL;/r 0_
B'

(5 35)
' 2A 0 0 b;

.

b; 0 a,
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and

_ 1 (a;-2AL;/r) 0 (5.36)
Bzi 2A 0 b;

In order to obtain the stiffness matrix, as given by (5.26), it is necessary
to evaluate integrals of the form

1.
r dA, J L; dA,

A

Lrj
dA

JA r

Using (5.22)

Each term can be evaluated using (4.90). This gives

AJA3

fA f,
(r,

A A

(5.38)

Therefore

1.
rdA=

3

(r,+rz+r3)
A

The integral JA (L;L;/r) dA can be evaluated explicitly in terms of the nodal
coordinates. However, this involves a considerable amount of algebraic
manipulation. It is more convenient to evaluate it numerically.

Details of numerical integration for rectangular regions are given in
Section 4.2. This can be extended to triangular regions as follows. Consider
the integral

I = f g(L1, L2, L3) dA (5.40)
A

(5.39)

This can be evaluated numerically using the following expression

N

I=AY_
J=,

(5.41)

where (e;, r,;, ;) are the area coordinates of the N integration points and
H; the corresponding weight coefficients.

A large number of integration schemes have been proposed, most of
which have their basis in reference [5.1]. Some typical schemes are given
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Table 5.1. Integration points and weight coefficients for triangles

Formula
no. j 'li Ci H;

1 I I

1 1 3 3 3

2 1
2
3

1

6
1

6
1

3

1 2 1 12
6 3 6 3

1 1 2 13
6 6 3 3

3 1
1

3
1

3
1

3
_27

48
2 3 l 1 25

5 5 5 48
1 3 l 25

3 5 5 5 48
4 1 l 3 25

5 5 5 48

4 1 0.816 847 57 0.091 576 21 0.091 576 21 0.109 951 74
2 0.091 576 21 0.816 847 57 0.091 576 21 0.109 951 74
3 0.091 576 21 0.091 576 21 0.816 847 57 0.109 951 74
4 0.108 103 02 0.445 948 49 0.445 948 49 0.223 381 59
5 0.445 948 49 0.108 103 02 0.445 948 49 0.223 381 59
6 0.445 948 49 0.445 948 49 0.108 303 02 0.223 381 59

5 1 0.333 333 33 0.333 333 33 0.333 333 33 0.225 000 00
2 0.797 426 99 0.101 286 51 0.101 286 51 0.125 939 18
3 0.101 286 51 0.797 426 99 0.101 286 51 0.125 939 18
4 0.101 286 51 0.101 286 51 0.797 426 99 0.125 939 18
5 0.059 715 87 0.470 142 06 0.470 142 06 0.132 394 15
6 0.470 142 06 0.059 715 87 0.470 142 06 0.132 394 15
7 0.407 142 06 0.470 142 06 0.059 715 87 0.132 394 15

in Table 5.1. The formula number indicates the highest degree of polynomial
which will be integrated exactly. The positions of the integration points
are illustrated in Figure 5.5. Further schemes are tabulated in reference
[5.2].

The integral JA (L;L1/r) dA cannot be evaluated exactly using numerical
integration, since the integrand is a polynomial of degree two divided by
a polynomial of degree one. The minimum number of integration points
required depends upon the size of the element and its distance from the
z-axis. Small elements situated far away from the axis can be evaluated
accurately with as few as three integration points, whilst large elements
close to the axis require many more.

The integrals JA Li dA and JA r dA can both be integrated exactly using
three integration points. Therefore, the most convenient way of computing
the stiffness matrix is to evaluate the complete matrix using numerical
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(1)

(2)

(3)

(4)

(5)

Figure 5.5 Integration points for triangles.

integration. The stiffness matrix (5.26) is, therefore, given by

N

[k]e = 7TA Y_ Hjrj([Bi(fj, X11, j)]T[D1][B1(ej, 7j, j)]
j=1

+ [B2ej, ii, yy ]T[D2][B2(ij, rylj, c)])

The stiffness matrix can also be expressed in the form

[k]e = [k,]e + n[k2]e + n2[k3]e

(5.42)

(5.43)

where [ki]ef [k2]e and [k3]e are independent of n. It is therefore, better to
evaluate these matrices and then obtain the stiffness matrices for various
values of n from (5.43).
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The equivalent nodal forces corresponding to a distributed load along
the side 2-3 of the element can be calculated as follows. Substituting (5.17)
into (5.11) gives

S We = {dun}eT{f}e (5.44)

where

( Prn

{f}e = 7r J
e

[N]2-3T Pen rs ds (5.45)
s

P=n

Now along the side 2-3, L, = 0 and so

r0 0 0l
0 0 0

0 0 0

L2 0 0

[N]2-3T= 0 L2 0

0 0 L2

L3 0 0

0 L3 0

0 0 L3

Also, using (5.22)

rs = r2L2+ r3L3

(5.46)

(5.47)

Assuming prn, pen, pr,, to the constant on 2-3, integrals of the form

f,
L;2 ds, J

e

L;L3 ds
s s

have to be evaluated. Noting that L2 and L3 are now one-dimensional
natural coordinates, these integrals can be evaluated using (4.100). This gives

JL;Lj ds = 12-3/3

se {12-3/6

forj=i
forj0i (5.48)

where 12_3 is the length of the side 2-3.
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The equivalent nodal forces are, therefore,

7Tl2_3

6

The inertia, stiffness and equivalent nodal force matrices corresponding
to n = 0 are obtained by substituting (5.17) into (5.13) and (5.14). For
axisymmetric motion the inertia matrix is of the form (5.23) with an overall
factor of 7rpA/30 and [I] a unit matrix of order 2. The stiffness matrix is
given by

N

[k]e = 2orA Y- Hjrj[B1(ej, 1i, j)]T[D1][BI(ej, 71j, i)] (5.50)j-i

where [B,] is defined by (5.27) with

a; 0

_ 1 2AL;/r 0

B'' 2A 0 b;

b; a;

0

0

0

(2r2+r3)prn

(2r2+ r3)Pen
(2r2+ r3)pzn

(r2 + 2r3)prn

(r2+2r3)p0n

(r2 + 2r3)pzn

(5.49)

(5.51)

The equivalent nodal forces corresponding to a constant load on side
2-3 is

7x12_3

{f}e =
3

0

0

(2r2 + r3)prn

(2r2 + r3 )P,.

(r2+2r3)prn

L( r2 + 2 r3 )pen

(5.52)

In this case the nodal degrees of freedom are (u0, w0).
For antisymmetric motion there is only one nodal degree of freedom 00.
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The inertia matrix is

7rPA
111 112 113

112 122 123[m]e = 30
113 123 133

with Ii, as defined in (5.24). The stiffness matrix is given by

(5.53)

[k]e =2vrA E 7Ij,
7Ij, Sj)] (5.54)

j=1

where [B2] is defined by (5.27) with

[B2i]
1 [(a; -2AL;/r)]

- 2A b;
(5.55)

The equivalent nodal forces corresponding to a constant load on side
2-3 is

0
?rl2_3

{f}e = 3 (2r2+ r3)p0n

(r2+2r3)Pen

The stresses within the element are given by

ar

{Q1}= (TO
[D1]IF-1}

o.Z

Tzr

and

{4T2} = f TrOl = [D2]{E2}
TOZ

Substituting for {E1} and {E2} gives

Jul) = [D1][B1]{un}e

{Q2} = [D2][B2]{un}e

(5.56)

(5.57)

(5.58)

(5.59)

It is usual to evaluate the stresses at the centroid of the element (31, 13,
13)

as in the case of the triangular membrane element (Section 4.1). At this
point r=3(r1+r2+r3).
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Z, Wn Z, Wn

4 4
3

2

1

0 r,un

Figure 5.6 A triangular core element with (a) one and (b) two nodes on the z-axis.

5.6 Core elements

If either one or two nodes of the element lie on the z-axis, as shown in
Figure 5.6, then the integrand L;Lj/ r is singular when r = 0. Several sugges-
tions for overcoming this problem have been made. One method is to place
the nodes slightly off the axis. Another is to use a numerical integration
scheme which does not have integration points on the sides of the triangle.
(Note that all the schemes presented in Figure 5.5 satisfy this requirement.)
Although these techniques have been used with some success for static
analysis, they are not entirely satisfactory for dynamic analysis [5.3-5.5].

The correct procedure is to investigate the conditions that the strains be
finite when r = 0. The expressions (5.12) indicate the following requirements.
For n =0

uo = 0 for axisymmetric motion

vo = 0 for antisymmetric motion

Forn00
un+nvn=0

nun+Vn=0

Wn=0

Eliminating vn from (5.61a, b) gives

(n2- 1)Un =0

Similarly, eliminating un from (5.61 a, b) gives

(n2-1)vn=0

(5.60)

(5.61 a)

(5.61b)

(5.61c)

(5.62a)

(5.62b)
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Equations (5.62a, b) indicate that, provided n 0 1, then the requirements are

Un = 0, vn =0

Also from (5.61c)

wn = 0

When n = 1, the requirements are

u,+v,=0, w,=0

(5.63)

(5.64)

(5.65)

Therefore, for n = 0 and n > 1 the problem is overcome by applying the
constraints (5.60) and (5.63), (5.64) respectively to the degrees of freedom
at the nodes on the z-axis. In these cases special core elements of reduced
order are evaluated. When node 1 is on the axis, the element degrees of
freedom are

[wol U02

[ v02 v03j

w02 U03 w03] for n = 0, symmetric

for n = 0, antisymmetric

and

[un2 Vn2 Wn2 U,,3 Un3 Wn31 forn>1

In each case the inertia matrix is obtained by deleting the rows and
columns corresponding to the omitted degrees of freedom. The stiffness
matrices are obtained by deleting the columns of B11 and B21 corresponding
to the omitted degrees of freedom. Finally, the elements of the nodal force
matrix which correspond to the omitted degrees of freedom are deleted.

When n = 1 the element matrices are derived using displacement func-
tions which satisfy conditions (5.65). These can be written in the form (5.17)
with

l T I{UI}e = [Ull u12 V12 W12 u13 V13 W131

and

L, L2 0 0 L3 0 0

[N] = -L, 0 L2 0 0 L3 0

0 0 0 L2 0 0 L3

(5.66)

(5.67)
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Substituting (5.67) into (5.21) and integrating gives the following inertia
matrix

2111I

112 -112 0 113 -113 0
- - - - - - - - - - - - - - - - -

1, 2I

-1121 122[1] 123[1]
0

-------------I
113

-113: 123[1]

0

(5.68)

where [I] is a unit matrix of order 3 and the I;; are as defined in (5.24).
Substituting (5.17) and (5.67) into (5.12) gives

and

a,
_ 1 0

B1, 1 0 (5.69)

b,

B21 2A [-b,, (5.70)

B,; and B2, with i = 2, 3 are defined by (5.35) and (5.36).
The stiffness matrix is again given by (5.42) with the new definitions of

[B,] and [B2].
The equivalent nodal force matrix becomes

0

(2r2+ r3)prl
(2r2+r3)pe1

{f}e =
a12-3

(2r2+r3)p, 1 (5.71)

(r2+2r3)prl
(r2+2r3)pel
(r2+2r3)p,lJ

Example 5.2 Calculate the first five axisymmetric (n = 0) frequencies of a
circular disc of radius 1.27 m and thickness 0.254 m. Compare the results
with the exact solution [5.6-5.8]. Take v = 0.31 and El p = 18.96 Nm/kg.
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Table 5.2. Comparison of predicted frequencies (kHz) of
circular disc with exact frequencies

Mode FEM [5.9] Exact % Error

F 0.2822 0.2727 3.5
F 1.0855 1.0432 4.1

E 1.1703 1.1650 0.45
F 2.1181 1.9646 7.8
E 3.0077 3.0183 - 0.35

F, Flexural modes; E, Extensional modes.

Figure 5.7 Idealisation of a disc into axisymmetric triangular elements.

Figure 5.7 shows an idealisation of the disc. There are 65 nodes and 98
elements. Since n = 0 and the motion is symmetric, then the condition uO = 0
is applied at the three nodes on the axis of symmetry.

The predicted frequencies are compared with the exact ones in Table
5.2. The accuracy of the frequencies predicted by the finite element method
is good. It can be seen that the accuracy of the frequencies of the extensional
modes are better than the accuracy of the flexural modes. This is typical of
low order elements.

5.7 Arbitrary shaped solids

Non-axisymmetric solids of arbitrary shape are analysed by dividing them
up into an assemblage of three-dimensional finite elements. The most
common shapes of element used are tetrahedral, pentahedral and
hexahedral.

In Chapter 4 it is shown that complete polynomials in two variables can
be generated using Pascal's triangle. The displacement functions of three-
dimensional solid elements are derived using polynomials in the three
variables x, y and z, the Cartesian coordinates of a point within the element.
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x-z
y

x3-x2z-xz2-z3
\ 2y x yz yz 2

\y2 y2Z

y
3

Figure 5.8 Complete polynomials in three variables.

The three-dimensional analogue of Pascal's triangle is a tetrahedron, as
shown in Figure 5.8.

The energy expressions for a solid element are, from Section 2.8

Te=I p(u2+62+w2)dV
fVI

Ue = 2 f {E}T[D]f$} d V

with
au

ax

av

ay

aw

8z

au av-+-
ay ax

au aw-+-
az ax

av aw
az ay

(5.72)

(5.73)

(5.74)
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Figure 5.9 Geometry of a rectangular hexahedron element, f = x/ a, 77 = y/ b, = z/ c.

[D] is a matrix of material constants which is defined by (2.85) for an
isotropic material. Also

SWe= I
e

(p,,Su+pSv+p,8w) dS (5.75)
s

The highest derivative appearing in these expressions is the first. Hence,
it is only necessary to take u, v and w as degrees of freedom at each node
to ensure continuity. Also, complete polynomials of at least degree I should
be used.

5.8 Rectangular hexahedron

Figure 5.9 shows a rectangular hexahedron element with eight node points,
one at each corner. There are three degrees of freedom at each node, namely,
the components of displacement u, v and w in the directions of the x-, y-
and z-axes respectively. Each component can, therefore, be represented by
polynomials having eight terms each. Figure 5.8 shows that a complete
linear function has four terms. Therefore, it is necessary to choose four
more terms of higher degree. Three quadratic terms xy, yz, xz and one cubic
term xyz are chosen in order to ensure geometric invariance.

The displacements can, therefore, be represented by expressions of the
form

u = a,+azx+a3y+a4z+a5xy+a6yz+a7xz+a8xyz (5.76)

The coefficients a, to a8 can be expressed in terms of the values of the
u-component of displacement at the eight node points by evaluating (5.76)
at the nodes and solving the resulting equations. However, it is much simpler
to write down the displacement functions by inspection in a similar manner
to that used for a rectangular membrane element in Section 4.2. The
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displacement functions are required in the form

8 8 8

u= Y_ N1u;, v= E N1v1, w= E N1w1 (5.77)
1=1 1=1 J=1

where the functions N1 are required to have a unit value at node j and zero
values at the other seven nodes. Noting that the expression (5.76) can be
expressed as a product of three linear functions in x, y and z respectively,
it can easily be seen that the three-dimensional version of (4.36) is

N,='$(1+ 1)(1+n1n)(1+4) (5.78)

where (f1, qj, 1) are the coordinates of node j.
On each face the variation of displacement is bilinear and uniquely

determined by the values at the four node points. There will, therefore, be
continuity of displacements between adjacent elements.

The expressions (5.77) can be written in the combined form

u

v = [N]fu}, (5.79)

W

where

{u}Te = [u1 v1 W. u8 v8 I

w8] (5.80)

and

N, 0 0 N8 0 0

[N]= 0 N, 0 0 Ng 0 (5.81)

0 0 N, 0 0 N8

Substituting (5.79) into (5.72) gives

Te = 2{6}eT[nl]e{6}e (5.82)

where

[m]e = f p[N]T[N] d V (5.83)

is the element inertia matrix.
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A typical element of this matrix is

pabc f f f NN, de drl d

pabc
d

6 4
(I e (1+,lil)(1+inin) drlE

+x J
( d

pabc tt yy

+,yy+,+ 8453 iSj)(1 iSj)3 3ninJ)(1
8

(1 )( .

Using this result gives the following inertia matrix:

MI m21
[m] = 1 (5 85)e

mz M1
.

ithw

m, = 2m2 (5.86)

and

4 0 0 2 0 0 1 0 0 2 0 0

0 4 0 0 2 0 0 1 0 0 2 0

0 0 4 0 0 2 0 0 1 0 0 2

2 0 0 4 0 0 2 0 0 1 0 0

0 2 0 0 4 0 0 2 0 0 1 0

pabc 0 0 2 0 0 4 0 0 2 0 0 1

m2 = (5.87)
27 1 0 0 2 0 0 4 0 0 2 0 0

0 1 0 0 2 0 0 4 0 0 2 0

0 0 1 0 0 2 0 0 4 0 0 2

2 0 0 1 0 0 2 0 0 4 0 0

0 2 0 0 1 0 0 2 0 0 4 0

L0 0 2 0 0 1 0 0 2 0 0 4

Substituting (5.79) into (5.74) and (5.73) gives

Ue = z{u}eT[k]e{u}e (5.88)

where

[k]e = f [B]T[D][B] d V (5.89)
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is the element stiffness matrix. The strain matrix [B] is of the form

[B] = [B1 ... B8] (5.90)

where

a N;
0 0

ax

a Ni
0

0

ay

a N;
0 0

B; =
az

(5.91)
aN, (9N; 0

ay ax
aN; aN;0

az ax
aN; aN;

Using (5.78) g

0

az ay

ives

aN;_ i aN;__ . (1+
7 7 0 7 ) +gV

ax a a6 8a

ay b a'1 8b

aN; 1 aN;_ c,
(1+x;6)(1+fl;7)az c a 8c

(5.92)

Substituting (5.90) to (5.92) into (5.89) and integrating will give the
element stiffness matrix. As this is a tedious process it is simpler to use
numerical integration. In terms of ) coordinates (5.89) becomes

[k]e = J abc[B]T[D][B] de dq d (5.93)

Sections (3.10) and (4.2) describe how to integrate functions in one and
two dimensions using Gauss-Legendre integration. Extending this to three
dimensions, it can be shown that the integral

I
E

g(f, -1, f) d d,l d
ll

l

(5.94)
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can be evaluated using the formula
n m p

I= I Y_ Y_ ni, i) (5.95)
i=ij=Ii=1

where n, m and p are the number of integration points in the f, ri,

directions, H,, H; and H, are the weight coefficients and i;;, '9j, j the
integration points as given in Table 3.6.

The integrand (5.93) contains terms which are quadratic in either e, 77
or t'. Therefore the exact value of the integral can be obtained using
n = m = p = 2. However, as in the case of the rectangular membrane, this
procedure leads to unrepresentative properties, especially if the element
undergoes bending deformation. In this case it is better to evaluate the
shear strains at = 17 =1' = 0.

The equivalent nodal forces due to a distributed load over the face I

are obtained by substituting (5.79) into (5.75). This gives

.5 S We = {Su}QT{f}e (5.96)

where

J

+1 (+1 P=

{f}e = J [N]E_IT pY be dri d

P=

When =1

0 fori=1,4,5,8
N;=

41(1+'q;71)(1+U) fori=2,3,6,7

(5.97)

(5.98)

Assuming that p,, pv and p, are constant, the equivalent nodal forces,
as given by (5.97) are

where

(5.99)

{f;}=0 fori=1,4,5,8

and (5.100)

P<

{f;}=bc p, fori=2,3,6,7
P=
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Thus one quarter of the total force is applied at each node of the face
of application.

The stresses within the element are given by (2.84), namely

{o} = [D]{$} (5.101)

where

{(T}T = [Qx ov Qz

Substituting for {F} gives

{o } = [D][B]{u}e

Txy (5.102)

(5.103)

The best position to evaluate the stresses is at the point 6 = 0, 71 = 0, = 0.

Example 5.3 Calculate the first four natural frequencies and modes of the
cube shown in Figure 5.10(a) which is fixed at its base. Compare the results
with the exact solution [5.12]. Take E = 68.95 x 109 N/ M2, v = 0.3 and p =
2560 kg/m3.

Since the cube has two planes of symmetry, the modes can be obtained
by idealising one quarter of it and applying appropriate boundary conditions
on the planes of symmetry (see Chapter 8). Figure 5.10(b) shows the
idealisation of one quarter of the cube using two hexahedral elements.

There are three degrees of freedom at each node, namely, the linear
displacements u, v and w in the x-, y- and z-directions. Since the base is
fixed, all three degrees of freedom at nodes 1, 2, 3 and 4 are constrained
to be zero.

11 12

(a) (b)

Figure 5.10 Geometry of a solid cube.
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Table 5.3. Boundary conditions for symmetrical
and antisymmetrical motion

Boundary conditions

Plane Symmetrical Antisymmetrical

yz
zx

a=0
v=0

v=0, w=0
w=0, u=0

Table 5.4. Comparison of predicted frequencies (kHz) of
a cube with exact frequencies

Mode FEM [5.12] Exact [5.12] % Difference

S 2.399 2.212 8.5
T 3.250 3.020 7.6
L 5.511 5.239 5.2
S 6.830 5.915 15.5

S, Swaying mode; T, Torsion mode; L, Longitudinal mode.

The swaying nodes in the y-direction are calculated by applying sym-
metric boundary conditions at nodes 5, 7, 9 and 11 and antisymmetric
conditions at nodes 5, 6, 9 and 10. These conditions are given in Table 5.3.
The torsion modes about the z- axis are calculated by applying antisymmetric
boundary conditions at nodes 5, 6, 7, 9, 10 and 11. This results in all three
degrees of freedom being zero at nodes 5 and 9. Finally, the longitudinal
modes in the z-direction are calculated by applying symmetric boundary
conditions at nodes 5, 6, 7, 9, 10 and 11.

The predicted frequencies are compared with the exact ones in Table
5.4. It can be seen that the accuracy of the torsion and longitudinal modes
is better than that of the swaying modes.

5.9 Isoparametric hexahedron

The usefulness of the rectangular hexahedron element presented in the
previous section can be increased by converting it into an isoparametric
element. The general shape of the element is shown in Figure 5.11(a). Any
point 77, ) within the square hexahedron, shown in Figure 5.11(b),
having corners at (±1, ±1, t1), can be mapped onto a point (x, y, z) within
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(a) (b)

Figure 5.11 Geometry of an isoparametric hexahedron. (a) Physical coordinates,
(b) isoparametric coordinates.

the element in Figure 5.11(a) by means of the relationships
8

x = Y_ 17, C) xj,
j=1

8

y= N;(e, 77, Oyi,
j=1

8

z = E N,(6, zi
./=1

(5.104)

where (x;, y;, z;) are the coordinates of node point j. The functions N; (e, 'q, )
are defined by (5.78). The methods used in Section 4.3 can be extended to
show that the faces in Figure 5.11(b) map onto the faces in Figure 5.11(a).

The variations in displacement within the element can be expressed in
(f, 77, C) coordinates using (5.77). Both the geometry and deformation of
the element are, therefore, represented by the same functions in accordance
with the definition of an isoparametric element.

The position and displacement of any point (77, C) on the face 2376 in
Figure 5.11(a) is uniquely determined from the coordinates and displace-
ments of nodes, 2, 3, 7 and 6 using (5.104) and (5.77). Two adjacent elements
having the face 2376 as a common face, will have the same nodes and the
same variation with i7 and C over the face. The displacements will, therefore,
be continuous between elements.

The inertia matrix is given by equation (5.83), that is

[m]e = fve p[N]T[N] d V (5.105)

where [N] is defined by (5.81).
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Because the Ni in (5.81) are expressed in (f, n, ) coordinates, it is
necessary to transform the integral from (x, y, z) coordinates to
coordinates.

The element of volume in the (, 77, ) coordinates is given by the triple
scalar product

d V = d (did n de)

where the vectors on the right-hand side are defined by

ax ay az
d

ax ay aZ
dj= an an' an

do

ax ay az
de = ag,g ,a, d

Substituting (5.107) into (5.106) gives

dV=det[J]dtd, d

where

[J] =

ax ay az

ae of of

ax ay az

an an an

ax ay azg g g
is the Jacobian of the transformation.

Substituting (5.104) into (5.109) gives

[J] =

Y1

(5.106)

(5.107)

(5.108)

(5.109)

(5.110)

aN,
of

a N,

a77

a N,

aN8

of
aN8

a,7

a N8
Ys
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The expression for the inertia matrix now becomes

[m]e =.[+f J p[N]T[N] det [J] d dq d (5.111)

The integral in (5.111) is evaluated using numerical integration, as
described in the previous section. This process requires a knowledge of the
order of the function det [J]. Substituting (5.78) into (5.110) gives

(e1 + e2ii + e3S+ e4'Y70

[J]=a g)
(e7+e3f+e677+e4 01)

(fl +f2'7 +J3S+J477 )
S)

(f7 +f4677)

(g1+g217+g3S+g4170
W

(g7+g36+g6'7+g4f71)

(5.112)

where

e, _ (-x1 + x2+x3 - x4- x5+x6+x7 -x8)

e2= (x,-x2+x3-x4+X5-x6+x7-x8)

e3 = (X, -X2-x3+X4-x5+X6+x7-x8)

e4= (-xl+x2-X3+x4+X5-x6+x7-x8)

e5=(-X,-x2+x3+x4-x5-x6+x7+x8)

e6 = (x,+x2-x3-x4-x5-x6+x7+x8)

e7 = (_XI - x2 - x3 - x4+x5+x6+x7+x8)

(5.113)

The f and g coefficients can be obtained from the e coefficients by replacing
the x-coordinates by the y- and z-coordinates respectively.

Evaluating the determinant of [J] using (5.112) shows that, in general,
it is tri-quadratic in e, q7 and . [N] is a tri-linear function and so
[N]T[N] det [J] is a tri-quartic function. This means that (5.111) can be
evaluated using a (3 x 3 x 3) array of integration points.

The stiffness matrix is given by (5.89), that is

[k]e = J [B]T[D][B] d V (5.114)

where [B] is defined by (5.90) and (5.91). Transforming to (6, 77, ) coordi-
nates using (5.108) gives

+1 +1 +,

[k]e = f f f [B]T[D][B] det [J] df d77 d (5.115)
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Now

a/ax all',

a/ay = [J]-' a/an

a/az a/ar

(5.116)

and so the elements of [B] are given by

aN,/ax aN8/ax aN,/a aN8/af
aN,/ay aNs/ay =[J]-' aN,/day aN8/a-q (5.117)

aN,/az ... aNs/az aN,/g ... aNs/a

Expressions (5.112) and (5.117) show that the elements of [B] are
obtained by dividing a tri-quadratic function of e, q and by another
tri-quadratic function. Therefore, the elements of [B]T[D][B] det [J] are
tri-quartic functions divided by tri-quadratic functions. This means that [k]e
cannot be evaluated exactly using numerical integration. The minimum
number of integration points that should be used is the number required
to evaluate exactly the volume of the element (see Section 4.3). The volume
is given by

Ve= J J det[J]d'd7l d (5.118)

Since det [J] is tri-quadratic the volume can be determined exactly using a
(2 x 2 x 2) array of integration points. Experience has shown that this number
can be used in practice. However, as in the case of rectangular hexahedron,
Section 5.8, the shear strains should be evaluated at e = n = = 0.

The equivalent nodal forces due to a distributed load over the face = 1
are again obtained by substituting (5.79) into (5.75). This gives

Px

{f}e [N]f p,, dS
SQ

Pz

When e = 1 the elements of [N] are given by (5.98).
The element of area, dS, on l; = 1 is given by

(5.119)

dS = Id4 A d f I6=, = G di d (5.120)

where di7 and de are defined in (5.107). The components of d4 and de
are, therefore, given by the second and third rows of the Jacobian given in
(5.112). Substituting (5.120) into (5.119) and assuming that p,, p,,, pz are
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Table 5.5. Summary of the
number of integration points
required for a linear
isoparametric hexahedron

Matrix Gauss-point array

[-]e 3x3x3
[k], 2x2x2
{f}e 2x2

constant gives

[N]6= .TG d,7 d Py(P. =
1 J_1

(5.121)

Expressions (5.98), (5.112) and (5.120) indicate that the integrand in
(5.121) is bi-cubic in rl and . It can, therefore, be evaluated using a (2 x 2)
array of integration points.

The stresses are calculated using (5.103) where the matrix [B] is defined
by (5.90), (5.91) and (5.117). The best position to evaluate the stresses is
at 6=0, n=0, =0.

Table 5.5 summarises the number of integration points required to evalu-
ate the inertia, stiffness and equivalent nodal force matrices. These require
27, 8 and 4 respectively. Using 27 points to evaluate the inertia matrix can
be quite time consuming. This can be overcome by using the following
fourteen point integration scheme [5.13], which gives similar accuracy to
that obtained with 27 Gauss points. There are six points placed at (Tb, 0, 0),
(0, Tb, 0) and (0, 0, Tb) where b = 0.795822426, all with weight 0.886426593.
The other eight points are placed at (Tc, Tc, Tc) where c=0.758786911, all
with weight 0.335180055.

5.10 Right pentahedron

In some applications it is necessary to supplement the hexahedral element
with a compatible triangular wedge-shaped element, a pentahedron, as
shown in Figure 5.12. For this element it is convenient to use Cartesian
coordinates in the z-direction and area coordinates in planes which are
parallel to the xy-plane. The displacement functions are required in the form

6 6 6

u= Y_ N, u;, v= Y_ N;v,, w= Y_ N; w; (5.122)
i=I i=> i=t
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a

2c

0 .x

Figure 5.12 Geometry of a pentahedron.

where the functions N; are required to have a unit value at node j and zero
values at the other five nodes. Combining the results for two-dimensional
triangles and three-dimensional rectangles, it can easily be seen that the
functions N take the form

j=1,2,...,6
with (5.123)

L3=Lj_3 j=4,5,6,
where L3 are area coordinates, as defined in Section 4.4, = z/c and ; is
the value of C at node j.

On each face the variation of displacement is bilinear and uniquely
determined by the values at the node points on it. There will, therefore, be
continuity of displacement between adjacent elements.

The expressions (5.122) can be written in the combined form

u

v = [N]fu},
W

where

(5.124)

{U}eT = [U, V.
W, U6 V6 W6] (5.125)

and

N, 0 0

[N] = 0 N, 0

0 0 N,

N6 0 0

0 N6 0

0 0 N6

(5.126)
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The element inertia matrix will be given by (5.83), that is

Emle = f p[N]T[N] d V (5.127)

A typical element of this matrix is

+I

pc NN, d dA
A -1

E
PC

1

=
4

d
A

L;L; dA

A
I

= 4 A
12

L;=L;

LI ;

where A is the area of the triangular cross-section.
Using this result gives the following inertia matrix

[mle =
[m,

m2]m2 m,

with

(5.128)

(5.129)

m, = 2m2 (5.130)

and

_ pcA
m2

72

4 0 0 2 0 0 2 0 07

0 4 0 0 2 0 0 2 0

0 0 4 0 0 2 0 0 2

2 0 0 4 0 0 2 0 0

0 2 0 0 4 0 0 2 0

0 0 2 0 0 4 0 0 2

2 0 0 2 0 0 4 0 0

0 2 0 0 2 0 0 4 0

0 0 2 0 0 2 0 0 4

(5.131)

The element stiffness matrix will be given by (5.89), that is

[kle = f [B]T[D][B] d V (5.132)
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The strain matrix [B] is of the form

[B] = [B, B6] (5.133)

where B; is defined in (5.91). This matrix involves the derivatives aN;/ax,
aN;/ay, aN;/az. Using (5.123) gives

aN;a;
ax 4A

a Ni _ b;

ay 4A

a N; ;
L.

2c
;

where

(5.134)

a; = ai_3, b; = b;_3, i = 4, 5, 6 (5.135)

a; and b; are defined in (4.10) and A, the area of the triangular cross-section,
in (4.11). The derivation of the first two expressions in (5.134) is given in
Section 4.5.

Substituting (5.133) and (5.134) into (5.132) and integrating will give the
element stiffness matrix. The integration can be carried out analytically, but
as this is a tedious process it is simpler to use numerical integration. The
integrand contains terms which are quadratic in either L; or . Therefore,
the exact value of the integral can be obtained using a (3 x 2) array of
integration points. The positions of these points and the weight coefficients
are given in Tables 5.1 and 3.7.

The equivalent nodal forces due to a distributed load over the face = 1
are given by an expression similar to (5.97), namely

(' PX

{f}e = J p,, dA (5.136)
A

P=

When =1
_ 0 fori=1,2,3

N
Li_3 for i = 4, 5, 6

(5.137)

Assuming the px, p,, and p, are constant, the equivalent nodal forces are

f,
{f}e = (5.138)

f6
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where

{f;}=0 fori=1,2,3

and (5.139)

A Px
If;} p,, for i = 4, 5, 6

P.

where A is the area of the triangular cross-section. The integration has been
carried out using (4.90). Therefore, one third of the total force has been
concentrated at each node of the face.

The equivalent nodal forces due to a distributed load over the face L, = 0
are given by

{f}e = [N] L,-o
T

Px

p,, dA (5.140)

P=

When L, = 0

0 fori=1,4
N;= 'L;(1+fori=2,3 (5.141)

2'Li_30 + P for i = 5, 6

Assuming the px, p,, and pz are constant, the equivalent nodal forces are
given by (5.137) where

{f;} = 0 for i = 1, 4

cI2_3
Px (5.142)

P=

where 12_3 is the length of the side 2-3. This integration has been carried
out using (4.101). In this case one quarter of the total force has been
concentrated at each node of the face.

The stresses within the element are given by (5.103). The best position
to evaluate them is at the centroid of the element.

5.11 Volume coordinates for tetrahedra

When dealing with tetrahedra elements it is advantageous to use volume
coordinates which can be defined in an analogous manner to area coordin-
ates for a triangle (Section 4.4).
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Volume V,

0

z
A

Z"IY x
Figure 5.13 Definition of volume coordinates for a tetrahedron.

The first step in defining the volume coordinates of a point P of a
tetrahedron is to join it to the four vertices of the tetrahedron. This will
divide the tetrahedron into four sub-tetrahedra. The volume of the sub-
tetrahedron defined by P234 is denoted by V,, as shown in Figure 5.13.
The volumes V2, V3 and V4 are defined in a similar manner. The volume
coordinates (L,, L2, L3, L4) of the point P are defined as

1 V2 V3 V4 (L,= VV, L2= V, L3= v, L4=
V

5.143)

where V is the volume of the tetrahedron 1234. Since

V,+V2+V3+V4=V

the four volume coordinates are related by the expression

L,+L2+L3+L4= 1

(5.144)

(5.145)

The coordinates of the four vertices are (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)
and (0, 0, 0, 1) respectively.

Volume coordinates can also be interpreted as the ratio of lengths. For
example

_ distance from P to plane 234
L' distance from 1 to plane 234

(5.146)

This definition indicates that the plane L, = constant is parallel to the plane
234 whose equation is L, = 0.
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Cartesian and volume coordinates are related by
x = x,L,+x2L2+x3L3+x4L4

y = y1 L, + y2L2 + y3 L3 + y4L4 (5.147)

z = z,L1 + z2L2+ z3L3+ z4L4

where (x;, y;) are the Cartesian coordinates of the vertex i. Combining
(5.145) and (5.147) gives

1 1 1 1 1 L,

x x1 x2 x3 x4 L2

Y Y1 Y2 Y3 Y4 L3

z z1 z2 z3 z4 L4

Inverting this relationship gives

where

b2 c2 d2 x

b3 C3 d3 Y

b4 c4 d4 z

z1

z2

z3

Z4.

Yi

Y2

Y3

Y4

is the volume of tetrahedron 1234, and

a,=

L3 6V a3

L4 a4

X2 Y2 Z2

X3 Y3 Z3

x4

b,=-

c, =

d1=-

Y4 Z4

Y2

Y3

Y4

(5.148)

(5.149)

(5.150)

(5.151)

(5.152)

(5.153)

(5.154)
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The other constants in (5.149) are obtained through a cyclic permutation
of the subscripts 1, 2, 3 and 4. As these terms are the elements of the adjoint
matrix of the coefficient matrix in (5.148) it is necessary to give the proper
signs to them. Thus a3 will have the same sign as a, and both a2 and a4
will have the opposite sign to a, . A similar rule applies to the coefficients
b, c and d.

5.12 Tetrahedron element

The displacement functions for a tetrahedron element with nodes only at
the four vertices take the form

4 4 4

u= Y_ N;u;, v= E N;v;, w= E N^ (5.155)
j=1 j_, j=1

where the functions N; are required to have a unit value at node j and zero
values at the other three nodes. These conditions are satisfied by the volume
coordinates L;. Therefore

N; = L; (5.156)

On each face of the tetrahedron the variation of displacement is bilinear
and uniquely determined by the values at the node points on it. There will,
therefore, be continuity of displacmeent between adjacent elements.

The expressions (5.155) can be written in the combined form

u

v = [N]1u}, (5.157)
W

where

and

{U}e = Lu1 vl w1 u4 v4 w4]

N, 0 0

[N] = 0 N, 0

0 0 N,

N4

0

0 0 N4

(5.158)

(5.159)

The element (inertia matrix will be given by (5.83), that is

[Mb = J [N]T[N] d V (5.160)

A typical element of this matrix is of the form p J v. L;L; d V. Integrals of
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this form can be evaluated using the following formula [5.14]

Jv
L,"'L2"L3°L49dV= m!n!p!q! 6V(m+n+p+q+3)! (5.161)

Therefore

J
LiLj dV=

V/10 j = i
(5.162)

v -{V/20 j 0 i

Using this result gives the following inertia matrix

2 0 0 1 0 0 1 0 0 1 0 0

0 2 0 0 1 0 0 1 0 0 1 0

0 0 2 0 0 1 0 0 1 0 0 1

1 0 0 2 0 0 1 0 0 1 0 0

0 1 0 0 2 0 0 1 0 0 1 0

pV 0 0 1 0 0 2 0 0 1 0 0 1 (5.163)
[m]e

20 1 0 0 1 0 0 2 0 0 1 0 0

0 1 0 0 1 0 0 2 0 0 1 0

0 0 1 0 0 1 0 0 2 0 0 1

1 0 0 1 0 0 1 0 0 2 0 0

0 1 0 0 1 0 0 1 0 0 2 0

0 0 1 0 0 1 0 0 1 0 0 2

The element stiffness matrix is given by (5.89), that is

[k]e = J [B]T[D][B] d V (5.164)

The strain matrix [B] is of the form

[B] = [B, B,] (5.165)

where B; is defined in (5.91). This matrix involves the derivatives aN;/ax,
aN,/ay, aN;/az. From (5.149)

aN; 3L; b;
(5.166)

ax ax 6 V

Similarly

a Ni A j c;
(5.167)

ay ay 6V
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and

aN, aL; d;

az az 6V

Combining (5.164) to (5.167) gives

1

6V

(5.168)

(5.169)

Since [B] is a constant matrix (5.164) reduces to

[k]e = V[B]T[D][B] (5.170)

The equivalent nodal forces due to a distributed load over the face L, = 0
are given by

(' Px

{f}e = J [N] ,=o p,, dA (5.171)
A

Pz

When integrating the volume coordinates L2, L3 and L4 over the face 234
they reduce to area coordinates. The integrals in (5.171) can, therefore, be
evaluated using (4.90).

Assuming the px, p,, and pz are constant, the equivalent nodal forces are

0

{f}e = f3 (5.172)

f4

where

for i = 2, 3, 4 (5.173)

where A is the area of face 234. Therefore, one third of the total force has
been concentrated at each node of the face.

The stresses within the element are given by (5.103). Since [B] is constant
the stresses are constant within the element. It is usual to assign these
constant values to the centroid of the element (' ' ' '-)4,4,4,4
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5.13 Increasing the accuracy of elements

Section 5.4 refers to the fact that any of the element shapes and associated
displacement functions used for membrane analysis in Chapter 4 can be
used to analyse axisymmetric solids. Triangular elements are illustrated in
Figures 4.18 and 4.19(b), and quadrilateral elements in Figures 4.8, 4.12,
4.15, 4.17 and 4.19(a).

Reference [5.15] illustrates how increased accuracy can be obtained when
using eight node rectangles rather than four node ones by considering the
fixed-free circular disc shown in Figure 5.14. Two idealisations were used
as shown in Figure 5.15. The four node element was evaluated using a
(2 x 2) array of integration points and the eight node element with a (3 x 3)
array. Taking E = 196 x 109 N/m2, v = 0.3 and p = 7800 kg/m3, the results
obtained are given in Table 5.6.

The accuracy of three-dimensional elements can be increased using
methods similar to the ones presented in Section 4.6 for membrane elements.

0.3 m

Figure 5.14 Geometry of a circular disc.

(a) Idealisation I

a-
(b) Idealisation II

Figure 5.15 Idealisation of a circular disc.
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Table 5.6. Comparison of predicted frequencies (Hz) of
a fixed free circular disc

Idealisation
Nodal
diameters I II Exact [5.10]

0 349 305 312

1 342 290 276

2 360 341 323

The eight node hexahedron can be improved by including extra displace-
ment functions when evaluating the stiffness matrix [5.16] and so the
components of displacement are assumed to be given by

8

u= Y_ Njuj+a1(1-
j=1

8

v= Y_ Njvj+a4(1-1;2)+as(1-1'l2)+a6(1-1'2) (5.174)
j=1

8

w = Y_ Njwj + a7(1 - 2) + a8(1 - 172) + a9(1 - 2)
j=1

where the functions q, ) are defined by (5.78). After evaluating the
stiffness matrix the parameters aI to a9 are eliminated using static condensa-
tion, as described in Section 4.6.

If the cube shown in Figure 5.10 is analysed using this modified stiffness
matrix, then the results obtained are as shown in Table 5.7. Comparing
these with those given in Table 5.4 shows that the accuracy of the frequencies
has increased, particularly those of the swaying modes.

Alternatively, the accuracy of the rectangular hexahedron can be
increased by introducing one additional node point at the centre of each
edge. This results in twenty node points as shown in Figure 5.16. In this
case the displacements are given by [5.17]

20 20 20

u= Y_ Nuj, v= Y_ Njvj, w= Y_ Njwj (5.175)
j=1 j=1 j=1

where

11, (5.176)
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Table 5.7. Comparison of predicted frequencies (kHz) of
a cube using extra displacement functions

Mode FEM Exact [5.12] % Difference

S 2.316 2.212 4.7
T 3.250 3.020 7.6
L 5.468 5.239 4.4
S 6.630 5.915 12.1

S, Swaying mode; T, torsion mode; L, Longitudinal mode.

Figure 5.16 Geometry of twenty node rectangular hexahedron.

for nodes 1 to 8

N,(e,

for nodes 9, 11, 13 and 15

N,(,n,C)=a(l+
for nodes 10, 12, 14 and 16 and

Ni(, ie)(1+rli?l)(1_C2)

(5.177)

(5.178)

(5.179)

for nodes 17, 18, 19 and 20, where f;, rl; and C; are the coordinates of
node j.

The stiffness matrix should be evaluated using a (3 x 3 x 3) array of Gauss
integration points or alternatively the fourteen point integration scheme
referred to in Section 5.9. The inertia matrix can be evaluated exactly using
either of these two schemes.

Reference [5.18] contains an analysis of the cantilever beam shown in
Figure 5.17(a). Two idealisations are used, as shown in Figures 5.17(b) and
(c). The first consists of 216 eight-node elements and the second 36 twenty-
node elements. The following constraints are applied at the plane z = 0.
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(b)

(c)

Figure 5.17 Geometry of a cantilever beam.

221

For model 5.17(b)

(1) w = 0 at every node
(2) v = 0 at every node along the line y = 0.305
(3) u = 0 at every node along the line x = 0

From model 5.17(c)

(4) as (1) above
(5) as (2) above
(6) u = 0 at every node along the line x=0.15

The material constants used are E = 2.068 x 10" N/m2, v = 0.3 and p =
8058 kg/ma. The frequencies obtained are compared with the exact values
obtained using slender beam theory in Table 5.8. Model 5.17(b) has 1053
degrees of freedom whilst 5.17(c) has only 786. The increased accuracy has,
therefore, been obtained with fewer elements and degrees of freedom.

Reference [5.19] presents an analysis of the drop hammer anvil shown
in Figure 5.18. The idealisation consists of a (2 x 2 x 1) array of twenty node
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Table 5.8. Comparison of predicted frequencies (Hz) of
a cantilever beam [5.18]

Idealisation

Mode Description 5.17(b) 5.17(c) Exact

1 First bending in
x-direction 22.0 18.6 18.6

2 First bending in
y-direction 38.3 36.5 37.3

3 Second bending in

x-direction 135.3 114.3 116.8

Figure 5.18 Geometry of an anvil.

elements. The anvil was considered to be completely free. The material
constants are E = 2.07 x 10" N/m2, v = 0.3 and p = 7860 kg/m3.

The frequencies of the first four modes are compared with measured
values in Table 5.9.

The twenty node hexahedron (Figure 5.16) can be transformed into a
hexahedron with curved surfaces, as shown in Figure 5.19, using the relation-
ships

20 20 20

x= Y_ NJxx, y= Y_ NJyy, z= Y_ NJzz (5.180)
J=1 J=1 J=l

where the functions NJ(6, rl, ') are defined by (5.176) to (5.179). The
determinant of the Jacobian, det [J], is an incomplete quintic [5.20]. There-
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Table 5.9. Comparison of frequencies (kHz) of
an anvil [5.19]

Mode Description FEM Experimental

1 Twist 1.90 1.82
2 Saddle 2.82 2.67
3 Umbrella 3.51 3.18
4 In-plane shear 4.37 4.0

Figure 5.19 Geometry of a hexahedron with curved surfaces.

fore, a (5 x 5 x 5) array of integration points is required to evaluate the
inertia matrix exactly. In practice, distortions are unlikely to be very great,
especially with mesh refinement. Therefore, a (3 x 3 x 3) (or equivalent 14
point) array may suffice. The stiffness matrix should be integrated with a
(3 x 3 x 3) or 14 point array [5.21].

The steam turbine blade shown in Figure 5.20 has been analysed in
reference [5.22]. The idealisation consisted of a (3 x 1 x 4) array of twenty
node elements as shown in Figure 5.21. A blade was machined from mild
steel and tested to provide frequencies for comparison.

Four different analyses were performed. In every case the inertia matrix
was evaluated using a (3 x 3 x 3) array of Gauss integration points. The
integration schemes used for the stiffness matrix are as follows:

I 27a

II (3x3x3)
III 14

IV (2x2x2)
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Figure 5.20 Geometry of a steam turbine blade.

Figure 5.21 Idealisation of a steam turbine blade.

Scheme I, which consists of 27 integration points, is equivalent to a (4 x 4 x 4)
array of Gauss points. Details are given in reference [5.13].

The frequencies obtained with the four analyses are compared with the
measured frequencies in Table 5.10. These results suggest that the best
scheme to adopt in this application is III, which consists of 14 integration
points giving similar accuracy to a (3 x 3 x 3) array of Gauss points. In this
case the percentage differences between predicted and measured frequencies
are 3.4, 13.8 and 5.8.
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Table 5.10. Comparison of the predicted natural frequencies (kHz) of
a steam turbine blade [5.22]

Stiffness matrix integration scheme

Mode Experiment I 11 III IV

1 2.815 2.917 2.932 2.919 2.745
2 3.876 4.426 4.432 4.411 4.425
3 6.250 6.633 6.679 6.611 6.612
4 13.607 13.679 13.571 12.835

5 15.513 15.621 15.407 14.869

The first five mode shapes can be described as follows:

(1) First flapwise bending
(2) First edgewise bending
(3) First torsion
(4) Second flapwise bending
(5) Coupled bending and torsion

The hexahedra shown in Figures 5.16 and 5.19 can be supplemented by
compatible pentahedra as shown in Figure 5.22. The displacment functions
for the right pentahedra in Figure 5.22(a) are of the form

15 is 15

u=Y_ N,u;, v=Y- N;v;, w=Y_ N; w; (5.181)
J=1 J=1 J=1

where the functions N; are given by

N 2)

for nodes 1 to 6 with L; = Lj_3 for j = 4, 5, 6

N7=2L,L2(1-i),

N8 = 2L2L3(1- 0,

N9=2L3L,(I -i),

N10=2L,L2(1+0

Nil =2L2L3(1+f)

N12=2L3L,(I+

and

(5.182)

(5.183)

N; = L;_,2(1- 2) (5.184)

for nodes 13 to 15.
Both the stiffness and inertia matrices can be evaluated using a (6 x 3)

array of integration points, the positions of which are given in Tables 5.1
and 3.7 together with the corresponding weights.
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15

z

(b)

Figure 5.22 Geometry of pentahedra elements: (a) straight sides, (b) curved sides.

This element can be transformed into one with curved sides, as shown
in Figure 5.22(b), using the relationship

15 15 15

x= Y- N;x;, y= Y_ N;y;, z= E N,z; (5.185)
1=1 i=1 j=1

where the functions N; are as defined in (5.182) to (5.184). The determinant
of the Jacobian of the transformation is quartic in the area coordinates and
quintic in . This can be integrated exactly using a (6 x 3) array of integration
points. This represents the minimum requirement for both the stiffness and
inertia matrices.

Problems

Note: Problems 5.7 and 5.8 require the use of a digital computer.

5.1 Find the Fourier series representation of the loading

1 P
Pr = to

-0<0<+O
-7r<0<-4,,4,<0<7r

5.2 Find the Fourier series representation for a line load of magnitude P
at 0 = 0. (Hint: Put p = P/2a4, in Problem 5.1 and then let 0 - 0.)

5.3 Express the stiffness matrix of an axisymmetric triangular element in
the form (5.43). (Hint: Use the fact that [B11] and [B21] can be expressed
in the form [B11]=[B1°;]+n[B"j] and [B2;]=[B°;]+n[BZ;].)

5.4 Derive the element matrices for an axisymmetric, triangular core element
when both nodes 1 and 3 are on the z-axis, as shown in Figure 5.6(b).
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5.5 Derive the element matrices for an axisymmetric, linear rectangular
element. Discuss the need for assuming the shear strains to be constant, in
order to improve the accuracy of the element.

5.6 Derive the element matrices for an axisymmetric, linear quadrilateral
element.

5.7 Figure 5.14 shows the cross-section of a circular disc which is fixed at
the inner radius and free at the outer radius. Use the idealisation shown in
Figure P5.7 to calculate the frequencies of the modes having 0, 1 and 2
nodal diameters and no nodal circles, other than the inner radius. Take
E = 196 x 109 N/M2, v = 0.3 and p = 7800 kg/m3. Compare these frequencies
with the analytical values [5.10] 312.2, 276.3 and 322.5 Hz.

5.8 Figure P5.8(a) shows the cross-section of a thick cylinder with shear
diaphragm end conditions, that is, u = 0 and v = 0. Use the idealisation

2

6 9 12 15 18 21 243

23

1 4 7 10 13 16 19 22

Figure P5.7 Idealisation of a circular disc.

0.5 m

(a) (b)

Figure P5.8 Geometry of a thick cylinder.
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shown in Figure P5.8(b) to calculate the frequencies of the first four
axisymmetric modes. Take E = 207 x 109 N/m2, v = 0.3 and p = 7850 kg/m3.
Compare these frequencies with the analytical values [5.11] 4985, 8095,
9538 and 9609 Hz which correspond to modes having 1, 2, 1 and 3 axial
half-wavelengths respectively.

5.9 Show that if the six node pentahedron, presented in Section 5.10, is
given a rigid body translation in the z-direction, then the inertia matrix,
(5.129), gives the mass of the element.

5.10 Derive expressions for the inertia and stiffness matrices of a six-node
isoparametric pentahedron element. How many integration points will be
needed to evaluate these expressions?



6

Flexural vibration of plates

Flat plate structures, such as the floors of aircraft, buildings and ships,
bridge decks and enclosures surrounding machinery, are subject to dynamic
loads normal to their plane. This results in flexural vibration. Such structures
can be analysed by dividing the plate up into an assemblage of two-
dimensional finite elements called plate bending elements. These elements
may be either triangular, rectangular or quadrilateral in shape.

The energy expressions for a thin plate bending element are, from Section
2.6,

Te = 2 J
A

dA (6.1)

with

Ue 2 f, 12 {X}T[D

() 2w/axe

]{X} dA (6.2)

{X} = a2w/aye
(6.3)

2 a2w/ax ay

where [D] is defined by (2.45), (2.49) or (2.51) depending upon whether
the material is anisotropic, orthotropic or isotropic. Also

5We = f
A

dA
A

The highest derivative appearing in these expressions is the second.
Hence, for convergence, it will be necessary to ensure that w and its first
derivatives aw/ax and aw/ay are continuous between elements. These three
quantities are, therefore, taken as degrees of freedom at each node. Also,
complete polynomials of at least degree two should be used (see Section
3.2). The assumed form of the displacement function, whatever the element

229
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shape, is

w = a, + a2x+ a3y+a4x2+a5xy+a6y2

+higher degree terms (6.5)

6.1 Thin rectangular element (non-conforming)

Figure 6.1 shows a rectangular element with four node points, one at each
corner. There are three degrees of freedom at each node, namely, the
component of displacement normal to the plane of the plate, w, and the
two rotations e, = aw/ay and 9,, = -aw/ax. In terms of the ( , 'r1) coordinates,
these become

law 1awex=bay By=---
e

(6.6)

Since the element has tweleve degrees of freedom, the displacement
function can be represented by a polynomial having twelve terms, that is

w= a1 +a4e2+a5eq+a6172

+a7e'+a8X211+aveq2+a10713+a,,e319+a12e'i13 (6.7)

Note that this function is a complete cubic to which has been added two
quartic terms 63Y7 and 4Y73 which are symmetrically placed in Pascal's triangle
(Figure 4.1). This will ensure that the element is geometrically invariant
(see Chapter 4).

The expression (6.7) can be written in the following matrix form

w= [1 77
e2 S71

,172 e3 e277 en2 773

= LP(e, -n)Jfa}

x, 6

e371 er13] f Q}

(6.8)

Figure 6.1 Geometry of a rectangular element. = x/ a, r1= y/ b.
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where

{a}T= [a. a2

Differentiating (6.8) gives

aw- [0
1 0 26 ij 0 3 f2 2en

of

ale] (6.9)

and

'12 0 3 X2,1 n3] {a}

(6.10)

aw
aw _ [0 0 1 0 f 271 0

f2
2e77

3712 63 {0(}

(6.11)

Evaluating (6.8), (6.10) and (6.11) at e = T 1, 77 = R 1 gives

{w}e =

where

{w}eT

and

[A]e

= [w

{at}

l bexl aeyl w4 bO 4 aO 4]

(6.12)

(6.13)

1 -1 -1 1 1 1 -1 -1 -1 -1 1 1

0 0 1 0 -1 -2 0 1 2 3 -1 -3
0 -1 0 2 1 0 -3 -2 -1 0 3 1

1 1 -1 1 -1 1 1 -1 1 -1 -1 -1

0 0 1 0 1 -2 0 1 -2 3 1 3

0 -1 0 -2 1 0 -3 2 -1 0 3 1

[A]e = (6.14)
1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 0 1 2 0 1 2 3 1 3

0 -1 0 -2 -1 0 -3 -2 -1 0 -3 -1
1 -1 1 1 -1 1 -1 1 -1 1 -1 -1

0 0 1 0 -1 2 0 1 -2 3 -1 -3
0 -1 0 2 -1 0 -3 2 -1 0 -3 -1j

Solving (6.12) for {a} gives

{a} = [A] e '{w}e (6.15)
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where

r 2 1 -1 2 1 1 2 -1 1 2 -1 -11
-3 -1 1 3 1 1 3 -1 1 -3 1 1

-3 -1 1 -3 -1 -1 3 -1 1 3 -1 - 1

0 0 1 0 0 -1 0 0 -1 0 0 1

4 1 -1 -4 -1 -1 4 -1 1 -4 1 1

[A]e-1=

0 -1 0 0 -1 0 0 1 0 0 1 0
(6.16)

1 0 -1 -1 0 -1 -1 0 -1 1 0 - 1

0 0 -1 0 0 1 0 0 -1 0 0 1

0 1 0 0 -1 0 0 1 0 0 -1 0

1 1 0 1 1 0 -1 1 0 -1 1 0

1 0 1 1 0 1 -1 0 -1 1 0 - 1
-1 -1 0 1 1 0 -1 1 0 1 -1 0

Substituting (6.15) into (6.8) gives

w= [N1(f,,7) N2(5,,7) N3(e,77) N4(e,,7)]{w}e

= [N(e, 77)] {w}e

where

{w}eT= 1 W1 9x1 0,1 . . .
W4 °x4 0y41

and

(6.17)

(6.18)

s(1 + fjf)(1 +,I.i,7)(2+ fje+,71,7 -e'- .n2)
N;Tq,71)=

(6.19)

(a/8)(fi + e)(e2 -1)(1 +,Ii,7 )

(e1, qj) are the coordinates of node j. This element is commonly referred to
as the ACM elem nt [6 1 6 2],e . . .

Evaluating (6.19) on the side 2-3 (i.e., =+1) gives

0 41(1-,7)(2- rl -,72)
N1T= 0 , N2T= (b/4)(-1+,7)(,72-1)

0 0
(6.20)

2 )41(1+71)(2+77 -71 0

N3T=
(b/4)(1+11)(712-1)

, N4T= 0
0 0

This indicates that the displacement, and hence the rotation 6x, is
uniquely determined by the values of w and 9x at nodes 2 and 3. Therefore,
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if the element is attached to another rectangular element at nodes 2 and 3,
then w and O. will be continuous along the common side. The rotation 9,,
is given by

1 aw

a a

1 aN, aN,
{w}eal a a

(6.21)

(see equations (6.6) and (6.17)). Substituting (6.19) into (6.21) and evaluating
along f_ + 1 gives

I 1(1 + n7;71) (rl;-77)aN T_
(b/8)e;(q +-n)(-q2-1)

-(a/8)(2+2f;)(1 + 77;f1)

Evaluating (6.22) for j = 1 to 4 gives

aN,T I 871(1-fl2) 2 I

a1C
= -(b/8)(-I+fl)(rl -1) ,

L
0

T -*?I(I-172)

aa2
_

(a/2)(1--q)

T H -I (I - -q2)

aaf _ (b/8)(I+n)(n2-1) I,
(a/2)(I+77)

T -811(I-772)
aN, 2_ -0/8)0+7)(11 -1)

(6.22)

(6.23)

For 9,, to be continuous between elements it should be uniquely deter-
mined by its value at nodes 2 and 3. Expressions (6.21) and (6.23) indicate
that in this case 9,, is determined by the values of w and 0. at nodes 1, 2,
3 and 4 as well as 9,, at nodes 2 and 3. The element is, therefore, a
non-conforming one. In spite of this, the element is used and will, therefore,
be considered further and the effect of this lack of continuity indicated.

Substituting (6.17) into (6.1) gives

Te = i{rv}eT[m]e{w}e (6.24)
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where

h [NJT[NJ dA[mle = JA, p

l

'= phab [N(f, J7)]T[N(f, rl)] de d7l (6.25)

is the element inertia matrix. Substituting the functions N;(6, 77) from (6.19)
and integrating gives

[Mb =
phab m1l m21

T

I (6.26)

where

6300 m21 M22

3454

922b 320b2 Sym

-922a -252ab 320a2
m11 _ (6.27)

1226 398b -548a 3454

398b 160b2 -168ab 922b 320b2

548a 168ab -240a2 922a 252ab 320a2

394 232b -232a 1226 548b 398a

-232b -120b2 112ab -548b -240b2 -168ab

232a 112ab -120a2 398a 168ab 160a2
m21= (6.28)

1226 548b -398a 394 232b 232a

-548b -240b2 168ab -232b -120b2 -112ab

and

-398a -168ab 160a2 -232b -112ab -120a2

3454

-992b 320b2 Sym

922a -252ab 320a2
m22 = (6.29)

1226 -398b 548a 3454

-398b 160b2 -168ab -922b 320b2

-548a 168ab -240a2 -922a 252ab 320a2

In deriving this result, it is simpler to use the expression (6.8) for w and
substitute for {a} after performing the integration. A typical integral is then
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of t he fo

+1

rm

+i 0 m or n odd

1

f
J em77n de

67
4

(6.30)
d. n evenm an

(m+1)(n+l)

Substituting (6.17) into (6.3) and (6.2) gives

Ue = 2{W}eT[k]e{W}e (6.31)

where

[k]e =
JAQ 12

[B]T[D][B] dA (6.32)

is the element stiffness matrix, and

a2 1 a2 1

axe a2
a2

a2 a2

B N[ ] = ay2

a2

J =[
b2 a,n2

2 a2

LN(, )J (6.33)

2
L ax ay ab 44917

Substituting the functions N;(f, q) from (6.19) and integrating gives, for
the isotropic case

[k]e =

k11

Eh' 1k21

- v2)ab k31
41A41

k22

k32

k42

Sym

k33

k43 J
(6.34)

where

{4('02+a2)+5(7-2v)} Sym

k2{2a2+5(1+4v)}b 4{3a2+ 5(1-v)}b2
2{-2f32-5(1+4v)}a -4vab 4{3/32+ 5(1-v)}a2

(6.35)

-{2(2132-a2)+5(7-2v)} 2{a2-5(1+4v)}b 2{2/32+'-'-s(1-v)}a

k2 2(a2-'-s(1+4v)}b 4{3a2-15(1-v)}b2 0

0 4{3N2-is(1-v)}a2

48(1

(6.36)
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-{2(,32+a2)-s(7-2v)) 2(-a2+5(1-v)}b 2{p2-5(1-v)}a
k31= 2{a2-5(1- v)}b 4{'-3a2+ 5(1- v)}b2 0

2{-a2+5(1- v)}a 0 4{3132+ 5(1- v)}a2

(6.37)

{2(/32-2a2)-5(7-2v)} 2{-2a2-5(1- v)}b 2{-132+5(1+4v)}a
k4 2{2a2+5(1- v)}b 4{3a2-15(1- v)}b2 0

2{-'82+5(1+4v)}a 0 4{3p2- 5(1-v)}a2

and

a ba=6, 16 =Q.

Defining the following matrices

(6.38)

(6.39)

-1 0

01,

1 0 0 1 0 0

I,= 0 1 I2= 0 -1 0 I3= 0 1 0

0 0 1 0 0 1 0 0 -1
(6.40)

the remaining sub-matrices of (6.34) are given by

k22 = I3TkIII3

k32 = I3Tk41I3

k42 = I3Tk31I3,

k33 = I1
T
kt1I1

k43=IITk2II1, k44=I2Tk1112

(6.41)

These relationships are derived in reference [6.3].
As in the case of the inertia matrix, it is simpler to use the expression

(6.8) for w and substitute for {a} after performing the integration using
(6.30). This procedure has been generalised for a number of plate elements
with anisotropic material properties in reference [6.4].

Substituting (6.17) into (6.4) gives

SWe = {SW}eT{f}e (6.42)

where

{f}e = J [NJ Tp, dA (6.43)

is the element equivalent nodal force matrix. Assuming pz to be constant,
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substituting for [N] from (6.19) and integrating gives

ab
{f}Q = p=

3

The stresses at any point in the plate are given by (2.63)

o,, _{v}_[D]{e}
T x,,
Ox

Substituting for the strains {e} from (2.65) gives

{a} = -z[D]{X}

where {X} is defined in (6.3). Substituting for w in

{a} = -z[D][B]{w}Q

{X}

(6.44)

(6.45)

(6.46)

using (6.17) gives

(6.47)

where [B] is defined in (6.33) and {w}e in (6.18). Since [B] is a function of
x and y (or and q), then (6.47) gives the stresses at the point (x, y, z) in
terms of the nodal displacements.

The bending moments Mx and M, and twisting moments My and Mx
per unit length are defined by

f-"/2

+ h/2 +h/2

Mx=oxzdz, M,,=J
h/2

ozdz

f +h/2 +h/2

Mxy=-J T,,,zdz, M,x= Txzdz
h/2 J -h/2

(6.48)

Since T,,,, = Tx,, then Myx = -Mxy. The directions of these moments are
indicated in Figure 6.2.
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y

t Myx

1

z

Mx

I
-- Mxy

x

Figure 6.2 Sign convention for bending and twisting moments.

Substituting (6.47) into (6.48) and integrating gives

Mx h3

MV
I=_[I]3[D][B]{w}e

MY
12

(6.49)

where [I]3 is defined in (6.40).
Both bending moments and stresses will be more accurate at a (2 x 2)

array of integration points.

Example 6.1 Use the ACM element to estimate the five lowest frequencies
of a square plate which is simply supported on all four edges. Compare
the results with the analytical solution Tr2(m2+n2)(D/phL4)1/2 rad/s, where
L is the length of each side and (m, n) are the number of half-waves in the
x- and y-directions.

Since the plate has two axes of symmetry, the modes which are symmetric
or antisymmetric about each of these can be calculated separately by
idealising one-quarter of the plate and applying appropriate boundary
conditions on the axes of symmetry (Chapter 8).

Figure 6.3 shows one-quarter of the plate represented by four rectangular
elements. Since side 1-3 is simply supported w, 0y are zero at nodes 1, 2
and 3. Similarly, since side 1-7 is simply supported w, 0, are zero at nodes
1, 4 and 7. The modes which are symmetric with respect to the side 3-9 are
obtained by setting 0, zero at 3, 6 and 9, and the antisymmetric modes by
setting w, 0, to be zero at 3, 6 and 9. Similarly, the modes which are
symmetric with respect to the side 7-9 are obtained by setting 0,. to be zero
at 7, 8 and 9, and the antisymmetric modes by setting w, 0y to be zero at
7, 8 and 9. Therefore, the modes which are symmetric with respect to both
axes of symmetry are obtained by considering a twelve degree of freedom
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L
2

v

I

7r

4

1

L12

8

5

2

9

6

Figure 6.3 Idealisation of one-quarter of a square plate.

e

Number of elements per half side

2 3 4 5

Figure 6.4 Flexural vibrations of a simply supported square plate. ACM element.

model, the degrees of freedom being w at 9, O. at 2 and 3, Bv at 4 and 7,
w and 9x at 6, w and 0 at 8, and w, Bx, By at 5.

Analyses have been performed using (2 x 2), (3 x 3), (4 x 4) and (5 x 5)
meshes of elements for the quarter plate. The results are compared with
the analytical frequencies in Figure 6.4. Unlike the examples presented in
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the previous chapters, the frequencies predicted using the finite element
method are less than the analytical frequencies. This is a consequence of
the ACM element being a non-conforming one. However, as can be seen
from the figure, this does not preclude the frequencies from converging to
the analytical frequencies as the number of elements is increased. Results
for a variety of other boundary conditions are presented in references [6.5,
6.6].

It cannot be asserted that frequencies predicted by the ACM element
will always be less than the correct ones. In fact, predictions can be either
above or below the true ones. This is illustrated by the results for a square
plate having one pair of opposite sides simply supported and the other pair
free, as shown in Figure 6.5. The modal patterns are illustrated in Figure
6.6. Four of the five modes shown converge from above whilst the other
converges from below.

Example 6.2 Calculate the first six natural frequencies and modes of a
square plate of side 0.3048 m and thickness 3.2766 mm which is point

5

4

3

2

1

0

3

2 3 4

Number of elements per half side

5

Figure 6.5 Flexural vibrations of a simply supported/free square plate. ACM
element.
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S

F

S

3

F

4

2

5

Figure 6.6 Modal patterns for a simply supported (S)/free (F) square plate.

supported at its four corners. Compare the results with the analytical
solutions given in references [6.8, 6.9] and the experimental results of [6.8].
Take E = 73.084 x 109 N/ M2, v = 0.3, p = 2821 kg/m3.

The plate has two axes of symmetry. A quarter plate was therefore
represented by (2 x 2) and (4 x 4) meshes of elements. Either symmetric or
antisymmetric boundary conditions were applied along the axes of sym-
metry. In addition, the displacement w at the corner node point was set to
zero.

The predicted frequencies are compared with the analytical and experi-
mental ones in Table 6.1. The modal patterns are given in Figure 6.7. Notice
that there are two modes with different modal patterns 2(a) and 2(b) having
identical frequencies.

Example 6.3 Figure 6.8(a) shows a rectangular plate which is stiffened in
one direction. The details of the stiffener are given in Figure 6.8(b). Calculate
the frequencies of the first four modes by considering an equivalent
orthotropic plate and assuming all four edges to be simply supported.
Compare the results with the analytical solutions given in reference [6.11].
Take E = 206.84 x 109 N/m2, v = 0.3 and p = 7833 kg/m3.

The material axes, x, y, of the equivalent orthotropic plate are coincident
with the geometric axes, x, y, shown in Figure 6.8(a). Using the method
given in reference [6.12] the elastic constants of this equivalent plate are

D, =3.396D, D,,=D, H=1.08D

where

EXhe _ E' heDx _
12 '

D,,
12
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Table 6.1. Comparison of predicted frequencies of a corner supported square
plate. ACM element

FEM [6.10] Analytical Experimental

Mode (2 x 2) (4 x 4) [6.8] [6.9] [6.8]

1 62.15 62.09 61.4 61.11 62
2(a), (b) 141.0 138.5 136 134.6 134
3 169.7 169.7 170 166.3 169

4 343.7 340.0 333 331.9 330
5 397.4 396.0 385 383.1 383

Mode 1

A

3 4

2(a)

5

Figure 6.7 Modal patterns for a corner supported square plate.

y
1 4.2672 m

2(b)

2.54 cm

I " 3.81 cm

4.2672 m

Stiffeners -k X

(a)

3.81 cm

2.54 cm

(b)

f 2.54 cm

Figure 6.8 Geometry of a stiffened square plate.
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H=Ervxvh,+GX,,he

12 6

Eh'
D=12(1-v2)

h = thickness of unstiffened plate

he = thickness of equivalent orthotropic plate

= 1.125h

Ex, E;,, vx , are defined in Chapter 2.

Using the values of E, v and p given and the above relationships, it can
be shown that the material properties of the equivalent orthotropic plate are:

E, = 493.313 x 109 N/ M2

E = 145.266x 109 N/m2

vX, = 0.1628

G,,, = 42.072 x 109 N/ m2

p = 7833 kg/M3

he = 2.8575 cm

The full plate was analysed using an (8 x 8) mesh of elements. This means
that there were 81 node points with three degrees of freedom each. Of the
243 degrees of freedom, 68 are zero due to the simply supported boundary
conditions. Seventy-seven master degrees of freedom (see Chapter 8) were
then selected automatically from the remaining 175 degrees of freedom.
The frequencies obtained are given in Table 6.2. These are compared with
two sets of analytically predicted frequencies. The first set was obtained by
treating the plate as a discretely stiffened plate. The second set was obtained
by considering the equivalent orthotropic plate and using the Rayleigh
method.

It has been indicated that the element presented in this section is a non-
conforming one, since the normal slope is not continuous between elements.
There are several ways of overcoming this problem, namely:

(1) Introduce additional nodal degrees of freedom.
(2) Ensure that the normal slope varies linearly along an edge.
(3) Introduce additional node points.
(4) Use thick plate theory and reduced integration (see Section 3.10 for

a similar treatment of a beam).

These methods will be presented in the following sections.
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Table 6.2. Comparison of predicted frequencies of a stiffened,
simply supported plate

Analytical (Hz) [6.11]

Mode Discrete Smeared FEM (ACM)

(111) 8.089 8.258 8.142
(1,2) 16.720 17.092 16.721

(2,1) 25.249 25.824 25.373

(2,2) 32.357 33.067 31.631

6.2 Thin rectangular element (conforming)

A conforming rectangular element can be obtained by taking products of
the functions (3.126) for a uniform, slender beam. In this case the displace-
ment function for the plate is of the form (6.17) with

f( )f(77)
(, 1) =Ni bf (6.50)

-agi(4)f (Y7)

where
f(e) =4'(2+3eje -f

and
t e+

(6.51)
g1(e)=4(-SJ-eJZ+ e3)

The functions of 77 are obtained by replacing e;, e by -7i, r7 respectively.
(e;, m) are the coordinates of node j.

A close inspection of the displacement function defined by (6.17), (6.50)
and (6.51) reveals that the twist a2w/ax ay is zero at the four node points.
This means that, in the limit, as an increasing number of elements is used,
the plate will tend towards a zero twist condition. This can be overcome
by introducing a2w/ax ay as an additional degree of freedom at each node
point. In this case the displacement function is of the form (6.17) with

IWleT=
[W1 exl 0vl Wxv1 ' .. W4 O 4 OY4 Wxy4J (6.52)

where wxy = a2w/ax ay, and

f( :)f(17)

NjT(S,q) bf(e)g1(17)
-ag;(f)f ('1)
abg1(e)g1(rl)

This element is commonly referred to as the CR element [6.15].

(6.53)
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By specifying nodal degrees of freedom which are consistent with rigid
body displacements, corresponding to vertical translation and rotation about
the x- and y-axes, it can be shown that this element can perform rigid body
movement without deformation. Similarly for pure bending in the x- and
y-directions. (Note that this is also true for the functions (6.50).) The nodal
displacements which are consistent with a state of constant twist are

W,, W3=1,

1

ex2, ex3b

ev,, evea

1

WXyj = aL

w2, w4=-1

1

b

=-_0.0, 0,4 a

J=11... 4.

Substituting these into (6.17) and (6.53) gives

w=e>?

(6.54)

(6.55)

as required. Thus, the first six terms in (6.5) are present in the functions
(6.53).

The element inertia, stiffness and equivalent nodal force matrices are
given by (6.25), (6.32) and (6.43) where the matrix [NJ is defined by (6.17)
and (6.53). These expressions may be evaluated by the combined analyti-
cal/numerical method given in reference [6.4]. They can also be evaluated
analytically. The burden of the calculations is considerably eased if the
functions (6.51) are expressed in terms of Legendre polynomials [6.16] as
follows:

Jj (S)=2P0+5SjPl 10 jP3

gj(:)= 6 jP0-IOPl+6tP2+IOP3

where

Po=1, P,P2=2(3i;2 -1),
P3=12(5e3-3e)

(6.56)

(6.57)

(see Section 3.10 for further details).
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The derivatives of these functions can also be expressed in terms of
Legendre polynomials, viz:

f;(6) = IfjPo _ 2ejP2

fill (6) = -2ejP1
(6.58)

g;()=i 1Pi+P2

g ( 0 2P1

Integrals of products of the functions (6.51) and their derivatives can now
be evaluated using the following relationships:

1 2

J (2n+1)
when m = n

(6.59)

' 10 when m 0 n

All three matrices are presented in reference [6.15] and the stiffness
matrix in [6.16], both for the isotropic case.

Example 6.4 Repeat Example 6.1 using the CR element.
The boundary conditions along a simply supported edge are the same

as in Example 6.1 since w,,00 there. Along an axis of symmetry the
boundary conditions are the same as in Example 6.1 for antisymmetric
modes, but in the case of symmetric modes there is the additional constraint
that w,,, is zero.

The percentage differences between the finite element and analytical
frequencies are presented in Table 6.3. The accuracy of this element is
considerably better than the accuracy obtained with the ACM element (see
Figure 6.5). In fact the present results would be insignificant if drawn on
the same scale as the figure. Also, note that the CR element produces
frequencies which are greater than the exact analytical frequencies. This is
because all the requirements of the Rayleigh-Ritz method have been satisfied
(see Section 3.1). Results for a variety of boundary conditions are presented
in references [6.5, 6.6, 6.17 and 6.18].

Example 6.5 Repeat Example 6.2 using the CR element.
The analysis is exactly the same as in Example 6.2 except there are now

four degrees of freedom per node instead of three. Also, for modes which
are symmetric about an axis of symmetry there is the additional constraint
that wX%, is zero.

The predicted frequencies are compared with the analytical and experi-
mental ones in Table 6.4. A comparison with Table 6.1 indicates that the
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Table 6.3. Comparison of predicted and analytical
frequencies for a simply supported square plate.
CR element (% difference)

FEM grids (4 plate)

Mode 2x2 3x3 4x4 5x5

(1, 1) 0.02 0.01 0.0 0.0
(1, 2), (2,1) 0.26 0.05 0.02 0.01
(2,2) 0.22 0.04 0.01 0.01
(1, 3), (3, 1) 1.51 0.32 0.11 0.04
(2, 3), (3,2) 0.99 0.21 0.07 0.03

Table 6.4. Comparison of predicted frequencies of a corner supported square plate

FEM [6.10] (CR) Analytical Experimental

Mode (2 x 2) (4 x 4) [6.8] [6.9] [6.8]

1 62.03 61.79 61.4 62.11 62
2(a), (b) 138.9 134.9 136 134.6 134
3 169.7 169.6 170 166.3 169
4 338.9 335.1 333 331.9 330
5 391.5 387.5 385 383.1 383

frequencies predicted with the CR element are lower than the ones predicted
with the ACM element.

Although the CR element is more accurate than the ACM element, it does
suffer from the disadvantage that it is difficult to use in conjunction with
other elements when analysing built-up structures (see Chapter 7) due to
the presence of the degree of freedom wxy. Because of this, reference [6.19]
introduces the approximations

wxy1 = 26 (ey1 - ey4), wxy2=za (ex2-Oxl)

(6.60)

Wxy3 = 26 (0,2 - 0y3), Wxy4=2a (ex3-ex4)
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Substituting (6.60) into (6.17), (6.52) and (6.53) and simplifying, shows
that w is of the form (6.17) with {w}e given by (6.18) and

where

NjT(e, i)= bFj(e)gj(ij)
-agj(6)F,(il)

(6.61)

W) j = 1, 3
F ( )- (6 62)

and

;
j&3) j=2,4

.

s(3+517j7l
+712-,y7j,n3) j= 1,3

Fj(?1)=1 2 3 (6.63)
s(S+Srljrl- j = 2,4

nj) are the coordinates of node j. This element will be referred to as the
WB element.

The effect of applying the constraints (6.60) to the CR element is to make
it a non-conforming one. The displacement and tangential slope are con-
tinuous between elements but the normal slope is not.

Example 6.6 Use the WB element to estimate the four lowest frequencies
of a square plate of side 2.4 m and thickness 0.03 m, which is simply
supported on all four edges. Take E = 21 x 1010 N/m2, v = 0.3 and p =
7800 kg/m3. Compare the results with the analytical solution (Tr/2)(m2+
n2)(D/phL4)'/2 Hz, where L is the length of each side and (m, n) are the
number of half-waves in the x- and y-directions.

The complete plate was represented by (2 x 2), (3 x 3), (4 x 4) and (5 x 5)
meshes of elements. The frequencies obtained are presented in Figure 6.9.
The frequencies obtained with the WB element rapidly converge to the
analytical frequencies as the number of elements increases.

6.3 Thick rectangular element

The energy expressions for a thick plate element are, from Section 2.7

J
h3 h3

Te =2 p hr62+- 9x2+ e 2 dA (6.64)
12 12 )

Ue =2 JA h {X}T[D]IX} dA+2 JA Kh{y}T[Ds]{y} dA (6.65)
12
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160

120

N
X

Analytical

128.5
(1,3) (3,1)

102.7

64.2
(1,2) (2,1)

40

F- 25.7

2 3 4 5

Number of elements per side

Figure 6.9 Flexural vibrations of a simply supported square plate. WB element
[6.19].

with

-aev/ax
{X} = aeX/ay ,

aox/ax -aov/ay

B,+aw/ax lI
{y}=

-6,x+awlay]
(6.66)

where [D] is defined by (2.45), (2.49) or (2.51) and [DS] is defined by (2.77)
for an isotropic material. Also

SW=J p,SwdA
A

(6.67)

The highest derivative of w, 9x and O appearing in the energy expressions
is the first. Therefore, w, 0X and 0,, are the only degrees of freedom required
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at the node points. The displacement functions are of the form

4 4 4

w = E N, w, Ox = Y_ N,0,,. 0y = Y_ N,0, (6.68)
J=1 J=1 J=1

where the functions N; are defined by (4.36), that is

N; =;(1+ (1 + 77j77) (6.69)

These functions ensure that w, O. and 6, are continuous between elements.
This element will be referred to as the HTK element [6.20]. Combining the
expressions (6.68) gives

w

0X = [N]{W}e
Oy

where

{W}eT=
[w1 0x1 0y, w4 0x4 0y41

(6.70)

(6.71)

and

N, 0 0 ... N4 0 0

[N] = 0 N, 0 0 N4 0

0 0 N, 0 0 N4

(6.72)

Substituting (6.70) into (6.64) gives

Te = z{w}eT[m]e{w}e (6.73)

where

(
h 0 0

[m]e = J p[N]T 0 h3/12 0 [N] dA (6.74)
' 0 0 h3/12

Substituting the functions (6.69) into (6.74) and integrating gives

[m]e = [m`]+[m`] (6.75)
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where

48

0 0 Sym

0 0 0

24 0 0 48

0 0 0 0 0

` _ phab 0 0 0 0 0 0 (6.76)
mIMI

108 12 0 0 24 0 0 48

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

24 0 0 12 0 0 24 0 0 48

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0

0 4 Sym

0 0 4

0 0 0 0

0 2 0 0 4

ph'ab 0 0 2 0 0 4 (6.77)
[m]

108 0 0 0 0 0 0 0

0 1 0 0 2 0 0 4

0 0 1 0 0 2 0 0 4

0 0 0 0 0 0 0 0 0 0

0 2 0 0 1 0 0 2 0 0 4

0 0 2 0 0 1 0 0 2 0 0 4

Substituting (6.70) into (6.66) and (6.65) gives

Ue = 2{w}QT[k]e{w}e

where the stiffness matrix [k]e is of the form

[k] e = [kf] + [ks]

where

(6.78)

(6.79)

3

[k`] A 12
h

[B1]T[D][Bf] dA (6.80)
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and

[ks] =
J

Kh[Bs]T[Ds][Bs] dA
A

The strain matrix [Bf] is of the form

[Bf] = [Bf] Bf2 Bf B']3 4

where

The strain matrix [BS] is of the form

0 0 -aN;/ax
B; = 0 aN;/ay 0

0 aNj/ax -aN;/ay

(6.81)

(6.82)

(6.83)

[Be] = [BI B2 B3 B4]

where

B' S -
raN;/ax 0

.9N;/ay -N;
N;1

0

Substituting (6.69) into (6.83) and (6.85) gives

0 0 -e;(1+rijrl)/4a
B;= 0 0

0 e;(1+,qj-q)/4a

and

B,- e;(1+,qj77)/4a 0

(1+ef),q1/4b

(6.84)

(6.85)

(6.86)

0

(6.87)

Substituting (6.86) and (6.87) into (6.82) and (6.84) and the resulting
matrices into (6.80) and (6.81) will give the element stiffness matrix as
defined by (6.79). Both (6.80) and (6.81) may be evaluated exactly using a
(2 x 2) array of Gauss integration points. For thick plates this gives accep-
table results. However, as the thickness of the plate is reduced, the element
becomes over-stiff in the same way as the corresponding deep beam formula-
tion discussed in Sections 3.9 and 3.10. This can be overcome by evaluating
the shear energy term (6.81) using a one point Gauss integration scheme
[6.20, 6.21].
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For the isotropic case, the stiffness matrix due to flexure is of the form

k;, Sym

[kf] Eh 3 k fzl
kz2f

48ab(1- v2) k31 k32 k33
f f f fkf k42 k43 k44

where

0 0 0

k;, =[O 3{a2+z(1- v)}b2 -z(1+ v)ab (6.89)
0 -2(1+v)ab 4{/32+z(1-v)}a2

1 1
0 0 0

(6.88)

k21= 0 i{a2-(1-v)}b2 -43v-1)ab (6.90)

L0 z(3v-1)ab 3{-4/32+(1-v)}a2

0 0

k31= 0 3{-a2-2(1- v)}b2

0 z(1+v)ab

0

z(1+v)ab

3{-i3 2(1 - v)}a2

0

(6.91)

0 0

k41 = 0 '3{-4a2+(1- v)}b2

0 -2(3v-1)ab

and

a b
a

_b,
a

_
a (6.93)

The remaining sub-matrices of (6.88) are given by relationships corre-
sponding to (6.41).

The stiffness matrix due to shear is of the form

Eh3
kll
kit kz2 Sym

[ks] _ (6.94)
48ab/3s k31 kaz k33

k41 kaz ka3 k44

where /3s = Eh2/ 12KGb2 is a shear parameter which is similar to the one
defined in Sections 3.9 and 3.10 for a deep beam, also

(1+a2) a2b -a
k11= a2b a2b2 0

-a 0 a2

z(3v-1)ab (6.92)

(6.95)
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(-1+a 2) a2b a
k21= a2b a2b2 0 (6.96)

-a 0 a2

(-1-a 2) -a2b a

k31= a 2
b a2b 0 (6.97)

-a 0 a2

(1 - a2 ) -a2b -a
k41 = a2b a2b2 0 (6.98)

-a 0 a 2

The remaining sub-matrices of (6.94) are given
sponding to (6.41).

Substituting for w from (6.68) into (6.67) gives

SWe = {Sw}eT{f}e

where

P=

{f}e = J [N]T 0 dA
0

by relationships corre-

(6.99)

(6.100)

is the element equivalent nodal force matrix. Assuming pz to be constant,
substituting for [N] from (6.72) and (6.69) and integrating gives

{f}e = pzab (6.101)

In this case one quarter of the total force is concentrated at each node.
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Table 6.5. Comparison of predicted non-dimensional frequencies of a
simply supported square plate. HTK element

A
1/2

Mode FEM [6.22] Analytical [6.23] % Difference

(1, 1) 0.0945 0.0930 1.61
(2,1) 0.2347 0.2218 5.82

(2, 2) 0.3597 0.3402 5.73
(3,1) 0.4729 0.4144 14.1
(3,2) 0.5746 0.5197 10.6
(3,3) 0.7520 0.6821 10.2

A = ph2w2/G.

The bending and twisting moments within the element are, from (6.49),

Mx
My

3h
12 [I]3[D][Bf]{w}e (6.102)

Mxy

where [I]3 is defined by (6.40). These will be more accurate at a (2 x 2)
array of integration points. The shear forces per unit length are

/Q=

J
1 = Kh[DS][BS]{w}e (6.103)

L `dy

where QX, Q, act on the faces whose normals are in the x-, y-directions
respectively. These will be accurate at the centre of the element.

Example 6.7 Use the HTK element to estimate the six lowest frequencies
of a moderately thick, simply supported square plate with a span/thickness
ratio of 10. Take v = 0.3. Compare the results with the analytical solution
given in reference [6.23].

The plate is represented by an (8 x 8) mesh of elements. Since the
boundaries are simply supported, then w is zero at all boundary nodes. The
results obtained for the non-dimensional frequency o(ph2/G)'/2 are com-
pared with the analytical values in Table 6.5.

The analysis was repeated using (2x2), (4x4), (6x6) and (10 x 10)
meshes of elements. The convergence of the lowest non-dimensional
frequency with the increase in number of elements is shown in Figure 6.10.
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0.11

A = ph2w2/G

A
1/2

0.10

Analytical
0.093

0.09'
1 2 3 4 5

Number of elements per half side

Figure 6.10 Convergence of the lowest non-dimensional frequency of a simply
supported square plate. b/h = 10 [6.22].

Example 6.8 Investigate the effect of changing the span/thickness ratio on
the accuracy of the lowest frequency of a simply supported square plate.
Take p = 0.3.

The plate is represented by an (8 x 8) mesh of elements. The lowest
non-dimensional frequency co(phb4/D)"2 has been calculated for various
values of the span/thickness ratio b/h. The results are shown in Figure
6.11. The analytical frequency shown is for a thin plate. As the plate gets
thinner b/ h increases and the non-dimensional frequency increases reaching
an asymptotic value which is greater than the analytical value for a thin plate.

References [6.20, 6.21] present a number of static solutions using the
HTK element. These indicate that accurate solutions can be obtained if the
boundary conditions are simply supported or clamped. Reference [6.24]
indicates that in the case of a cantilever plate large errors can occur. A
number of attempts have been made to increase the accuracy of this element.
Typical examples are references [6.25, 6.26].

6.4 Thin triangular element (non-conforming)

Figure 6.12 shows a triangular element with three node points, one at each
vertex. There are three degrees of freedom at each node, namely, the
component of displacement normal to the plane of the plate, w, and the
two rotations Ox = aw/ay and O. = -aw/ax.
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20.5

A I/2

20.0

19.5

19.0

18.5

10 20

Analytical

50

19.74

100

b/h
Figure 6.11 Effect of span/thickness ratio on lowest frequency of simply
supported square plate [6.22].

Figure 6.12 Geometry of a triangular element.

Since the element has nine degrees of freedom the displacement function
can be represented by a polynomial having nine terms. A complete cubic
has ten terms (see Figure 4.1). Equation (6.5) indicates that the constant,
linear and quadratic terms should be retained. In order to maintain symmetry
of the cubic terms the coefficients of x2y and xy2 are taken to be equal.
Therefore

w = a, + a2X+ a3y + a4x2 + a5xy

+a6y2+a7x3+ag(x2y+xy2)+a9y3 (6.104)

This expression can be written in the following matrix form

W= [1 x y x2 xy y2 x3 (x2y+xy2) y3J {a}

= LP(x, Y)1 {a} (6.105)
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where

{a}'= [a. a2 a9] (6.106)

Differentiating (6.105) with respect to x and y gives
w 1 x y x2 xy y2 x3 (x2y + xy2) y3

Ox = 0 0 1 0 x 2y 0 (x2+2xy) 3y2 {a}
6v 0 -1 0 -2x -y 0 -3x2 -(2xy+y2) 0

(6.107)

Evaluating (6.107) at nodes 1, 2 and 3 with coordinates (0, 0), (x2, 0)
and (x3, y3) gives

{w}e = [A]e{a} (6.108)

where

{w}eT= [wl 0xl 0yl w2 °x2 0y2 w3 °x3 0Y3]

and

(6.109)

1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 - 1 0 0 0 0 0 0 0

1 x 2 0 x22 0 0 x23 0 0

[A]e = 0 0 1 0 x2 0 0 x22 0

0 - 1 0 -2x2 0 0 -3x22 0 0

1 X 3 Y3 X32 X3Y3 Y32 X33 (X32Y3 + X3Y32) Y33

0 0 1 0 x3 2y3 0 (x32+2x3Y3) 3Y32

0 - 1 0 -2x3 -y3 0 -3x32 -(2x3Y3+Y32) 0

(6.110)

Solving (6.108) for {a} gives

{a} = [A]e'{w}e

Substituting (6.111) into (6.105) gives

w = [P(x, y)] [A] -'{w}e

Unfortunately the matrix [A]e is singular whenever

(6.112)

x2-2x3-y3=0 (6.113)

and, therefore, cannot be inverted. If this occurs the positions of the nodes
should be altered to avoid this condition. This element is commonly referred
to as element T [6.27].
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Evaluating (6.107) along y = 0 gives

w 1 x 0 x2 0 0 x3 0 0

0, = 0 0 1 0 x 0 0 x2 0 {a} (6.114)

ev 0 -1 0 -2x 0 0 -3x2 0 0

From this it can be seen that w varies cubically and 9,, quadratically. The
coefficients a, , a2, a4 and a7 can be expressed in terms of w1, 0v, , w2 and
0v2, by evaluating these expressions at nodes 1 and 2. This means that the
displacement and tangential slope will be continuous between elements.

On the other hand, 0X is a quadratic function having coefficients a3, a5
and a8. These cannot be determined using only the values of O at nodes
1 and 2 only. Therefore, the normal slope will not be continuous between
elements, and the element is a non-conforming one. The other disadvantage
of this element is that the assumed function (6.104) is not invariant with
respect to the choice of coordinate axes due to combining the x2y and xy2
terms.

Substituting (6.112) into (6.1) gives

Te = i{w}eT[Ill]e{w}e (6.115)

where

h [P]T[P] dA [A]e ' (6.116)[t]e = [A]e T
JA

p

is the element inertia matrix. A typical element in the integrand is of the
form ph JA xmyn dA. Integrals of this form can be evaluated using one of
the following [6.28]

For x3 74- 0, x3 0 X2:

m+1 r ( l)r+sm!
xmyn dA= l x m+l-sx s n+l

A r=o s=0(m+1-r)!(r-S)!S!(n+Y+1) 2 3 Y3

x3m+l
.y3

n+1

(m+1)(m+n+2)

For x3 = 0:

m+1 (-1)r m.
Xmyn dA= X2m+1 Y3 n+1

A r=o (m+1-r)!r!(n+r+1)
For x3 = X2:

(6.117)

(6.118)

I xm n dA = 1 m+l n+l (6.119)A y (n+1)(m+n+2)x2 Y3
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Substituting (6.112) into (6.3) and (6.2) gives

Ue = i{w}eT[k]e{w}e (6.120)

where

where

3

[k]e = [A] e-T
A
1h [B]T[D][B] dA [A]e' (6.121)

0 0 0 2 0 0 6x 2y 0[3]

= 0 0 0 0 0 2 0 2x 6y (6.122)

0 0 0 0 2 0 0 4(x+y) 0

The integrand in (6.121) can also be evaluated using (6.117)-(6.119).
Substituting (6.112) into (6.4) gives

SWe =I 8WITjjje (6.123)

where

{f}e=[A]-T J [P]TpzdA (6.124)
A

Again (6.117)-(6.119) should be used to evaluate the integrand.
The next step is to transform the energy expressions (6.115), (6.120) and

(6.123) into expressions involving nodal degrees of freedom relative to
global axes (see Figure 6.13), w, Ox and O. The relationship between
displacement components in local and global axes is (see Section (3.6))

w 1 0 0 w

0, = 0 cos (x, X) cos (x, Y) Bx

9, 0 cos (

w

y, X) cos (y, Y) Oy

_ [L2] 0x (6.125)

0Y

Since the local x-axis lies along the side 1-2 and the local y-axis is
perpendicular to it

cos (x, X) = X21/ L12, cos (x, Y) = Y21/ L12
(6.126)

cos (y, X) = - Y2,/ L12, cos (y, Y) = X2,/ L,2

where

X21=X2- X,, Y21=Y2-Y, (6.127)
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Figure 6.13 Orientation of a triangular element with respect to global axes.

and

L12 = (X21 2 + Y21 2)1/2 (6.128)

(X1, Y1) and (X2, Y2) are the global coordinates of nodes 1 and 2.
The degrees of freedom at all three nodes of the element can be trans-

formed from local to global axes by means of the relation

{w}e = [R]e{W}e (6.129)

where

{W}eT= [Wl

and

oxl °Y1 W2 °X2 °Y2 W3 °X3 BY31 (6.130)

L2 0 0

0 L2 0

0 0 L2

Substituting (6.129) into (6.115), (6.120) and (6.123) gives

Te = 2{JW}eT[]e{W}e

Ue = 2{W}eT[1C]e{W}e

SW = {SW}eT{f}e

where

(6.131)

(6.132)

[m]e = [R]eT[m]e[R]e

[k]e = [R]eT[k]e[R]e (6.133)

Me = [R]eT{f}e

When forming the element matrices referred to local axes the local
coordinates of nodes 2 and 3 are required. These can be obtained from
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ms=2

I

ms=4

/ZZ

ms=3

I

I

ms=5

Figure 6.14 Idealisations of one quarter of a rectangular plate of aspect ratio
1.48: 1. ms = mesh size.

their global coordinates by means of the relation

lx _ cos (x, X) cos (x, Y) X -X,
y] cos(y,X) cos(y, Y)] Y-Y1 ] (6.134)

Example 6.9 Use the triangular element T to estimate the five lowest frequen-
cies of a thin rectangular plate of aspect ratio 1.48:1 which is simply
supported on all four edges. Compare the results with the analytical solution
77

2{m2+(na/b)2}(D/pha4)1/2 rad/s, where a, b are the lengths of the sides.
One quarter of the plate was idealised in the ways indicated in Figure

6.14. The local axes were taken as indicated in Figure 6.15(a). Simply
supported boundary conditions are applied along the outer boundaries and
either symmetric or antisymmetric boundary conditions applied along the
two axes of symmetry. The results obtained are compared with the analytical
frequencies in Figure 6.16. The frequencies obtained using the finite element
method are all less than the analytical frequencies. All five modes converge
monotonically for mesh sizes greater than three.

To illustrate the fact that the assumed function is not invariant with
respect to the choice of local axes, the plate was analysed using a mesh
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Y

I/
X

(a)

Figure 6.15 Choice of local axes for triangular elements.

X

Y

Y y

1

x

(b)

- x

Figure 6.16 Flexural vibrations of a simply supported rectangular plate: aspect
ratio 1.48: 1. Element T [6.28, 6.29].

size of five and the local axes as indicated in Figure 6.15(b). The percentage
difference in frequencies when compared with the analytical solution is
given for the two choices of axes shown in Figure 6.15 in Table 6.6. This
indicates that quite different results are obtained depending upon the choice
of local axes.
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Table 6.6. Comparison of
predicted frequencies for different
local axis systems of a simply
supported rectangular plate: aspect
ratio 1.48: 1. Mesh size 5 [6.28].
Element T

Local axes

Mode 6.15(a) 6 .15(b)

(1, 1) -3.77 - 15.22
(2,1) -3.31 - 12.35
(1,3) -4.42 -9.15
(2,2) -1.74 +6.05

0.152 m

V

Lt 0.254 m

Figure 6.17 Geometry of a triangular cantilever plate.

Example 6.10 Figure 6.17 shows a triangular cantilever plate having a
thickness of 1.55 mm. Use the triangular element T to calculate the six
lowest frequencies and modes. Take E = 200 x 109 N/m2, v = 0.3 and p =
7870 kg/m3. Compare these frequencies and mode shapes with the experi-
mental measurements given in reference [6.30].

Two idealisations were used in analysing the plate as shown in Figures
6.18(a) and (b). The mesh sizes 5 and 10 consisted of 25 and 100 elements
respectively. The local axes used are the ones illustrated in Figure 6.15(a).

The percentage differences between the predicted and measured frequen-
cies are given in Table 6.7. For a mesh size of 5 these values vary from
-2.43 to +18.98. Increasing the mesh size to 10 reduces this range to (-3.26,
+0.79). A comparison of the predicted and measured modal patterns is
given in Figure 6.19. The first mode is the fundamental bending mode.
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Table 6.7. Comparison of predicted and measured frequencies
of a triangular cantilever plate. Element T

Measured
Predicted frequencies
(% difference) [6.28]

fM d Hrequency (o e z)
number [6.30] ms=5 ms=10

1 37.5 -2.43 -2.88
2 161.0 -0.82 -3.26
3 243.0 +8.65 +0.75
4 392.0 +9.43 -1.48
5 592.0 +5.76 -0.76
6 744.0 +18.98 +0.79

(a) Mesh size 5

(b) Mesh size 10

Figure 6.18 Idealisation of a triangular plate using triangular elements.

6.5 Thin triangular element (conforming)

One way of achieving continuity of the lateral displacement and both its
first derivatives between elements, is to ensure that the normal slope varies
linearly along an edge, as indicated in Section 6.1. This technique is used
in reference [6.31] to derive a conforming thin triangular element (HCT)
in Cartesian coordinates. The element has also been derived using area
coordinates in reference [6.32] (where it is called LCCT-9). Both derivations
are presented for comparison.
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(1) (2)

(4)

Figure 6.19 Comparison of predicted and measured modal patterns of a
triangular cantilever plate [6.28]. Measured, - - - predicted.

6.5.1 Cartesian coordinates

Figure 6.20(a) shows a triangular element divided into three sub-triangles.
The interior point 0 may be located arbitrarily, but it is convenient to
position it at the centroid of the triangle. X, Y are the global axes of the
system. It is convenient to use local axes x, y for each sub-triangle, where
x is parallel to the exterior edge of the sub-triangle and y is perpendicular
to it. Both the local and global axes for sub-triangle 1 are indicated in
Figure 6.20(b).

Independent displacement functions are used for each sub-triangle. For
example, for sub-triangle I it is assumed that

wo) = {P("]{a(n} (6.135)

where

[Pi"] = 11 x y x2 xy y2 x3 xy2 y3] (6.136)
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Y

Figure 6.20 Geometry of a triangular element divided into three sub-triangles.

Note that the term x2y has been omitted to ensure that aw/ay varies linearly
with x along the side 2-3.

Substituting (6.135) into (6.1) gives

(6.137)

where

[m(l)] = ph [p(1)]T[p()] dA (6.138)

and A, is the area of sub-triangle 1. This expression can be evaluated using
the technique described in Section 6.4. This procedure is repeated for each
of the three sub-triangles. Adding the kinetic energies together gives

Te = 2{a}T[m]e{a}

(a)

(6.139)

where

[m(n

[mle = [j(2)]
{a(')}

11

{a} = {a(2)} (6.140)
[m(3)] {a(3)}

The column matrix {a} consists of 27 coefficients. Eighteen constraints
are applied to ensure internal compatibility between the sub-triangles. This
reduces the number of unknown coefficients to nine which are expressed
in terms of the three degrees of freedom w, Ox, O at the three nodes 1, 2
and 3.



268 Flexural vibration of plates

The displacement and rotations with respect to local axes for sub-triangle
1 are

I w 1 x y x2
xy y2 x3 xy2 y3

Ox = 0 0 1 0 x 2y 0 2xy 3y2 {a(')}
O, 0 -1 0 -2x -y 0 -3x2 -y2 0

(6.141)

Evaluating (6.141) at node 2 gives

w

Ox = {W(')}2 = [A(1210t(}

0v2

where

1 X2 Y2

[A(')]2 = 0 0 1

0 -1 0

X2 x2y2 y2 x2 x2y2

0 x2 2Y2 0 2x2y2

-2x2 -Y2 0 -3x2 -y2

(6.142)

(6.143)

and (x2i Y2) are the local coordinates of node 2. These can be calculated
from the global coordinates by the procedure described in the previous
section.

Transforming (6.142) to global axes gives

= {w(')}2 = [Lia]r{N,(1)}2

= [A(1)]2{ar(u} (6.144)

where [LZ')] is of the form (6.125). Similar expressions may be written for
the other nodes in this and the other two sub-triangles.

Compatibility of displacement and tangential slope is achieved by equat-
ing the degrees of freedom at common nodes of the three sub-triangles.
This gives

lfw(3)} = {w(2)}1

{w(1)}2 = {w(3)}2

{w(2)}3 = {w(1)}3
(6.145)

lfw(2)}0 = {w(3)}0

{w(1)}0 = {w(2)}0
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Compatibility of normal slope along the interior edges of the sub-triangles
is ensured by equating the normal slopes at their mid-points 7, 8 and 9.
The method of calculating the normal slope will be illustrated by considering
the point 8 of sub-triangle 1 (see Figure 6.21). If s is the direction from 0
to the exterior node 2 and n is normal to this, then

a )an
_ L0 cos (s, x) cos (s, y)J8{w(')}8

an 8

= t0 cos (s, x) cos (s, y)J s[A(')]8{«(')}

= [A(')J8{u(')} (6.146)

Similarly for the other interior node of sub-triangle 1 and the other sub-
triangles. The three conditions imposing compatibility of normal slopes
between the sub-triangles are

aw (aw

aanw

l =(aan3))8
(6.147)

aanw

an' )9

The relationships (6.145) and (6.147) are the eighteen constraints required
to ensure internal compatibility. The remaining nine coefficients in (6.140)
are obtained by relating the sub-triangle degrees of freedom at the external
nodes to the degrees of freedom of the complete triangle, that is

{w}1 = {W(3)}1

{w}2 = {w(')}2 (6.148)

{w}3 = {W(2)}3

0

Figure 6.21 Geometry of a sub-triangle.
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Substituting (6.144) into (6.145), (6.146) into (6.147) and combining with
(6.148) gives

0 0 [A(3)]1

[A(')]2 0 0
0 [A(2)],j 0

----------------
:0 -[A(2)]1 C

[A(')12 0 -[A(3)]2
-[A(')]3 [A(2)]31 0

0 [A(2)]0 -[A(3)]0
[A(1)]0 -[A(2)]0 0

0 -[A(2)}7: [A(3)]7

[A(')]8 0 -[A(3)]8
-[A(')]9 [A(2)]91 0

(6.149)

This equation may be written symbolically as

1{w}e [A11]
[A10] 1 r {a(')} ] 6150

0

_[A01]
[A00]] {a(0)} ( )

Solving for {a(°)} from the second of these two matrix equations gives

{a(0)} = -[Aoo]-'[Ao1]{a(')}

Substituting into the first equation in (6.150) gives

{w}e = [[A11] -[A1o][Aoo]-'[Ao1]]{a(1)}

_ [A]{a(')}

Solving for {a(')} gives

{a(')} _ [A]-'{W}e

Combining (6.151) and (6.153) gives

1{a(')} _ [A]-'
{a(o)} -[A0o]-'[Ao1][A] {w}e

_ [A]{W}e

(6.151)

(6.152)

(6.153)

(6.154)

Substituting (6.154) into (6.139) gives the element inertia matrix in terms
of the nine nodal degrees of freedom

[m]e = [A]T[m]e[A] (6.155)
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The stiffness and equivalent nodal force matrices can be derived in a
similar manner. The stiffness matrix is given by

[k]e = [A]T[k]e[A] (6.156)

where

[k]e =
[k"']

[k(2)] (6.157)
[k(3)]

A typical eleme

(1)

nt of this matrix is

h3 (1) T (1)_[k ] = A, 12
[B ] [D][B ] dA (6.158)

where

0 0 0 2 0 0 6x 0 0

[B(')] = 0 0 0 0 0 2 0 2x 6y (6.159)

0 0 0 0 2 0 0 4y 0

The equivalent nodal force matrix is

{f}e = [A]T{f}e (6.160)

where

{f(')}

{f}e = {f(2)} (6.161)

{f(3)} 1

A typical element of this matrix is

(')JTdA (6P 162){f(')} = f .

At

6.5.2 Area coordinates

When using area coordinates the displacement function for a sub-triangle
is initially assumed to be a complete cubic which has ten terms. Therefore,
the matrix [P(')J in (6.135) is

JP")] =[LI3 L23 L33 LI2L2 LI2L3
2 2 2 2

L2 L3 L,L2 L,L3 L2L3 L,L2L3J (6.163)

The inertia matrix [m(')] expressed in terms of the coefficients {a(')} (see
expressions (6.137) and (6.138)) can be evaluated using (4.90). This results
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in the following matrix.

180

9 180

9 9 180 Sym

30 12 3 12

phA 30 3 12 6 12

5040 3 30 12 3 2 12
(6.164)

12 30 3 9 3 6 12

12 3 30 3 9 3 2 12

3 12 30 2 3 9 3 6 12

6 6 6 3 3 3 3 3 3 2

The ten coefficients in {aW} are expressed in terms of w, 6X, Oy at nodes
0, 2 and 3 (see Figure 6.22) and the normal slope, 04, at node 4 which is
located at the mid-point of side 2-3. The node numbers in brackets are the
numbers used for the area coordinates. This calculation is carried out using
the relations

aw(') 1 3 awl')
ox aY 2A,;=, b' aL;

1 3

9y
_

aX 2A,;=, a' aL;

from (4.96), where a; and b; are defined in (4.10) and

04(coS 01 9X+sin 0,0y)4

b3
0X

-Q3
ey

13 13 4

(3) 0

(6.165)

(6.166)

2(1)

Figure 6.22 Geometry of sub-triangle 1.
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where

13 = (a32+ b32)1/2

The result is

(6.167)

(6.168)

where

ffW(1)ITl = [W2 012 012 °X3 6Y3 e4 WO eXO OYOJ

(6.169)

W3

The non-zero elements of [e] are

CI 1 =j24=j36= 1

C41 = E51 = C64 = C74 = e88 = C98 = 3

-C65=C99=a1

C52=-C89=a2

-C42 = C75 = a3

_i66= 09,10 = b l

C53 = -j8,10 - b2

- C43 = C76 = b3

010,1 = 6µ3

010,2 =

(b,

- a3N'3)

010,3= (b,-b3µ3)

ClO,4 = 6A3

010,5=(a3A3-a2)

010,6 = (b3 A 3 - b2)

010,7 = 4h3

where

A3 = -(a2a3+ b2b3)/ 132

/23=1-A3

(6.170)

(6.171)
h3=2A1/ 13

A,=i(alb2-a2b,)
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Substituting (6.168) into (6.137) gives

Ten =

where
[m(1)] = [C]T[mIl)][C]

(6.172)

(6.173)

The inertia matrices for sub-triangles 2 and 3 are obtained in a similar
manner. These matrices are then assembled together to give the inertia
matrix, [tn],, of the complete triangle shown in Figure 6.23 in terms of the
degrees of freedom.

[wl OXI OYI W2 0X2 0Y2 W3

0X3 0Y3 04

{w} T

W
(0) (6.174)

05 06 WO 0X0 0Y0]

In assembling these matrices it is assumed that displacement and rotations
at common nodes of the three sub-triangles are equal. This will ensure
compatibility of displacement and tangential slope along their common
edges. Compatibility of normal slope along these same edges (0-1, 0-2 and
0-3 in Figure 6.23) is ensured by equating the normal slopes at their
mid-points 7, 8 and 9. These can be obtained using relationships similar to
(6.166). This will give three equations of the form

[B Bo][{w°}}] =0 (6.175)

which can be used to eliminate {w(0)}. Rearranging (6.175) gives

{w(0)} = (6.176)

1

Figure 6.23 Geometry of triangular element divided into three sub-triangles.
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Therefore

r{w} _
L{w(0)} _[BO[I]]-'[Bn] {w}

_ [A]{*} (6.177)

The inertia matrix in terms of degrees of freedom at nodes I to 6 only is,
therefore

[ml2]e
= [A]T[m]e[A] (6.178)

This matrix is of order (12 x 12) and is referred to as the LCCT-12 element
in reference [6.32]. The LCCT-9 element is obtained by constraining the
normal slopes to vary linearly along each side of the complete triangle. At
node 4 (see equation (6.166))

b3 a3
04 0X4 0Y4

13 13

b3
3-21 (0X2+0X3)

21
(Ov2+0Y3) (6.179)

3 3

Similar relationships can be derived for 05 and

{WIT_ [Wl 0X1 0vi W2 0X2 7Y2

06-

W3

Defining

0X3 0Y3] (6.180)

and

{0}T= [04 05 06] (6.181)

then these relationships can be written in the form

{0} = [Aj{w}

Therefore

(6.182)

{w} = [{A}, I[[AI]jIWI = [A]{w} (6.183)

The inertia matrix in terms of degrees of freedom at nodes 1 to 3 is, therefore

[m9]e = [A]T[m12]e[A]
(6.184)

The stiffness and equivalent nodal force matrices can be derived in a
similar manner. The stiffness matrix of sub-triangle 1 in terms of the
coefficients {aW} is

[kM] = J 12
[B(')]T[D][B(')] dA (6.185)

A,
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The components of strain are defined as
a2w(')/axe

{XM}= a2w("/ay2 (6.186)

2 a2w(')/ax ay

Using (4.96) to convert to derivatives with respect to area coordinates gives
a2 1 3 3 a2

ax 4A
a ae

, l=1 k=1 J kaLj aLk
a2 1 Y_ Y_ a2

b
b

aye 4Aii=, k=, ' kaL;
aLk

(6.187)

2 3 3 2

ax a 4A
Y_ a'bk

y =, k=, aL; aLk

Since [P(')] is cubic, the strain matrix will be linear. It can, therefore, be
written in the form

[B",)]=4Ai [L,[W,]+L2[W2]+L3[W3]] (6.188)

where [W,], [W2] and [W,] are each (3 x 10) matrices of constants. This
form will facilitate the evaluation of (6.185).

The equivalent force matrix in terms of the parameters {aM} is

{f("} = J [P(')] Tp, dA (6.189)

Example 6.11 Use the triangular elements T and HCT to estimate the two
lowest frequencies of doubly symmetric modes of a thin rectangular plate
of aspect ratio 1.48:1 which is simply supported on all four edges. Compare
the results with analytical solution 7r2[m2+(na/b)2](D/pha4)1/2 rad/s
where a, b are the lengths of the sides.

The plate was analysed using mesh sizes 2, 3 and 4 indicated in Figure
6.14. In the case of element T the local axes used are the ones shown in
Figure 6.15(a). The frequencies predicted using the finite element method
are compared with the analytical frequencies in Table 6.8. Element T
underestimates the frequencies of these two modes whilst element HCT
overestimates them. The HCT element results are seen to converge faster
than those obtained with the element T.

Example 6.12 Use the triangular elements LCCT-9 and LCCT-12 to estimate
the two lowest frequencies of doubly symmetric modes of a thin square
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Table 6.8. Percentage difference between finite element and analytical
frequencies of a simply supported plate of aspect ratio 1.48: 1

Mesh size 2 3 4

Mode (1, 1) (1,3) (1, 1) (1,3) (1, 1) (1,3)

T [6.28] -8.5 -10.0 -6.1 -6.6 -4.7 -5.4
HCT [6.33] 4.7 16.1 1.9 6.6 1.1 3.5

Table 6.9. Percentage difference between finite element and analytical
frequencies of a simply supported square plate

Mesh size 2 3 4

Mode (1, 1) (1,3) (1, 1) (1,3) (1, 1) (1,3)

LCCT-9 2.84 15.5 1.24 5.95 0.69 3.12
LCCT-12 0.20 1.70 0.06 0.55 0.02 0.21

plate which is simply supported on all four edges. Compare the results with
the analytical solution given in Example 6.1.

The plate was analysed using mesh sizes 2, 3 and 4 indicated in Figure
6.14. The frequencies are compared in Table 6.9. Both elements give results
which converge from above, but the results for the LCCT-12 element are
considerably more accurate than the LCCT-9 results. Reference [6.33]
quotes results obtained using the HCT element which agree with those
quoted in Table 6.9 for the LCCT-9 element confirming that the two elements
are equivalent.

6.6 Thick triangular element

The energy expressions for a thick plate element are given by expressions
(6.64) to (6.67) of Section 6.3. The displacement functions

3 3 3

w = Y. L;w;, OX = E L;BX_, BY = Y_ L O (6.190)
j=1 j=1 j=1

where (w;, Ox,, Or) are the degrees of freedom at node j and L, , L2, L3 are
area coordinates for the triangle, ensure that w, Ox, O are continuous
between elements. This element will be referred to as element THT.
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Combining expressions (6.190) gives

w

0X =[N]{w}e (6.191)

BY

where

and

{w}eT= [wl BXI eYl W2 °X2 °Y2 w3 °X3 0Y31 (6.192)

L1 0 0 L2 0 0 L3 0 0

[N] = 0 L1 0 0 L2 0 0 L3 0 (6.193)

0 0 L1 0 0 L2 0 0 L3

Substituting (6.193) into the expression for the inertia matrix (6.74) and
integrating using (4.90) gives

[m]e = [m`] + [m`] (6.194)

where

24

0 0

0 0 0 Sym

12 0 0 24

l
phA

[m ] 0 0 0 0 0 (6.195)
1 44

0 0 0 0 0 0

12 0 0 12 0 0 24

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 2

0 0 2 Sym

' 0 0 0 0

'
ph A

[m ] 0 1 0 0 2 (6.196)

0 0 1 0 0 2

0 0 0 0 0 0 0

0 1 0 0 1 0 0 2

0 0 1 0 0 1 0 0 2
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Substituting (6.191) into (6.66) and using (4.96) shows that the strain
matrix due to flexure is

10 0 -a, 0 0

[Bf] = ZA 0 b, 0 0 b2

10 a, -b, 0 a2

(a,2+b,2) b, a,

4A 6 6

0

0

0

0 -a3
b3 0

a3 -b3
(6.197)

As this is constant the integration of (6.80) is trivial. The stiffness matrix
due to the flexure is therefore

[kf] = 1 A[BI]T[D][Bf] (6.198)

Substituting (6.191) into (6.66) and using (4.96) shows that the strain
matrix due to shear is

a,

[Bs] =

L,
2A 0 L2 2A 0 L3

0 2A -L2 0
bA

-L3 0

(6.199)

Substituting (6.199) into (6.81) and integrating using (4.90) gives the follow-
ing result for an isotropic material.

k;, Sym

[ks] = KGh k21 k22

M3,
k532 k533

where

sk -

k2, -

b1 A 0
6 6

a,
0

A
6 6

(a2a1+b2b1) b2 a2

4A 6 6

-a2
0

-b2

0

a,
0

A
6 12]

(6.200)

(6.201)

(6.202)
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ks3, -

(a3al+b3bl) b3 a3

4A 6 6

b, A
6 12

a,

6

ks22=

0

0

A
12

(a22+b22) b2 a2

4A 6 6

b2
A

0
6 6

a2

6

k32 -

k33 -

0
A
6,

(a3a2+ b3b2) b3 a3

4A 6 6

b2 A 0
6 12

a2 0 A
6 12

(a32+ b32)

4A

b3

b3 a3

6 6

A 0

6 6

a3

6
0

A
6

The complete stiffness matrix for the element is

(6.203)

(6.204)

(6.205)

(6.206)

[k]e = [kr] + [ks] (6.207)

The use of reduced integration for the shear stiffness matrix, as in the
case of the thick rectangular element (Section 6.3), is not recommended
[6.34].
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Substituting (6.193) into (6.100) and assuming pz to be constant gives
the equivalent nodal force matrix

111

{f}e = p3

0

0

(6.208)

Therefore, one third of the total force is concentrated at each node.
Reference [6.35] presents a static solution for a simply supported square

plate, of thickness to span ratio 0.1, which is subjected to a uniform load.
It is demonstrated that the convergence is slow as the number of elements
is increased. This reference also demonstrates that an improved rate of
convergence can be obtained by representing the lateral displacement, w,
by a quadratic function whilst still representing Ox, 0.. by linear functions.
This rapid rate of convergence is also obtained when calculating the first
two doubly symmetric frequencies of this same plate.

6.7 Other plate bending elements

A conforming rectangular element has been developed in reference [6.36]
using the smooth surface interpolation functions of reference [6.37].
Using the non-dimensional coordinates 71) defined in Figure 6.24, the

n=y/b

f=x/a

1 2

Figure 6.24 Geometry of a rectangular plate bending element.
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displacement function is expressed in the form
12

w= Y_ F; (e, 77)aj (6.209)
j=1

The functions F (f, 71). are defined as follows

F,=1, , F3
zFz z

=11 ,
3

F4 Fs=e
(6.210)

F,=17, Fs=113,

F10=e17, F11=3e317+3e,73-ell? 3-5e,7

The remaining functions are defined by dividing the rectangle into four
triangles by inserting the diagonals as shown in Figure 6.24.

2-2f+77z in region I
_ 2fr7 -2f in region 2

F6
-f2 -2f - 172 in region 3

-21;77 -2;` in region 4

2fr7 -277 in region 1
_ 772-211+62 in region 2

F9
-2f77 -217 in region 3

-172-277-f2 inregion4

_ 4(e3173

11517 -31173+3e3r7)

F12- 141115-3173 517-33+35317)
in regions 1, 3
in regions 2, 4

(6.211)

(6.212)

(6.213)

Functions F1, F4 and F7 correspond to rigid body translation and rotation
whilst F2, F3 and Flo correspond to constant curvature and twist. Also,
functions F7, F8 and F9 are the same as functions F4, F5 and F6 rotated
through 90° about the z-axis.

The coefficients aj in (6.209) are expressed in terms of w, 0, and 0,, at
the four node points by the usual technique. The functions (6.210) to (6.213)
define a cubic variation of w and a linear variation of the normal slope
along the edges of the element. Therefore, the element is a conforming one.
It will be referred to as the DP element.

Reference [6.32] presents a conforming quadrilateral (Q19) which has
a linear variation of normal slope along each edge. The inertia matrix is
obtained by assembling four LCCT-9 elements (Section 6.5.2). The element
has, therefore, fifteen degrees of freedom (three at nodes 1, 2, 3, 4, 0 in
Figure 6.25(a)). The stiffness matrix is obtained by assembling four LCCT-
11 elements. An LCCT-11 element is derived from an LCCT-12 element
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(a)

LCCT-11 4

(b)

Figure 6.25 Geometry of element Q19: (a) inertia, (b) stiffness.

y

p' -x
Figure 6.26 Geometry of element CQ.

(Section 6.5.2) by constraining the normal slope to vary linearly along one
side. Therefore, the stiffness matrix has nineteen degrees of freedom, three
at nodes 1, 2, 3, 4, 0 and one at nodes 5, 6, 7 and 8 in Figure 6.25(b). The
degrees of freedom at nodes 5 to 8 are removed by static condensation
(Section 4.6) leaving the matrix with fifteen degrees of freedom which is
the same as the inertia matrix.

Reference [6.38] presents a conforming quadrilateral (CQ) with a quad-
ratic variation of normal slope along each edge. The degrees of freedom
are w, 0, 9,, at nodes 1, 2, 3, 4 and a normal slope at nodes 5, 6, 7, 8 (Figure
6.26). The element has, therefore, sixteen degrees of freedom. It is derived
by dividing the quadrilateral into four sub-triangles and a cubic displace-
ment function defined within each triangle. Reference [6.38] uses oblique
axes for each triangle. The element has been rederived in reference [6.39]
using area coordinates which are more convenient.

The displacement functions for each sub-triangle are expressed in terms
of the seven degrees of freedom at the three external nodes and w, O., O
at the internal node 0. After assembling the four sub-triangles the three
degrees of freedom at 0 are eliminated using continuity of normal slope
between three pairs of sub-triangles.
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Table 6.10. Percentage difference between finite element and
analytical frequencies of a simply supported square plate

FEM grids
(41 plate) 2x2 4x4

Mode (1,1) (1,3) (1,1) (1,3)

DP
Q19
CQ

2.6
1.5

0.03

4.2
3.9
1.3

0.61
0.35
0.00

0.72
0.78
0.10

Figure 6.27 Geometry of an isoparametric element.

The frequencies of the first two doubly symmetric modes of a simply
supported square plate have been calculated using the above three elements.
These frequencies are compared with the analytical frequencies in Table
6.10. Element Q19, which has three degrees of freedom more than element
DP, produces only slightly better results. However, element CQ which has
four degrees of freedom more than DP, gives much better accuracy.

Reference [6.401 presents a thick eight-node isoparametric element (RH)
as shown in Figure 6.27. The displacements and geometry are represented
by

8 8 8

w = Y_ N, w, 0x = Y_ N,0.,, 0, = Y_ N,0,, (6.214)
i=1 j=1 i=I

and

8 8

x= E N x , , y= Y_ N;y;
J=1 J=1

(6.215)

where the functions are identical to the ones defined for an eight-node
membrane, that is (4.108) to (4.110). The inertia and stiffness matrices are
evaluated using (3 x 3) and (2 x 2) arrays of integration points.
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Table 6.11. Comparison of predicted non-dimensional frequencies of a
simply supported square plate. Element RH

A
t/2

Mode FEM [6.40] Analytical [6.23] % Difference

(1, 1) 0.0931 0.0930 0.11
(2, 1) 0.2237 0.2218 0.86
(2, 2) 0.3384 0.3402 -0.53
(3, 1) 0.4312 0.4144 4.1
(3,2) 0.5379 0.5197 3.5
(3,3) 0.7661 0.6821 12.2

A =ph2w2/G

A simply supported square plate with a span/thickness ratio of 10 and
v = 0.3 has been analysed using a (4 x 4) mesh of elements. The results
obtained are compared with analytical values in Table 6.11. These show
that greater accuracy is obtained than with an (8x8) mesh of four node
elements (Table 6.5).

The main difference between thick and thin plates is that with thin plates
the transverse shear strains yxz, y,,, are negligible whilst for thick plates
they are not. In developing a finite element model for thick plates it has
been shown that continuity of w, O , O can easily be obtained by assuming
independent functions for each. In the case of thin plates the vanishing of
the transverse shear strains means that O,, = aw/ay and O, = -aw/ax. Thus
w, 6,,, O. cannot be treated as independent and only a single function
assumed for w. This leads to difficulties in ensuring that the normal slope
is continuous between elements.

Another approach to developing a finite element for thin plates is the
discrete Kirchhoff shear approach. This technique starts by assuming
independent functions for w, 0, O, and then applies constraints to ensure
that the transverse shear strains are zero at a discrete set of points.

Reference [6.41] presents several quadrilateral elements based upon this
approach. For one of them (DKQ2), it is assumed that initially it has eight
nodes, as shown in Figure 6.28. The displacement functions for w, 9x, O
are taken to be (6.214). The degrees of freedom w, 0,, at nodes 5, 6, 7, 8
are eliminated by applying the constraints ySZ = 0, y, = 0 at a (2 x 2) array
of Gauss points within the element. The degree of freedom 0s at 5, 6, 7 and
8 is then eliminated by applying the constraint that 0s varies linearly along
each edge. In deriving the stiffness matrix the shear strain energy is ignored.

The accuracy of the frequency of the first two doubly-symmetric modes
of a simply supported square plate obtained with the DKQ2 element is
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Table 6.12. Percentage difference between finite element and
analytical frequencies of a simply supported square plate using
discrete Kirchhoff shear elements

Mesh size 2 4

Mode (1, 1) (1,3) (1, 1) (1,3)

DKQ2 -1.1 +5.6 -0.3 -0.05
DKT -6.0 -16.0 -1.6 -3.2

Figure 6.28 Geometry of the DKQ2 element.

indicated in Table 6.12. The meshes used for a quarter plate are (2 x 2) and
(4x4). Reference [6.41] comments that the element is, good for rectangular
and parallelogram shapes but is not recommended for use as a general
quadrilateral.

Reference [6.34] presents a triangular discrete Kirchhoff shear element
(DKT). Initially, it is assumed that it has six nodes, as shown in Figure
6.29. The rotations 0., 0,, are assumed to vary quadratically over the element;
therefore

6 6

9,, _ E NO , 9,, = Y_ N,OV (6.216)
j=1 j=1

where the functions N; are given by (4.112). The degree of freedom 0 at
nodes 4, 5 and 6 is eliminated by requiring ys_ = 0 at these points. In addition,
the lateral displacement, w, is assumed to vary cubically along each edge.
Thus for edge 2-3 (using (3.124))

law 3 1 8w\ 3 1 aw(
w2 - - +- w3-- - (6.217)

aS 6 212.3 4 3s 2 212.3 4 as 3

The degree of freedom 9s at nodes 4, 5 and 6 is eliminated by requiring
this quantity to vary linearly along each side. Finally, the constraints yxz = 0
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Figure 6.29 Geometry of the DKT element.

and y;, = 0 are applied at nodes 1, 2 and 3. The element is left with the
degrees of freedom w, 0x, 0,, at nodes 1, 2 and 3.

The results for a simply supported square plate using mesh sizes 2 and
4 (Figure 6.14) are given in Table 6.12. These results were obtained using
a lumped diagonal mass matrix (more details of such representations are
given in Chapter 9).

Reference [6.42] presents a thin triangular non-conforming element
BCIZ1 with three nodes, the degrees of freedom being w, ox, O. The
displacement function takes the form

w = [N, N2 N3] {W}e (6.218)

where

{W}eT= [wl exl 0y, W3 O 3 0y3] (6.219)

and

TN

(L; + L;2 L;+ L12Lk - L;L;2- L;Lk2)

6.220)

with

+G,; = L

(bb*.1-b,+' )

?L3+IL;L;L,
6.221)

4;, = L;2L,+2'L;L;L,

a;, a,, b;, b, are defined in (4.10).
An indication of the accuracy and convergence characteristics is given

in Table 6.13. This table gives the non-dimensional frequencies,
(w2phL4/D)'/2, of a cantilever plate of aspect ratio 2 using three different
meshes. These results are compared with measured frequencies.

In reference [6.44] the displacement function for a triangle is taken to
be a complete quintic in x and y, a total of 21 terms. Three constraints are
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Table 6.13. Comparison of predicted non-dimensional frequencies of a rectangular
cantilever plate of length L and width L/2. Element BCIZI

FEM [6.43]

Mode
2 x 1 mesh
4 elements

4x2 mesh
16 elements

8 x 4 mesh
64 elements

Experiment
[6.14]

1 3.39 3.44 3.44 3.50
2 15.30 14.76 14.77 14.50
3 21.16 21.60 21.50 21.70
4 49.47 48.28 48.19 48.10
5 67.46 60.56 60.54 60.50
6 88.84 91.79 92.30
7 92.24 92.78 92.80
8 117.72 119.34 118.70
9 118.96 124.23 125.10

Table 6.14. Percentage difference between predicted
and analytical frequencies for a simply supported
square plate. NRCC element

Mesh size (Figure 6.14)

Mode 1 2 3

(1, 1) 0.025 0.0005 0.0
(1, 2), (2,1) 1.76 0.024 0.002
(2, 2) 2.44 0.036 0.003
(1,3) 1.74 0.16 0.014
(3, 1) 2.09 0.26 0.023
(2,3) 11.3 0.28 0.024

applied to ensure that the normal slope varies cubically over each edge of
the triangle. The remaining 18 coefficients are expressed in terms of w,
aw/ax, aw/ay, aZw/ax`, a2w/ax ay and aZw/aye at the three vertices. The
resulting element is a conforming one (NRCC).

The results for a simply supported square plate are compared with the
analytical solution in Table 6.14. Although the results are extremely accurate,
the predicted frequencies of the (1, 3) and (3, 1) modes are not equal as
expected.

Reference [6.45] presents a rectangular element, UM6, which is compat-
ible with the NRCC element. It has the same degrees of freedom at the
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Table 6.15. Percentage differences between predicted
and analytical frequencies for a simply supported
plate of aspect ratio 1.48: 1. UM6 element

FEM grids (`-a-, plate)

Mode 1x1 2x2 3x3

1 0.014 0.0001 0.0
2 0.48 0.004 0.0005
3 0.61 0.002 0.0002
4 1.76 0.024 0.003
5 6.94 0.014 0.001

25.4 cm

(a) (b)

Figure 6.30 Idealisations of a cantilever triangle of aspect ratio 1 : 1.

four corners and the same variation of displacement and normal slope over
each edge. The results in Table 6.15 for a simply supported rectangular
plate indicate its accuracy.

The natural frequencies of a cantilever triangle of aspect ratio 1: 1 have
been analysed using various triangular elements and the idealisation shown
in Figure 6.30(a). The results are compared with measured frequencies in
Table 6.16. The element DKT underestimates the frequencies whilst the
other two overestimate them.

Figure 6.30(b) shows an idealisation which consists of a mixture of
square and triangular elements. The frequencies predicted using two
different pairs of compatible elements are compared with the measured
ones in Table 6.17. These results show that they are more accurate than the
corresponding ones in Table 6.16.
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Table 6.16. Natural frequencies (Hz) of a cantilever triangular
plate of aspect ratio 1: 1. Idealisation Figure 6.30(a)

Element
i lE

Mode DKT LCCT-12 NRCC
xper menta

[6.30]

1 34.5 36.6 36.6 34.5
2 117.6 140.7 139.3 136

3 155.6 196.0 194.0 190

4 271.1 344.0 333.4 325
5 331.2 475.8 454.2 441
6 403.7 629.7 590.5 578

E = 206.7 x 109 N/ M2; v = 0.3; p = 7890 kg/m3.

Table 6.17. Natural frequencies (Hz) of a cantilever triangular
plate of aspect ratio 1: 1. Idealisation Figure 6.30(b)

Element
Experimental

Mode LCCT-12/CQ NRCC/UM6 [6.30]

1 36.6 36.5 34.5
2 139.7 139.0 136
3 194.7 193.6 190

4 339.7 332.6 325
5 463.3 452.9 441

6 607.6 588.7 578

E, v, p as in Table 6.16.

Problems

Note: Problems 6.2, 6.3, 6.5, 6.6 require the use of a digital computer.

6.1 Show that the stiffness matrix of the ACM element can also be expressed
in the form [C]T[H][C] where [C] = [A]' [d] . The matrix [d] is a diagonal
matrix whose elements are 1, b, a repeated four times. Find [H] for the
anisotropic case.

6.2 Use a (4 x 4) mesh of ACM elements to predict the six lowest frequencies
of a square plate of side 1 m and thickness 2 mm which has all four edges
fully clamped. Take E = 207 x 109 N/ M2, v = 0.3, p = 7850 kg/m3. Compare
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0.4572

(a) (b)

Figure P6.3 Geometry (a) and idealisation (b) of a stepped cantilever plate.

these frequencies with the analytical frequencies [6.7] 17.800, 36.304, 36.304,
53.528, 65.085, 65.391 Hz.

6.3 Figure P6.3(a) shows a square cantilever plate which has a stepped
thickness as indicated. Use the idealisation of ACM elements shown in
Figure P6.3(b) to calculate the nine lowest frequencies. Take E =
206.84 x 109 N/M2, v = 0.3 and p = 7853 kg/m3. Compare these frequencies
with the experimental frequencies [6.13] 29.5, 56.6, 102.7, 129.8, 149.8, 264.4,
269.9, 308.5, 344.5 Hz.

6.4 If the thickness of the ACM element varies linearly, how many Gauss
integration points are required to evaluate the inertia and stiffness matrices?

6.5 Figure P6.5(a) shows a rectangular cantilever with a wedge-shape
cross-section. Use the idealisation of tapered ACM elements shown in
Figure P6.5(b) to calculate the five lowest frequencies. Take E =
206.84 x 109 N/m2, v = 0.3, p = 7861 kg/m3. Compare these frequencies with
the experimental frequencies [6.14] 155.8, 668.4, 914.3, 1809.7, 2169.2 Hz.

6.6 repeat Problem 6.5 using constant thickness ACM elements. Define the
thickness of an element to be its average thickness.

6.7 Show that the displacement function defined by (6.17), (6.50) and (6.51)
is a conforming one by evaluating w and 0,, on the side e = 1.

6.8 Show that the displacement function defined by (6.17), (6.52) and (6.53)
gives continuity of w, 6 , 0,, and w,,,.

6.9 Show that the displacement function defined by (6.17), (6.51), (6.61),
(6.62) and (6.63) is a non-conforming one by evaluating w and O. on the
side i; =1.
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12.7 cm

(a)

Y

t

-*x

(b)

1

4.11 mm

Figure P6.5 Geometry of a cantilever with a wedge shaped cross-section.

6.10 Show that the first six terms in (6.5) are present in the displacement
function defined in Problem 6.9.

6.11 Show that the inertia matrix (6.75) gives the correct mass and moments
of inertia.

6.12 Derive the stiffness matrix due to transverse shear strain energy for a
rectangular thick plate bending element using the interpolation functions
[6.26]

y,, r (1-7l)'Yx +i(1+-1)y Z

,z 2Y '(1+n)YB+z(1-e)y°
where yx, yz, yB and y° are the shear strains at A, C, B and D (see
Figure P6.12) which are calculated using (6.66) and (6.70).

6.13 Derive expressions for the inertia, stiffness and equivalent nodal force
matrices for a quadrilateral version of the HTK thick plate element, pre-
sented in Section 6.3.

6.14 Show that the inertia matrix (6.194) gives the correct mass and moment
of inertia about an axis through nodes 1 and 2.
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Y, i1

A

Figure P6.12 Geometry of a rectangular thick plate bending element.

6.15 The displacement functions for a thick triangular element are assumed
to be

w = a 1 + a2x + a3y + a4x2 + a5xy + a6y2

Bx-R1+/32x+N3y

oy = y + y2x + y3Y

Show that the assumption that Q. is constant along each side, where s is
along a side, leads to the relationships

/a4 2Y5, a5-2«2 y3, a6=2 Y3



7

Vibration of stiffened plates and
folded plate structures

Plates stiffened by beams can be found in many light-weight structures such
as bridge-decks, building floors, ships' hulls and decks, and aircraft. The
stiffeners may be either of solid cross-section or thin-walled, both open and
closed and attached in either one or two directions, eccentric to the plate
middle-surface. This means that the membrane and flexural motion of the
plate become coupled. The solution of such structures involves combining
the framework, membrane and plate bending elements described in previous
chapters.

Many light-weight structures consist of plates which meet at angles to
one another. This also has the effect of coupling the membrane and flexural
motion of the plates.

7.1 Stiffened plates I

The membrane displacements of a plate are usually much smaller than the
bending displacements. Therefore, as a first approximation, they may be
neglected. In modelling stiffened plates using finite elements, it is usual to

z, w

Figure 7.1 Geometry of a stiffened plate.

294
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assume that a stiffener is attached to the plate along a single line. For
simplicity, the stiffener cross-section will be assumed to be symmetric about
the z-axis (see Figure 7.1). The centroid c of the cross-section is a distance
e from the plate middle surface.

Bending of the plate will induce bending of the beam stiffener in the
xz-plane, which in turn causes extension of the centroidal axis, and also
torsion of the beam. The energy expressions in terms of centroidal displace-
ments are, therefore (Section 3.7),

J+a J+a
Te=2 pA(ti,2+v'.-+Vv'2)dx+i pj'6X2dx

a

fazW'. 2

Ue = EA
(0u)2

dx+ EIy 1 I dx (7.1)
x a\ /
/ae 12+2f+a

GJ1"f dx
a \ax/

It has been assumed that resistance to lateral motion is negligible.
The centroidal displacements can be expressed in terms of the displace-

ments at the attachment line as follows

u, = e9,, -eaw/ax

v,_-eO

we = w

Substituting (7.2) into (7.1) gives

('+a aw
2 +a

Te=2 J pAez(-f dx+- J pAwzdx
ax a

+z
+a

p(Ix+Ae2)ex2dx

(7.2)

(7.3)

+a
2)

a2 w\2

12

fa a' 22 dx+a GJ( dx (7.4)Ue=
a

E(I,+Ae
ax / ax

The displacements of the beam should be compatible with the plate
displacements along the attachment line. Many of the thin plate bending
elements presented in Chapter 6 have a cubic variation of normal displace-
ment along an edge. Therefore, the variation of displacement in the z-
direction along the attachment line should also be cubic. The displacement
function in bending is

w =1Nw(f)J We (7.5)
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where

and

{w} eT = [W. 9,,,

LN.(e)J = -aN2(e) N3(S) -aN4(e)J

w2 0,21 (7.6)

(7.7)

The functions to are defined by equations (3.126).
Elements HCT, LCCT-9, DP and Q19 presented in Chapter 6 have a

linear variation of normal slope along an edge. In these cases the rotation
of the stiffener about the attachment line should be taken to be

where

ex = {ex }e

{ex}eT= Lex1 0x21

LNx(S)J = LN1(6) N2(f)J

(7.8)

and

(7.9)

(7.10)

The functions N,(f) and N2(6) are defined by equation (3.51). Equation
(7.8) could also be used in conjunction with the various non-conforming
elements presented in Chapter 6.

The second and third integrals in (7.3) are similar to the integrals in
expressions (3.127) and (3.92). Therefore, when (7.5) and (7.8) are sub-
stituted into (7.3) the second and third integrals can be deduced from
expressions (3.132) and (3.101), since the same displacement functions have
been used. This gives

178
2 , T pAa -22a 8a2 Sym

pAw dx= i{w}e
105 27 -13a 78

{w}e

13a -6a 22a 8a2

(7.11)

and

f p(Ix+Ae2)ex2 dx=2{6}eTpA(rx2+e2) 3
[2

11 {e}e (7.12)

2where rx = Ix/A.
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Substituting (7.5) into the first integral of (7.3) and evaluating gives

+a /a1N 2
z f pAe2 I -) dx

a (fix

18

T pAe2a -3a
= z{w}e

30 1-18
-3a

Combining (7.11) to (7.13) gives

Te = 2{fi}eT[m]e{Il}e

where

{U}eT= Lwl exl eyl

and

m12f m
[ML = T

m22M12

where

8a2 Sym

3a 18

-2a2 3a 8a2

W2 ex2 0y2 ]

282 0 -63a
PAa

m11 =
210

0 140ex2 0

-63a 0 72a2

-72 0 Sa

m12 210
0 70ex2 0

-5a 0 -26a2

282 0 63a
m22 = 210 0 140ex2 0

63a 0 72a2

(7.13)

(7.14)

(7.15)

(7.16)

(7.17)

(7.18)

(7.19)

where ex2 = rx2+e2.
The two integrals in (7.4) are similar to the integrals in expressions

(3.128) and (3.93). The evaluation of these integrals, after substituting for
w and Ox from (7.5) and (7.8), can be deduced from expressions (3.135)
and (3.102) since the same displacement functions have been used. This gives

1

J
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('+a (32w\2
J E(l,+Ae2) zdx
+a ax

3 Sym

2
=2{w}eTEA(r,2+e2)

1 1-3a 4a
2a3 -3 3a 3

{w}e (7.20)

-3a 2a2 3a 4a2

where r,2 = and

JGJ(a6x xdx={9}TJL-{6}e (7.21)

Combining (7.20) and (7.21) gives

Ue = 2{u}eT[k]e{u}e (7.22)

where

with

and

k1l[k]e - T= IkI2
k.2

k22
(7.23)

EA
6ej,2 0 -6ae,,2

z z

-6aey2 0 8a2ey2

EA
-6e,,2 0 -6aey2

k12 = 4a'
0 -a2ri 2/(1 + v) 0

6aey2 0 4a2ey2

4

EA
16ey2 0 6aey2

k22= s 0 a2rj 2/(1+v) 0

(7.24)

(7.25)

(7.26)

6aey2 0 8a2ey2

where rj2=J/A and eye=rye+e2.

The nodal degrees of freedom of this stiffener element w, 9x, 9, are the
same as the nodal degrees of freedom for the plate bending elements
ACM, WB, T, HCT, LCCT-9, DP, Q19 and BCIZI presented in Chapter 6.
The assembly of these plate and stiffener elements is, therefore, straight-
forward.

The plate elements LCCT-12 and CQ presented in Chapter 6 have a
cubic variation for w and a quadratic variation of normal slope along an
edge. There are three degrees of freedom w, 9,, 9,. at each end of the side
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and one degree of freedom, the normal rotation, at the mid-point. A
compatible beam stiffener element can, therefore, be derived using (7.5) for
w and

0xl

0,, = [Nl(f) N2(f) N3O] 0x2 (7.27)

0x3

for 9,, with N,(e) to being defined by (3.125). Node 3 is half way
between nodes 1 and 2 in Figure 7.1.

The plate element CR, Section 6.2, has a cubic variation for w and also
a cubic variation of normal slope. There are four degrees of freedom at the
two ends of a side, namely w, 6x, 0, and w,,. The normal displacement w
should be represented by a cubic function expressed in terms of w and 0,
at nodes 1 and 2 and the rotation ex by a cubic function expressed in terms
of 0x and wx, at the two nodes.

The plate elements NRCC and UM6 presented in Chapter 6 have a
quintic variation for w and a cubic variation of normal slope over each
edge. There are six degrees of freedom at the two ends of a side, namely
w, aw/ax, aw/ay, a2w/axe, a2w/ax ay and a2w/ay2. A compatible beam
stiffener element can be obtained by taking a quintic variation for w
expressed in terms of w, aw/ax and a2w/axe and a cubic variation for 0x
expressed in terms of aw/ay and a2w/ax ay [7.1].

Reference [7.2] extends this type of analysis to plates stiffened by thin-
walled open section beams. In this case the strain energy due to warping
of the cross-sections of the stiffeners has to be taken into account. Both w
and 0x are represented by cubic functions. The coefficients of the cubic
function for 0x are expressed in terms of the values of 0x and a20x/ax2 at
the two ends of the element.

7.2 Stiffened plates II

In order to include the membrane displacements of the plate in the analysis,
it is first necessary to derive a plate element which includes both membrane
and bending deformations. Such elements are referred to as facet shell
elements. The procedure will be illustrated for the rectangular element
shown in Figure 7.2.

The kinetic energy of a rectangular membrane element with four nodes
is of the form (see Chapter 4)

Tm = 2{U}T[m]m{1i} (7.28)

where the subscript e has been omitted for convenience and a superscript
m has been introduced to denote membrane motion. Also

{U}T= [ul V. u2 v2 u3 v3 u4 v4] (7.29)
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2

x, u

Figure 7.2 Geometry of a rectangular facet shell element.

and

1ml ml

MM m
[m], = m21 m22

m31 m32 MM
MM m m
m41 m42 m43

(7.30)

Each submatrix m", is of order (2 x 2).
The kinetic energy of a rectangular plate-bending element with four

nodes is of the form (see Chapter 6)

Tb = -2{w}T[m]b{w} (7.31)

where

and

{W}T = [WI ex, 9y,

W3 0x3 ey3

Sym

mm
44

W2 0x2 ey2

W4 ex4 0y4 ]

bm Sym
b b

[m]b _ m21 m22
b b b

m31 m32 m33
b b b b

m41 m42 m43 m44

Each sub-matrix is of order (3 x 3).
Combining (7.28) and (7.31) gives

TS = '22{u}ST[m]S{u}S

where

{U}TS = [U, V, W1 ex, eyl

U4 V4 W4 ex4 0y4l

z, w

(7.32)

(7.33)

(7.34)

(7.35)
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and

1M11Mss
[m]5 = m21 m22

5

332 Wmil m32 m33
S 5 5

mat ma2 ma3

(7.36)

In this case each sub-matrix is of order (5 x 5) and is of the form

m _ Mb
(7.37)["?

0

Similarly, the strain energy of a facet shell element is of the form

US = -2{u}5'[k]S{u}5 (7.38)

where

and

0
bk;;

(7.39)

(7.40)

The sub-matrices ky' and k, of order (2 x 2) and (3 x 3) respectively, are
the appropriate sub-matrices of the membrane and bending stiffness
matrices.

If it is assumed that the resistance of the beam stiffener to lateral motion
is negligibly small compared to that of the plate, then the energy expressions
of the stiffener in terms of centroidal displacements (7.1) can again be used.
In this case, the relationships between the centroidal displacements and
displacements at the attachment line are

v,=v-e0x (7.41)

we=w

Substituting (7.41) into (7.1) gives
1+a +a

a 1{
2

TQ = 2
a

pA(u2+v2+W2) dx+
J-a

pAe2 \-) dx
ax

k;, Sym

[k]5 -
k21 k22

5

k31
k532 k533

ka1 ka2 ka3 kaa

+a aw f+a
+'2

-a
p(Ix+Ae2)9x2dx-

f+a

o
pAeu-

ax
dx-

a
pAevOxdx

(7.42)
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('+a au z

La

a2w 2
ue2 J EA(a dx+zE(I +Ae z)I dx

a ax ' axeIe

+z
f+a

GJl2dx- f+QEAeaua2wdx

a \ ax) i_a ax ax
(7.43)

The displacements w and 6x will again be assumed to be given by (7.5)
and (7.8) respectively. Many of the membrane elements presented in Chapter
4 have a linear variation of u and v along each side. In these cases the
following expressions should be used for the stiffener

u = [N(f)] Jul,

d

(7.44)

an

v = {v},

h

(7.45)

erew

{U}eT = [u, u21

{V}eT = [v, v2J

(7.46)

(7.47)

and

[N1(e) N2(e)] (7.48)

The functions N,(e) and N2(f) are defined by equation (3.51).
Substituting (7.5), (7.8), (7.44) and (7.45) into (7.42) gives

TQ =
2{U}bTrmjb{U},, (7.49)

where

{U}bT= L U1 VI W1 Bx, BYI, u2 V2 W2 ex2 BY2J (7.50)

and

[m]b __ [mu
T

m12
(7.51)

m,2 M22

where

1 140 0 -105e/a 0 -35e

0 140 0 140e 0
7 52

m,,= 2A0 -105e/a 0 282 0 -63a
( . )

0 140e 0 140(rx2+e2) 0

-35e 0 -63a 0 72a2
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I

70 0

0 70

m12=
2100

-105e/a 0

0 70e

35e 0

in,, =
pAa

140 0

0 140

105e/a 0

0 140e

-35e 0

210

105e/a 0 35e

0 70e 0

-72 0 5a

0 70(rz2+e2) 0

-5a 0 -26a2

105e/a 0 -35e

0 140e 0

282 0 63a

0 140(rx2+e2) 0

63a 0 72a2

Similarly, substituting (7.5), (7.8), (7.44) and (7.45) into (7.43) gives

Ue = I21UIbT[k]blUlb

where

and

[k]b = [kuT

k12

k12

k22

2a2

_ EA 0
k11 4a3

0

0

-2ea2

-2a2

EA 0k12_

4a3 0

0

2ea2

0

-2ea2

0 0 0 -2ea2

0 0 0 0

0 6e,2 0 -6ae,,2
0 0 a2rj 2/(1 + v) 0

0 -6ae,2 0 8a2e,,2,

0 0 0 2ea2

0 0 0 0

0 -6e3,2 0 -6ae,2
0 0 -a2r,2/(l+v) 0

0 6ae,,2 0 4a2e,2.

0 0

0 0

0 6e,2
0 0

0 6ae,2

0 -2ea2
0 0

0 6ae,2
a2rj2/(1

+ v) 0

0 8a2e,,2

(7.53)

(7.54)

(7.55)

(7.56)

(7.57)

(7.58)

(7.59)

Reference [7.3] uses the plate bending element CQ, which is a quadri-
lateral having three degrees of freedom at the four vertices and a single



304 Vibration of plate structures

rotation at the mid-points of the sides (see Section 6.7). It is combined with
a quadrilateral membrane element which is obtained by assembling together
four six-node triangles (see Section 4.6) with two degrees of freedom at
each node. The degrees of freedom at five internal node points are removed
using static condensation leaving the same eight node points as the bending
element CQ. A compatible beam element is constructed by assuming a cubic
variation for w and a quadratic variation for u and O. It has three nodes
with u, w, 0x, 0y, as degrees of freedom at the two end points and u, 0x at
its mid-point. Only static analysis is performed.

Reference [7.4] uses the plate bending element NRCC, which is a triangle
having six degrees of freedom at the three vertices (see Section 6.7). It is
combined with a triangular membrane element also having six degrees of
freedom at the three vertices, namely, u, au/ax, au/ay, v, av/ax, av/ay. A
compatible beam element is constructed by assuming a quintic variation
for w and cubic variations for u, v, O. The element has two nodes with
u, au/ax, v, av/ax, w, aw/ax, a2w/axe, 0x, a0x/ax as degrees of freedom.
Since Ox = aw/ay, then a0x/ax = a2w/axay. The strain energy of the beam
due to lateral motion is included. However, the kinetic energy corresponding
to in-plane motion of both the plate and stiffener is neglected. This formula-
tion has the added complexity that au/ay, av/ay, a2w/aye are not continuous
across a stiffener which is parallel to the x-axis and, therefore, cannot be
equated at stiffener nodes. Results are given and compared with experi-
mental measurements for two square plates with two stiffeners each. In all
cases, all four boundaries are clamped. A large number of frequencies and
modes are predicted accurately.

Reference [7.5] treats plates which are stiffened with thin-walled open-
section beams. Both bending and membrane motion of the plate is included.
Extension, bending in two directions and torsion, including the effect of
cross-sectional warping, of the beams is included in the analysis. Very close
agreement is obtained with frequencies produced by finite difference and
transfer matrix analyses.

Further applications of stiffened plate analysis can be found in references
[7.6-7.13].

7.3 Folded plates I

The membrane displacements of a box structure whose side ratios are close
to unity, such as the one shown in Figure 7.3(a), are usually much smaller
than the bending displacements. Therefore, they may be neglected. This
means that lines of intersection of two faces cannot deform and only rotation
about such a line is possible. In addition, neither displacements nor rotations
are possible at corners.
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(a)

Figure 7.3 Geometry of a box structure.

Y

1

(b)
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Figure 7.4 Flat plate idealisation of one-eighth of a box (see Figure 7.3(b)).

If the box has three planes of symmetry, then only one-eighth of the box
need be idealised, as shown in Figure 7.3(b). All the natural frequencies
and modes can be calculated using eight combinations of symmetric and
antisymmetric boundary conditions about the three planes of symmetry.

As a consequence of the above assumptions, the box may be treated as
a flat plate, as shown in Figure 7.4, provided that additional box constraints
are applied.

To illustrate the procedure, consider the modes which are symmetric
with respect to all three planes shown in Figure 7.3. This means that the
X- and Y-axes in Figure 7.4 are lines of symmetry, as are the lines GF and
CF. Using a four-node plate-bending element with w, 0x and O as degrees
of freedom at each node, the symmetrical boundary conditions are:

(1) 9x = 0 at nodes 1 to 5
(2) 0y = 0 at nodes 1, 6, 11, 16, 19
(3) 9X = 0 at nodes 19 to 21
(4) 0 y = 0 at nodes 5, 10, 15
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Table 7.1. Natural frequencies of the symmetric modes of a closed box

Mode no. FEM [7.14] Analytical [7.15] % Difference

1 179.7 179 0.4
2 272.9 272 0.3
3 334.0 333 0.3

Because the edges of the box cannot deform, then:

(5) w = 0, 9Y = 0 at nodes 11 to 15
(6) w = 0, Ox = 0 at nodes 3, 8, 13, 18, 21.

This flat plate will represent the behaviour of a box if the displacements
at nodes 18 and 21 are constrained to have the same displacements as nodes
14 and 15 respectively, that is

(7) (OY )18 = (Ox )14, (OY )21 = (0X )15

Reference [7.14] uses this technique to analyse a box having dimensions
24.38 cm x30.48 cm x36.58 cm. The thickness of the walls is 0.3175 cm and
the material properties are

E = 207 x 109 N/M2, v = 0.3, p = 7861 kg/m3

The box was analysed using the CR plate bending element (Section 6.2)
which has the additional degree of freedom wx'(=a2w/axay) at each node.
This requires the additional constraints

(8) (wxy)13=0, (wxy)18=(wxy)14

Also the condition wxy=0 should be inserted into (1) to (4).
The frequencies are compared with the analytical frequencies given in

reference [7.15]. The results for the first three modes which are symmetrical
about all three planes of symmetry are given in Table 7.1. Using all eight
combinations of symmetric and antisymmetric boundary conditions, refer-
ence [7.14] shows that 16 frequencies differ from the analytical frequencies
by less than 1%.

Reference [7.16] uses this technique to analyse the vibration characteris-
tics of a rectangular box structure having two sloping roofs. Angles of 5°, 15°
and 22.5° are considered. The structure was modelled using the UM6
rectangular element and NRCC triangular element (Section 6.7). The first
six calculated frequencies are compared with experimentally measured
frequencies. The two sets agree to within 9%.
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Figure 7.5 Geometry of a hollow box-beam (a >> b, c).

7.4 Folded plates II

In the case of slender structures, such as the box-beam shown in Figure
7.5, the membrane displacements are of the same order of magnitude as
the bending displacements and so cannot be ignored. When idealising such
a structure facet shell elements, which include both membrane and bending
action, should be used (see Section 7.2).

In order to illustrate the procedure, consider the problem of determining
the flexural modes of the structure shown in Figure 7.5 when one end is
fixed and the other free. Take a = 20 m, b = c = 1 m.

The structure has two planes of symmetry and so it is only necessary to
idealise one-quarter of the structure, as shown in Figure 7.6. There are 40
elements in the X-direction, making a total of 80 elements. The flexural
modes can be calculated by taking the XY-plane through AB as a plane
of symmetry and the ZX-plane through EF as a plane of antisymmetry.

Using the facet shell element as described in Section 7.2, each element
has four nodes with five degrees of freedom at each node, namely
u, v, w, 9x, O. As there are two sets of elements to be joined at right angles,
it is convenient to increase the number of nodal degrees of freedom to
six by including the rotation 0.. In this case equations (7.37) and (7.40)
become

m' 0 0

M ii ii= 0 m 0 (7.60)

0 0 0
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Figure 7.6 Idealisation of one-quarter of a hollow box-beam.

k;; 0 0

k = 0 k 0

0 0 0

(7.61)

and are of order (6 x 6).
The local axes of the elements in the plane CDEF are parallel to the

global axes. However, the local axes of the elements in the plane ABCD
are rotated through -90° about the X-axis from the global axes. The inertia
and stiffness matrices for these elements are given by RTmR and RTkR
where

R=

1 0 0

0 0 -1
0 1 0!----------------

:1 0 0

0 ! 0 0 -1

i
0 1 0

The constraints which are to be applied are as follows:

(1) U, V, W,Ox,Oy,Oz=0 atA,CandE
(2) W = 0, O = 0, Oy = 0 at nodes along AB
(3) U=0, W=0, Oy = 0 at nodes along EF

The wall thickness is 0.05 m and the material properties are

(7.62)

E = 207 x 109 N/ m2, v = 0.3, p = 7861 kg/ m3.
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Table 7.2. Natural frequencies (Hz) of a cantilever box-beam

Mode no. FEM Analytical [7.17] % Difference

1 2.961 2.912 +1.7
2 17.868 17.565 +1.7
3 47.077 46.558 +1.1
4 84.106 85.081 -1.1

Using the linear rectangle (Section 4.2) for the membrane part and the
ACM element (Section 6.1) for the bending part to form the facet shell
element, produces the frequencies given in Table 7.2.

The frequencies obtained are compared with analytical frequencies for
a deep beam (see Example 3.10). The comparison is good because the
beam-type modes of the structure occur at much lower frequencies than
the plate-type modes. This is a consequence of the side ratios alb and a/c
being large.

Although this example indicates an accurate prediction of the natural
frequencies, the facet shell element employed should be used with care.
This is because continuity of displacement along the common edge between
two elements meeting at right angles is lost. This is illustrated in Figure
7.7(a). The normal component of membrane displacement in the vertical
element should be equal to the bending displacement of the horizontal
element. This is clearly not true between nodes since membrane displace-
ments vary linearly whilst bending displacements have a cubic variation.
Reference [7.18] develops a special membrane element to overcome this
problem. However, a simpler way is to combine the eight node membrane
and thick plate bending elements referred to in Sections 4.6 and 6.7 respec-
tively. In this case both membrane and bending displacements vary quadrati-
cally (see Figure 7.7(b)). Such a facet shell element has been used success-
fully in analysing models of diesel engines in reference [7.19].

7.5 Folded plates III

General folded plate structures can be analysed using a triangular facet-shell
element. Figure 7.8 shows one such element having three nodes with six
degrees of freedom at each node, namely, u, v, w, O , 9,,, 0, with respect to
the local axes shown.

The inertia and stiffness matrices of such an element will be of the form

m; l Sym

[m]5 = mz1 m22 (7.63)

MS 31
S

m31 m32 m33
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(a) (b)
Figure 7.7 Joining facet shell elements at right angles.

z, W

8Y

-x, u
Figure 7.8 Geometry of a triangular facet-shell element.

and

k;, Sym

[k]5= ks21 k22
s

S3

s3

k31 k2 k33

where m and k are of the form given by (7.60) and (7.61).

(7.64)

The next step is to transform the energy expressions into expressions
involving nodal degrees of freedom relative to global axes (see Figure 7.9).
In this case the inertia and stiffness matrices are [R]T[m]5[R] and [R]T[k]5[R]
respectively, where

L3

[R] =

L3

L3

L3

L3

(7.65)

L3 J
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X
Figure 7.9 Orientation of a triangular element with respect to global axes.

The matrix L3 is a matrix of direction cosines as defined by equation
(3.195). If the local x-axis is defined by nodes I and 2 and the local y-axis
lies in the plane of the element, then L3 can be calculated by the technique
described in Section 3.7.

The fact that there are zero contributions to the inertia and stiffness
matrices in the 0z degrees of freedom with respect to local axes, can produce
problems which require attention. If all the elements which meet at a node
are coplanar, then the inertia and stiffness matrices will be singular. This
can be overcome by removing the rotation about the normal to the plane.
If the normal is in the direction of one of the global axes, then this can be
achieved by applying a zero constraint. Otherwise, a linear constraint
equation will have to be used (see Section 1.5). If elements at a node are
almost coplanar, the inertia and stiffness matrices are nearly singular. This
may lead to inaccuracies in the solution. In such a situation a `normal'
cannot easily be specified in order to define a zero rotation. One way of
avoiding such a difficulty is to insert an arbitrary stiffness corresponding to
the local 0z degree of freedom [7.21]. In this case (7.61) becomes

1ky 0 0

k = 0 k 0

0 0 k`;;

where

EAha j = i
° EAha/2 j o i

(7.66)

(7.67)

where a is a small parameter (say 10-5). The offending degrees of freedom
are then removed by means of the reduction technique (see Chapter 8).
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Straight edge

Figure 7.10 Idealisation of a singly curved rectangular plate.

Some attempt has been made to determine the real stiffness coefficient for
the 0Z degree of freedom [7.22].

If two facet elements display continuity of displacements and slopes
when joined together in the same plane, they may lose this feature when
joined at an angle. This problem is particularly severe when two elements
meet at right angles, as described in Section 7.4.

Facet shell elements can also be used to analyse curved shells. However,
it should be remembered that membrane and bending actions within a single
element are uncoupled, simply because the element is flat. The necessary
coupling for the entire shell comes about when elements are joined at angles
to one another. It is, therefore, necessary to use many elements to obtain
good accuracy.

Reference [7.23] uses a combination of the linear triangular membrane
(Section 4.1) and the plate bending element T (Section 6.4) to analyse a
singly curved rectangular plate which is clamped on all four edges. The
dimensions of the plate are 7.62 cm along the straight edges and 10.16 cm
along the curved. The radius of curvature is 76.2 cm and the thickness
0.33 mm. The material properties are

E = 68.95 x 109 N/ M2, v = 0.33, p = 2657 kg/m3

The idealisation used is shown in Figure 7.10.
The four lowest natural frequencies are compared with the frequencies

obtained using the extended Rayleigh-Ritz method in Table 7.3. In this
table m, n denote the number of half-waves in the straight and curved
directions respectively.

Problems

Note: Problems 7.4 to 7.6 require the use of a digital computer.

7.1 Derive the inertia and stiffness matrices for the beam stiffener element
in Figure 7.1 using the technique described in Section 3.11. Compare the
results with (7.16) and (7.23).
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Table 7.3. Natural frequencies (Hz) of a singly curved rectangular plate with clamped
boundaries

Mode no. m, n FEM [7.23] Analytical [7.24, 7.25] % Difference

1 1,2 830 870 -4.6
2 1,3 944 958 -1.5
3 1,3 1288 1288 0.0
4 2, 1 1343 1364 -1.5

14
20.32cmW

11.43 mm 1.854 mm

.27 mm

6.773 cm

Figure P7.4

Cross-section

7.2 Derive the inertia and stiffness matrices for the beam stiffener element
in Figure 7.1 using the displacement functions (7.5) and (7.27).

7.3 Derive the displacement functions for the beam stiffener element in
Figure 7.1 which are compatible with the plate element CR.

7.4 Figure P7.4 shows a square plate which is clamped on all four boundaries
and stiffened by two rectangular cross-section beams. The material proper-
ties are E = 69 x 109 N/m2, v = 0.33 and p = 2600 kg/m3. Calculate the four
lowest natural frequencies and compare them with the experimental values
859, 1044, 1292 and 1223 Hz [7.4].

7.5 Figure P7.5 shows a cantilever plate which is stiffened by a square
cross-section beam. The material properties are E = 207 x 109 N/ M2, v = 0.3
and p = 7861 kg/m3. Calculate the seven lowest natural frequencies and
compare them with the experimental values 160, 355, 831, 893, 1257, 1630
and 2000 Hz [7.6].
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/6.35 mm

2mm

Figure P7.5

0.1 m/' 0.1 m

l 90°
Cross-section

Figure P7.6

7.6 Figure P7.6 shows a cantilever folded plate of thickness 4 mm. The
material properties are E = 207 x 109 N/ M2, v = 0.3 and p = 7861 kg/m3.
Calculate the eight lowest natural frequencies and compare them with the
analytical values 211(A), 418(S), 768(A), 899(S), 1529(S), 1553(A), 1757(A),
2306(S) Hz [7.26].
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Analysis of free vibration

In order to determine the frequencies, w;, and modes, {+};, of free vibration
of a structure, it is necessary to solve the linear eigenproblem (see
Chapter 3 )

[K-co;2M]{4},=0 i=1,2,... (8.1)

where K and M are the stiffness and inertia matrices respectively. This
chapter briefly describes some of the numerical methods used in finite
element analysis for solving equation (8.1). Fuller details may be found in
references [8.1-8.5].

8.1 Some preliminaries

Dropping the suffix i in equation (8.1) for convenience and putting cot=A
gives

[K- AM]{4} = 0 (8.2)

If K and M are of order (n x n), then equation (8.2) represents a set of n
linear homogeneous equations. The condition that these equations should
have a non-zero solution is that the determinant of coefficients should
vanish, that is

det[K-AM]=IK-AMI=O (8.3)

Equation (8.3) can be expanded to give a polynomial of degree n in A. This
polynomial equation will have n roots, A,, A2 ,- .. , A,,. Such roots are called
eigenvalues. Since M is positive definite and K is either positive definite or
positive semi-definite (see Chapter 1), the eigenvalues are all real and either
positive or zero. However, they are not necessarily all different from one
another. If they are not distinct, then the eigenproblem is said to have
multiple eigenvalues. An eigenvalue which occurs exactly m times is said
to be of multiplicity m.

If all the eigenvalues are distinct, then corresponding to each one, there
exists a non-trivial solution to equation (8.2) for {-,}. These solutions are
known as eigenvectors. An eigenvector is arbitrary to the extent that a scalar

315
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multiple of it is also a solution of (8.2). It is convenient to choose this
multiplier in such a way that (4)} has some desirable property. Such eigenvec-
tors are called normalised eigenvectors. The most common procedures are
to either scale {+} such that its largest component is unity or so that

{d,}T[M]{d} = 1 (8.4)

If AS is an eigenvalue of multiplicity m, it can be shown that there are
exactly m eigenvectors corresponding to it which satisfy equations (8.18)
and (8.19) below [8.2 and 8.6]. Thus the statements in the previous paragraph
are true, even when the eigenvalues are not distinct.

Example 8.1 Calculate the eigenvalues and eigenvectors for the system
shown in Figure P1.1 with k,=k4=3, k2=k3= 1, M,=M3=2 and m2 = 1.

The stiffness and inertia matrices are

4 -1 0 2 0 0

K= -1 2 -1 , M= 0 1 0

0 -1 4 0 0 2

Equation (8.2) becomes

(4-2A) -1 0 ¢,
-1 (2-A) -1 02 =0

0 -1 (4-2A) 03

Equating the determinant of coefficients to zero gives

(4-2A){(2-A)(4-2A)-1}-(4-2A)=0

that is,

(4-2A)(2A -2)(A -3) =0

and

A = 1,2 or 3.

When A =1, the first and third equations of (8.5) give

20,-462=0

-02+203=0
Therefore

(8.5)

W2=203
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and

01 -'Y3

The eigenvector is

1

2 'Y3

1

Taking

2

ives 1cb3 = 19

2

Alternatively, substitute the eigenvector into (8.4). This gives

84;=1
and so

03 =1/2(2)1/2

The eigenvector in this instance is

1/2(2) 1/2

1/21/2
1/2(2) 1/2

Similarly, the eigenvectors corresponding to the other two eigenvalues are

1i
A = 2, {4} = 0 or 0

2

2 1/2(2) 1/2

A = 3, {4} _ -1 or -1/21/2

2
1/2(2)1/2

Example 8.2 Calculate the eigenvalues and eigenvectors of the system shown
in Figure 8.1.

The stiffness and inertia matrices are

1 -1 0 2 0 0

K= -1 2 -1 , M= 0 1 0

0 -1 1 0 0 2
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m=2 m=1 m=

El~k= k=,

Figure 8.1 Three degree of freedom spring-mass system.

Equation (8.2) becomes

(1-2A) -1 0 0'
-1 (2-A) -1 4'2

0 -1 (1-2A) ¢3

Equating the determinant of coefficients to zero gives

(1-2A){(2-A)(1-2A)-1}-(1-2A)=0
that is

(1-2A)A(2A-5)=0

and

A=0, 1/2or5/2.

When A = 0, the first and third equations of (8.6) give

01-02=0
-02+03=0

The eigenvector is

1

1 03

(8.6)

Therefore, 03 can either be taken to be unity or a value to satisfy (8.4).
This gives

5 2=13 - 151/2.
or

Similarly, the eigenvectors corresponding to the other two eigenvalues are

-1 -'z
A=1/2, {4}= 0 or 0

1 22

-4 -1/2(5)'/2
A = 5/2, {4} = 1 or 2/5'/2

-4 -1/2(5)'/2
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In this example one of the eigenvalues is zero and the corresponding
eigenvector represents a rigid body displacement (note that the springs do
not deform). The presence of zero eigenvalues is indicated by the fact that
the determinant of the stiffness matrix is zero. The multiplicity of the
eigenvalue A = 0 is equal to the number of rigid body motions the system
is capable of undergoing.

Example 8.3 Calculate the eigenvalues and eigenvectors for the system
shown in Figure P1.1 with k, = 3, k2= 2, k3 = 0, k4= 1, m, = m2 = m3 = 1.

5 -2 0 1 0 0

K= -2 2 0, M= 0 1 0

0 0 1 0 0 1

Equation (8.2) becomes

5-A -2 0

-2 (2-A) 0 02 0

0 0 (1-A) Y'3

The eigenvalues and corresponding eigenvectors are

and

1/5'
A = 1, {4} = 2/5'/

/2 0

2 A = 1, 0

0
11

1

2/5'/2
A =6, {4} = -1/5'/2

0

Notice that A =1 is an eigenvalue of multiplicity 2 and that two eigenvectors
have been found. However, these two eigenvectors are not unique. Any
linear combination of them which also satisfies (8.18) and (8.19) is also an
eigenvector. For example,

1/(10)1/2 1/10'/2
{4 } = 2/ 101/2 or 2/ 101/2

1/21/2 -1/21/2

If an eigenproblem solution procedure fails becaue K is singular, this
difficulty can easily be overcome by a method called shifting. A is replaced
by (µ + r?), where 71 is specified, in equation (8.2), to give

[(K- r1M) -µM]{+} = 0 (8.7)
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77 is chosen to ensure that (K - riM) is not singular. The eigenproblem (8.7)
is then solved for the eigenvalues µ and associated eigenvectors. The
eigenvalues of (8.2) will then be given by (µ + 17).

Example 8.4 Repeat Example 8.2 using the method of shifting.
Taking 77 = -2, then

5 -1 0

(K- 77M) = -1 4 -1
0 -1 5

Note that

JK-77MI =5(20-1)+1(-5)=7000

Equation (8.7) now becomes

(5-2µ) -1 0

-1 (4-µ) -1 4)2 =0
0 -1 (5-2µ) 03

Equating the determinant of coefficients to zero gives

(5-2µ){(4-µ)(5-2µ)-1}-(5-2µ)=0
That is

(5-2µ)(2µ-9)(µ-2)=0
Therefore

µ = 2, 5/2, or 9/2,

giving

(8.8)

A=0, 1/2or5/2

as before. The eigenvectors of (8.8) are also the same as those of equation
(8.6).

Sometimes the inertia matrix M is also singular because of the presence
of massless degrees of freedom. If the eigenproblem solution technique fails
because of this, then this difficulty can be overcome by partitioning (8.2)
in the following manner.

[K21 K22] [+] -A
[ 0KI

0] +2] -0



Some preliminaries 321

The second of the two equations in (8.9) gives

K2141+K22*2=0 (8.10)

Solving for +2 gives

+2 = -K22-' K214 1 ( 8.11)

The relationship (8.11) is now substituted into the first of the two equations
in (8.9). This results in

[(Kit-K12K22 (8.12)

The inertia matrix in (8.12) is now non-singular. This process is known
as static condensation (see also Section 4.6).

Example 8.5 Calculate the eigenvalues of the system shown in Figure P1.1
with k,=k4=3,k2=k3=1, m,=m3=0 and m2=1.

The stiffness and inertia matrices are

4 -1 0 0 0 0

K= -1 2 -1 , M= 0 1 0

0 -1 4 0 0 0

Rearranging the degrees of freedom in the order u2, u,, u3 gives
2 -1 -1 1 0 0

K= -1 4 0, M= 0 0 0

-1 0 4 0 0 0

The partitioned matrices are

K12=K21T= [-1 1]

4
K22

_
0

04]
M,>=[1]

Equation (8.12) now becomes

(3/2-A)42=0

Therefore A = 3/2.
This result can be verified by solving (8.2) directly.

8.1.1 Orthogonality of eigenvectors

If {4)}, and {4)}s are two eigenvectors corresponding to the eigenvalues A,
and A, then

[K]{1}, -A,[M]{4}, = 0 (8.13)
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and

[K]{+}, - A5[M]{4}s = 0 (8.14)

Premultiplying (8.14) by {4}rT gives

{4} rT[K]{d)}s - As{d)}rT[M]{4 }s = 0 (8.15)

Similarly, premultiplying (8.13) by {4}'T and transposing the result gives

{4}rT[K]{4 }s - Ar{4}rT[M]{4}s = 0 (8.16)

since both [K] and [M] are symmetric.
Subtracting (8.16) from (8.15) gives

(Ar - As ){4)}rT[M]{(b}s = 0 (8.17)

For s 0 r and As 5,16 A,

{4} rT[M]{d}s = 0 (8.18)

Substituting (8.18) into (8.16) gives

{4)}rT[K]{4)}s = 0 (8.19)

Equations (8.18) and (8.19) are the orthogonality conditions for the eigen-
vectors. It can happen that As = Ar with s 0 r. However, as already mentioned,
eigenvectors can still be found which satisfy (8.18) and (8.19).

8.1.2 Transformation to standard form

Many texts consider the eigenproblem

[A - A I]{s} = 0

where I is a unit, diagonal matrix.
Equation (8.2) can be transformed into this

inertia matrix M as

M=LLT

(8.20)

form by first expressing the

(8.21)

where L is a lower triangular matrix. This is possible since M is symmetric
and positive definite. Substituting (8.21) into (8.2) gives

[K-ALL T]{4} = 0

Premultiplying (8.22) by L-' and substituting

{+} = [L] -T{*}

gives

(8.22)

(8.23)

[L-'KL-T- A I]{*} = 0 (8.24)
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This is of the form (8.20) with

A = L-'KL-T (8.25)

A is a symmetric matrix and the eigenvalues of (8.24) are the same as those
of (8.2) since

IL-'KL-T-AII =
IL-'(K-AM)L-TI

= IL-' I IK-AMI IL-TI (8.26)

and IL-'I = IL-TI 0 0. The eigenvectors of (8.2) are related to those of (8.24)
by (8.23).

The elements !;j of the matrix L can be determined using Cholesky's
symmetric decomposition [8.1, 8.2], namely

j-1 \\ 1/2

ijj=(Mjj 1jk21 j=1,2,...,n
k=1

- 1̀
/
`ij = (Mij - L 1ik ljk) Ijj

k=1

where n is the order of the matrix M.

j=1,2,...,(n-1)
i=(j+1),...,n

(8.27)

The matrix A as defined by (8.25) is obtained in two steps. First, the
equation

LB = K (8.28)

is solved for B by forward substitution. This gives L-'K. The second step
consists of solving the equation

LA=BT (8.29)

by forward substitution for the matrix A. This will give L-'KL-T.
The elements of B are given by

-1
D / pBij=(Kij - y_ lik Bkj Iii i,j=1,...,n (8.30)

k=1

1

The elements of A are obtained in a similar manner.

Example 8.6 Decompose the inertia matrix of a fixed-free rod of length L,
which is represented by four elements, using the Cholesky decomposition.

The inertia matrix is

4 1 0 0

pAL 1 4 1 0
M =-

24 0 1 4 1

0 0 1 2

where p is density and A cross-sectional area.
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Let

M = PAL LLT
24

This means thatl 0 0 0 111 121 131 141 4 1 0 0

121 122 0 0 0 122 132 142 1 4 1 0

131 132 133 0

L

0 0 133 I143 i 0 1 4 1

141 142 143 144 0 0 0 144 0 0 1 2

Multiplying row one, r(1), of [L] by column one, c(1), of [L]T gives

r(1) x c(1) = 1112 = 4 therefore I11 = 2

Similarly

r(2)xc(1)=121111=1 12,=0.5

r(3)xc(1)=131111=0 131=0

r(4)xc(1)=141111=0 141=0

The first column of L has now been determined.

r(2) x c(2) = 1212+ 1222 = 4 122 = 1.9365

r(3) X c(2) = 131121 + 132122 = 1 132 = 0.5164

r(4) x c(2) = 141121 + 142122 = 0 142=0

The second column of L has now been determined.

r(3) x c(3) = 1312+ 1322+ 1332 = 4

r(4) x c(3) = 141131 + 142132+ 142133 = 1

The third column of L has now been determined

133 = 1.9322

143 = 0.5175

r(4) x c(4) =1412+ 1422+ 1432+ 1442 = 2 144 =1.3161

and so
2 0 0 0

0.5 1.9365 0 0
L=

0 0.5164 1.9322 0

0 0 0.5175 1.3161

Example 8.7 Transform the equation of motion of a fixed-free rod of length
L, which is represented by four elements, to standard form.
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Defining

to
2 pL2

96E

then K and M in equation (8.2) are

2 -1 0 0 4 1 0 0

K=
-1

F

2 -1 0
M= 1 4 1 0

0 -1 2 -1 0 1 4 1

0 0 -1 1 t 0 0 1 2

The decomposition of M into the form LLT is given in Example 8.6. Solving
(8.28) gives

2 0 0 0 2 -1 0 0

0.5 1.9365 0 0 _
B

-1 2 -1 0

0 0.5164 1.9322 0 '' 0 -1 2 -1
0 0 0.5175 1.3161 0 0 -1 1

r(1)xc(j)=2B,j =K,;

Therefore

B =1, B12=-0.5, B13=0, B,4=0

r(2)xc(j)=0.5B1j+1.9365B2;=K2;

and so

B2j=(K2;-0.5B1 )/1.9365

This gives

B21= -0.7746, B22 = 1.1619, B23 = -0.5164,

B24=0

r(3)xc(j)=0.5164B2j+1.9322B3;=K3;

Therefore

B3j=(K3;-0.5164B2;)/1.9322

B31= 0.2070, B32 = -0.8281, B33 =1.1731,

B34 = -0.5175

r(4)xc(j)=0.5175B31+1.3161B41=K4;
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That is

B43 = (K4j - 0.5175 B3j )/ 1.3161

B41= -0.0814, B42 = 0.3256, B43 = -1.2211,

B44 = 0.9633

This gives

1 -0.5 0 0

-0.7746 1.1619 -0.5164 0
B=

0.2070 -0.8281 1.1731 -0.5175
-0.0814 0.3256 -1.2211 0.9633

Solving (8.29) gives

2 0 0 0

0.5 1.9365 0 0

0 0.5164 1.9322 0
LA°

0 0 0.5175 1.3161

1 -0.7746 0.2070 -0.0814
-0.5 1.1619 -0.8281 0.3256

0 -0.5164 1.1731 -1.2211

0 0 -0.5175 0.9633

From above

A,j=B1/2

A = 0.5, A12 = -0.3873,

A14 = -0.0407

A2j = (Bj2 - 0.5A,j )/ 1.9365

A21 = -0.3873, A22 = 0.7,

A24 = 0.1786

A3j = (B33 - 0.5164A21)/ 1.9322

A31 = 0.1035, A32 = -0.4543, A33 = 0.7286,

A34 = -0.6797

A4j = (Bj4 - 0.5175A3j)/ 1.3161

A41 = -0.0407, A42 = 0.1786, A43 = -0.6797,

A44 = 0.9992



Sturm sequences 327

and so

0.5 -0.3873 0.1035 -0.0407
-0.3873 0.7 -0.4543 0.1786

A=
0.1035 -0.4543 0.7286 -0.6797

-0.0407 0.1786 -0.6797 0.9992

8.2 Sturm sequences

Whichever method is used to calculate the eigenvalues and eigenvectors,
it is useful to be able to determine the number of eigenvalues in a specified
range. This is a useful piece of information when designing a structure
against vibration. In addition, this information can be used to check that
the method used has located all the eigenvalues. The number of eigenvalues
less than a specified value of A can be determined using a Sturm sequence.

Consider the solution of equation (8.20) with

a, b2

b2 a2 b3 0

A
0 bn_, an_, b

bn an

(8.31)

which is referred to as a tri-diagonal matrix.
The eigenvalues of (8.20) are given by the solution of

(a,-A) b2

b2 (a2 -A) b3

0 b._, (an_1-A) bn

bn (an -A)

0

=0 (8.32)

This determinant can be expanded using a recurrence relationship. If
f,(A) denotes the determinant of the leading principal minor of order r, then

.fi(A)=(a,-A)
f2(A)=(a,-A)(a2-A)-b22

= (a2-A)fi(A) - b22.fo(A)

with

(8.33)

(8.34)

fo(A) =1. (8.35)
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Continuing this process gives the recurrence relationship

r+1(A) = (ar+1- A)fr(A) - br+l2fr-1(A) (8.36)

Finally

fn(A) = (an - A )f.-,(A) - bn2fn-2(A ) (8.37)

Equation (8.32) now becomes

(8.38)

The roots of this equation are the eigenvalues of A.
The sequence of polynomial functions

f0(A),f1(A), . ,fr(A), ... ,fn(A) (8.39)

has certain important properties which can be used to locate the eigenvalues
of A. In this connection define a sign count function, S(A), which gives the
number of changes in sign in the sequence of polynomial functions (8.39)
when evaluated for a given value of A. S(A) has the following properties:

(1) S(A) only changes when A passes through a root (unique or multiple)
of equation (8.38).

(2) In passing through a root, A increasing, S(A) will always increase.
(3) If A passes through a unique root, S(A) will increase by one. When

A passes through a root of multiplicity m, then S(A) will increase
by m.

(4) S(A) equals the number of roots of equation (8.38) which are less
than or equal to the value of A being considered.

(5) The number of roots of equation (8.38) between A, and A2 is, therefore,
{S(A2) - S(AI)j.

A sequence of functions, fr(A), for which S(A) has the above properties
is said to form a Sturm sequence.

Example 8.8 Investigate the Sturm sequence properties of the eigenproblem
given by the system shown in Figure Pl.1 with k, = k4 = 2, k2 = k3 = 1 and
m,=m2=m3=1.

The stiffness and inertia matrices are

3 -1 0 1 0 0

K= -1 2 -1 , M= 0 1 0

0 -1 3 0 0 1

and so A= K.
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The sequence of polynomials (8.39) are, therefore,

fo(A)=1

fl(A)=(3-A)

f2(A)=(2-A)fl(A)-(-1)2fo(A)
=(2-A)(3-A)-1
=5-5A+A2 (8.40)

f3(A)=(3-A)f2(A)-(-1)2f1(A)

=(3-A)(5-5A+A2)-(3-A)

=(3-A)(4-5A+A2)

=(3-A)(1-A)(4-A)
The roots of f3(A) = 0 are, therefore, 1, 3 and 4 which are the eigenvalues
of the problem.

The variation of the functions (8.40) with A is shown in Figure 8.2. Also
the values of these functions at discrete values of A together with the
corresponding value of the sign count function S(A) are given in Table 8.1.
In this table, wherever a function f(A) is zero, it is given the opposite sign
to fr-1(A )

5

f(A)

0

.f2(A)

(b).fi

1 2 3 4 5

f3(A)

-5
A

Figure 8.2 Sturm sequence functions (Example 8.8).
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Table 8.1. Variation of Sturm sequence and sign count function
with A. Example 8.8

A fo(A) fl(A) f2(A) f3(A) S(A)

0.0 1.0 3.0 5.0 12.0 0

0.5 1.0 2.5 2.75 4.375 0
1.0* 1.0 2.0 1.0 -0.0 1

1.5 1.0 1.5 -0.25 -1.875 1

2.0 1.0 1.0 -1.0 -2.0 1

2.5 1.0 0.5 -1.25 -1.125 1

3.0* 1.0 -0.0 -1.0 +0.0 2

3.5 1.0 -0.5 -0.25 0.625 2

3.7 1.0 -0.7 0.19 0.567 2

4.0* 1.0 -1.0 1.0 -0.0 3

4.5 1.0 -1.5 2.75 -2.625 3

5.0 1.0 -2.0 5.0 -8.0 3

* Eigenvalues.

From Table 8.1 it can be seen that S(A) changes when A passes through
a root of f3(A) = 0, that is when A =1, 3 and 4. Each time S(A) increases
by one. S(A) does not change as A passes through the roots of f2(A) = 0,
that is A = 1.382 and 3.618. S(A) does change as A passes through the root
of f,(A) = 0, that is A = 3, because this is identical to one of the roots of
f3(A) = 0. Table 8.1 also indicates that S(A) is always equal to the number
of roots of f3(A) = 0 which are less than or equal to the value of A under
consideration.

Example 8.9 Investigate the Sturm sequence properties of the eigenvalue
problem considered in Example 8.3.

In this case

5 -2 0

A = -2 2 0

0 0 1

The sequence of polynomials (8.39) is, therefore

.fo(A) = 1

.fi(A)=(5-A)
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f2(A) _ (2-A)fi(A)-(-2)2fo(A)

=(2-A)(5-A)-4
=(1-A)(6-A) (8.41)

f3(A)=(1-A)f2(A)-(0)f(A)
=(1-A)2(6-A)

The roots off3(A) = 0 are, therefore, 1, 1 and 6. There is a root of multiplicity
2 at A = 1.

The values of the polynomials, for a range of A, are presented in Figure
8.3 and Table 8.2. The table also includes the corresponding sign count
function.

As A passes through the root off, (A) = 0, that is A = 5, the sign count
function remains unchanged. In the case of f2(A) = 0 the sign count function
does change as A passes through its roots A = I and 6. This is due to the
fact that these values are also roots of f3(A) = 0. The equation f3(A) = 0 has

20

f(A)

10

0

A

Figure 8.3 Sturm sequence functions (Example 8.9).
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Table 8.2. Variation of Sturm sequence and sign count function
with A. Example 8.9

A f0(A) fl(A) f2(A) f3(A) S(A)

0.0 1.0 5.0 6.0 6.0 0

0.5 1.0 4.5 2.75 1.375 0
1.0* 1.0 4.0 -0.0 +0.0 2
1.5 1.0 3.5 -2.25 1.125 2

2.0 1.0 3.0 -4.0 4.0 2

2.5 1.0 2.5 -5.25 7.875 2

3.0 1.0 2.0 -6.0 12.0 2

3.5 1.0 1.5 -6.25 15.625 2

4.0 1.0 1.0 -6.0 18.0 2

4.5 1.0 0.5 -5.25 18.375 2

5.0 1.0 -0.0 -4.0 16.0 2
5.5 1.0 -0.5 -2.25 10.125 2

6.0* 1.0 -1.0 +0.0 -0.0 3

6.5 1.0 -1.5 2.75 -15.125 3

* Eigenvalues.

a double root at A = 1 and a single root at A = 6. The values of S(A) on
each side of the double root are S(0.5) = 0 and S(1.5) = 2. Therefore, the
sign count function has increased by two. For the single root S(5.5) = 2 and
S(6.5) = 3 and so the sign count function has increased by one. Table 8.2
indicates that S(A) is always equal to the number of roots of f3(A) = 0 which
are less than or equal to A even though there is a double root.

When using floating point arithmetic, the values of the f(A) can lie
outside the permissible range, especially when equation (8.32) has very
close or equal roots. This can be overcome by replacing the functions f(A)
by [8.7]

qr(A) = f,(A)/ f,_,(A) i = 1, 2, ... , n (8.42)

In this case the sequence (8.36) is replaced by

q,(A)=(a,-A)-br2/q,_,(A) i=2,3,. n (8.43)

with

qt(A)=(a,-A)
If the value of q,-,(A) is zero for any value of r, it is replaced by a suitable
small quantity.

The number of negative signs, S(A), of the sequence (8.43) indicates the
number of roots of equation (8.32) which are less than or equal to A.
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Now consider any symmetric matrix A, rather than a symmetric
tridiagonal matrix. Define

f,(A)=1A,-AII (8.44)

where A, is the leading principal minor of order r of A. Then the sequence
of functions defined by (8.44) with r = 0, 1, 2, ... , n and fo(A) = 1, also form
a Sturm sequence [8.5].

A recurrence relationship is not available for evaluating the sequence
defined by (8.44). Instead, Gauss elimination is used to reduce the matrix
to an upper triangular matrix. This process involves adding a scalar multiple
of one row to another row, an operation which does not affect the deter-
minant of the matrix. The determinant of an upper triangular matrix is the
product of its diagonal terms. Depending upon the value of A used in (8.44),
a small or zero pivot could be encountered making the process break down.
This is overcome by using row interchanges. In this case the product of the
diagonal terms must be multiplied by (-1)N, where N is the number of
row interchanges.

Example 8.10 Determine how many eigenvalues there are below A = 0.3 for
the matrix A in Example 8.7.

0.2 -0.3873 0.1035 -0.0407

A-0.31=
-0.3873 0.4 -0.4543 0.1786

0.1035 -0.4543 0.4286 -0.6797
-0.0407 0.1786 -0.6797 0.6992

It can immediately be seen that

.fo(0.3) = 1, f,(0.3) = 0.2.

To determine the values of the other functions in the sequence, a Gauss
elimination with row interchanges is carried out. The steps in this process
are shown in Table 8.3. It can be seen that the signs of the sequence defined
by (8.44) are ++--+. There are, therefore, two changes of sign indicating
two eigenvalues less than or equal to A = 0.3.

Finally, consider two symmetric matrices K and M. Define

fr(A)=IK,-AM,I (8.45)

where K, and M, are the leading principal minors of order r of K and M
respectively. Then the sequence of functions defined by (8.45) with r =
0, 1, 2, ... , n and fo(A) = 1, form a Sturm sequence [8.8]. The determinants
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Table 8.3. Gauss elimination and Sturm sequence evaluation.
Example 8.10

Row
order Matrix

2 -0.3873 0.4 -0.4543 0.1786

1 0 -0.1807 -0.1311 0.0515

3 0 -0.3474 0.3072 -0.6320
4 0 0.1366 -0.6320 0.6811

fz(0.3) = (-1)(-0.3873)(-0.1807) = -0.07

2 -0.3873 0.4 -0.4543 0.1786

3 0 -0.3474 0.3072 -0.6320
1 0 0 -0.2909 0.3802

4 0 0 -0.5112 0.4326

.13(0.3) = (-1)2(-0.3873)(-0.3474)(-0.2909)

= -0.03914

2 -0.3873 0.4 -0.4543 0.1786

3 0 -0.3474 0.3072 -0.6320
4 0 0 -0.5112 0.4326

1 0 0 0 0.1340

f4(0.3) = (-1)3(-0.3873)(-0.3474)(-0.5112)(0.1340)

= 0.00922

in (8.45) are evaluated using Gauss elimination with row interchanges, as
described for (8.44).

Example 8.11 Determine how many eigenvalues there are below A = 0.3
when K and M are as defined in Example 8.7.

0.8 -1.3 0 0

K-0.3M= 1.3 0.8 -1.3 0

0 -1.3 0.8 -1.3
0 0 -1.3 0.4

Therefore,
.fo(0.3) = 1, fi(0.3) = 0.8

The Gauss elimination process for evaluating the other functions in the
sequence (8.45) is shown in Table 8.4. The signs in the sequence are ++--+.
There are, therefore, two changes of sign, indicating two eigenvalues less
than or equal to A = 0.3.
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Table 8.4. Gauss elimination and Sturm sequence evaluation.
Example 8.11

Row
order Matrix

2 -1.3 0.8 -1.3 0

1 0 -0.8077 -0.8 0

3 0 -1.3 0.8 -1.3
4 0 0 -1.3 0.4

fz(0.3)=(-1)(-1.3)(-0.8077)=-1.05
2 -1.3 0.8 -1.3 0

3 0 -1.3 0.8 -1.3
1 0 0 -1.2971 0.8077

4 0 0 -1.3 0.4

f3(0.3) = (-1)2(-1.3)(-1.2971) = -2.1921

2 1.3 0.8 -1.3 0

3 0 -1.3 0.8 -1.3
4 0 0 -1.3 0.4

1

-0

0 0 0.4086

f4(0.3) = (-1)3(-1.3)3(0.4086) = 0.8977

8.3 Orthogonal transformation of a matrix

Consider the eigenproblem (8.20), that is

[A- AI]{Jr} = 0 (8.46)

Introducing the transformation

{,,} = [P]{ } (8.47)

where [P] is a non-singular matrix, and premultiplying by [P]-' gives

[P]-'[A-AI][P]{4} = 0 (8.48)

or

[B-A I]{g} = 0 (8.49)

where

B = P-'AP (8.50)

The transformation (8.50) is known as a similarity transformation and
the matrices A and B are said to be similar. Both matrices have the same
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eigenvalues, since

111-All IP-'AP- All

= IP-'(A- AI)PI

=IP-'IIA - AIIIPI (8.51)

and IPI, IP 'I are non-zero. Their eigenvectors are related by (8.47).
In the case of symmetric matrices, it is convenient to take P to be an

orthogonal matrix, that is
ppT = I (8.52)

and so

P-'=PT (8.53)

The transformation (8.50) now becomes

B = PTAP (8.54)

which is an orthogonal transformation.
A number of eigenproblem solution methods use a sequence of

orthogonal transformations to reduce the matrix A to a simpler form. Some
of these methods are described in the following sections.

8.4 The Jacobi method

The Jacobi method consists of applying a sequence of orthogonal transfor-
mations of the form

Ar+ = PrTArPr (8.55)

Each transformation eliminates one pair of off-diagonal elements of a
symmetric matrix. If the elements (i, j) and (j, i) are to be eliminated, an
orthogonal matrix of the form

ith jth column

1

Pr =
cos 0 -sin 0
sin 0 cos 0

ith
jth row

(8.56)

L 1J

is used. The matrix multiplication in (8.55) only affects rows i and j and
columns i and J.
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Equating element (i, j) of A,+, to zero gives

(-a;;+ a;;) sin 9 cos 0 + a;;(cos2 0-sin 2 0)=0 (8.57)

where a;;, a;; and a;; are elements of A,. Hence

tan 20 =
2a;;

a;; a;;
(an-a',)

with

-7r/4-_ 0 <7r/4 (8.58)

and

a;, rr

la,;l 4

The procedure is to perform a sequence of transformations as described
above, with each transformation eliminating the off-diagonal element having
the largest modulus at that stage. Unfortunately, elements which have been
eliminated do not necessarily stay zero. The method is, therefore, an iterative
one. It can be shown that in the limit as r - oo, A,+1 converges to a diagonal
matrix. The eigenvalues of this diagonal matrix are the diagonal elements
and the eigenvectors form a unit matrix. If s transformations are required
to diagonalise the matrix to the required accuracy, then the eigenvectors of
A, = A are the columns of the matrix resulting from the product P1P2 . P.

One problem with this method is that the search for the largest element
is time consuming. This can be overcome by using the cyclic Jacobi pro-
cedure. The elements a;; are eliminated in the order (i, j) =
(1, 2), (1, 3), ... , (l, n) then (2, 3), (2, 4), ... , (n -1, n). When all of the
elements have been eliminated once, the process is repeated as many times
as necessary. The disadvantage of the method is that regardless of its size,
an off-diagonal element is always zeroed. A more effective procedure is the
threshold Jacobi method. Instead of eliminating all the elements in the
cyclic method, those having a modulus below a given threshold value are
left unaltered. When all of the elements have a modulus below the threshold
value, the threshold value is reduced and the process repeated. Iteration is
complete when the threshold value has been reduced to the required
tolerance.

A typical threshold value for transformation r is 10-2r. Thus, element
a;; is not eliminated if

a .,2 ] 1/2

IIL , 10-2. (8.59)
a;; a;;
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Convergence to a tolerance s is achieved provided

r+l r
laii -affil

aii

and (8.60)

r+l 2 1/2
(aij ) s

r+1 r+1 10-S
a a.,

all i,j;j>i

where superscripts r, r+ 1 denote elements of Ar and Ar+1 .

The Jacobi method can calculate zero as well as non-zero eigenvalues.
However, if two of them are close to one another, the eigenvectors may not
be very accurate even though they are orthogonal. The main disadvantage
of the method is that it gives all the eigenvalues and eigenvectors simul-
taneously. In practice, only a few of the lower eigenvalues and their corre-
sponding eigenvectors may be required. The method can be extended to
the general eigenproblem (8.2) (see reference [8.4] for details).

Example 8.12 Calculate the eigenvalues and eigenvectors of the system
defined in Example 8.2 using the Jacobi method.

In this case

1 -1 0

K= -1 2 -1
0 -1 1

and

2 0 0 21/2 0 0 21/2 0 0

M= 0 1 0 = 0 1 0 0 1 0 TJ=LL
0 0 2 0 0 21/2 0 0 21/2

Therefore

0.5 -0.7071 0

A = L-'K L = -0.7071 2.0 -0.7071
0 -0.7071 0.5

The Jacobi iteration is shown in Table 8.5 for two complete sweeps and
a partial third sweep. The diagonal elements are converging to 0, 2.5 and
0.5, the exact eigenvalues, and the off-diagonal terms are approaching zero.
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Table 8.5. Jacobi iteration. Example 8.12

Transformation r

r Ar (i, j) cos 0 sin 0

0.5 -0.7071 0

1 2.0 -0.7071 1, 2 0.9295 0.3690

Sym 0.5

0.2192 0 -0.2609
2 2.2808 -0.6572 1, 3 0.8584 0.5130

Sym 0.5

0.0633 -0.3371 0

2.2807 -0.5641 2,3 0.9543 -0.2988
Sym 0.6559

10.0633 -0.3217 -0.1007
3 2.4574 0 1,2 0.9914 0.1309

Sym 0.4793

0.0208 0 -0.0999
4 2.4998 0.0132 1,3 0.9790 0.2040

Sym 0.4793

0 0.0027 0

5 2.4998 0.0129 2,3 1.0 0.0065

Sym 0.5001

10 0.0027 0

6 2.4999 0 1,2 1.0 -0.0011
Sym 0.5

0 0 0

7 2.4998 0

Sym 0.5

The product of the transformation matrices gives the matrix of eigenvectors

0.6325 -0.3162 -0.7070
0.4076 0.8944 0.0002

0.6325 -0.3162 0.7072

The exact matrix of eigenvectors is

0.4472 -0.2236 -0.5
0.4472 0.8944 0

0.4472 -0.2236 0.5
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It can be seen that the approximate eigenvectors are converging towards
the exact ones but further iteration is required to increase the accuracy.
The reason for this can be seen by examining the convergence criteria (8.60)
for the last transformation is of the order 10-3 whereas
a value of less than 10-4 is required. The computation should, therefore,
be carried out retaining more figures.

8.5 Givens' and Householder's methods

Both Givens' and Householder's methods reduce the matrix A to tridiagonal
form using a finite number of transformations. The eigenvalues and eigen-
vectors of the tridiagonal matrix have then to be determined by a separate
technique.

8.5.1 Givens' method

The Givens method uses the Jacobi transformation (8.56) to reduce element
(i -1, j) to zero rather than element (i, j). Equating element (i -1, j) of A,+,
(see equation (8.55)) to zero gives

- a;_,,; sin 0+ ar_1,; cos 0 = 0 (8.61)

Hence

ai-1,itan 0 = (8.62)
a;_,,;

The elements of A are eliminated in the order (1, 3), (1, 4),... , (1, n),
(2, 4), ... , (n -2, n). It can be shown that once an element has been elimi-
nated, it remains zero and so does not need to be operated upon again.

Givens' method was considered inferior to Householder's, but
modifications to it [8.1, 8.9, 8.10] have given it approximately the same
efficiency as Householder's.

Example 8.13 Reduce the matrix

4 -1 -1 -1

-1 3 -1 -1
A=

-1 -1 3 -1

-1 -1 -1 3

to tridiagonal form using Given's method.
The steps in the reduction of A to tridiagonal form are given in Table

8.6. The features of the method are clearly demonstrated. In this example
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Table 8.6. Givens' reduction. Example 8.13

Transformation r

r A, (i, j) cos 0 sin 0

4 -1 -1 -1

3 -1 -1
1 2 3 1/2'/2 1/2'12

3 -1
,

Sym 3

4 -2'/2 0 -1
2 0 -2'/2

/2 2 4 21/2/31/2 1/31 2

4 0
,

Sym 3

4 -31/2 0 0-

1 0 0
3

4 0

Sym 4-

only two transformations are required since the element (2, 4) becomes zero
during the reduction of element (1, 4) to zero.

8.5.2 Householder's method

The Householder method uses a sequence of orthogonal transformations,
each one of which produces a complete row and column of zeros apart
from the elements within the tridiagonal form. This is achieved without
affecting the previous rows and columns and so only (n -2) transformations
are required.

The transformation matrix is defined by

P, = I- 2µ zzr

where

(8.63)

zTz

The elements of the column matrix z are defined as

0 i<r+l

(8.64)

1

Zi- ar,r+1+S i=r+1
a,, i>r+l

(8.65)
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where
n

S2- ari
i=r+l

2 (8.66)

and the ari are the elements of Ar. S is taken to have the same sign as
element arr+l.

It can be shown that the matrix Pr as defined by (8.63) and (8.64) is an
orthogonal matrix since

PrPrT = (I - 2/1 ZZT)(I -2A ZZT)

= I - 4µ zzT+ 4µ 2z(zTZ)zT

=I (8.67)

and

zTZ= 1/1A (8.68)

from (8.60).
Substituting (8.65) and (8.66) into (8.64) gives

1

A (8.69)
2S(ar,r+1+S)

The practical implementation of the method is discussed in references
[8.1-8.5].

Example 8.14 Reduce the matrix A defined in Example 8.13 to tridiagonal
form using Householder's method.

The steps in the reduction of A to tridiagonal form are given in Table
8.7. In this example only one transformation is required since in the process
of reducing elements (1, 3) and (1, 4) to zero, the element (2, 4) also becomes
zero.

The tridiagonal matrices in Tables 8.6 and 8.7 are identical, apart from
the sign of the non-zero, off-diagonal term. The two matrices are similar
matrices (Section 8.3), the transformation being

1

.1

(8.70)

and so will have the same eigenvalues.
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Table 8.7. Householder's reduction. Example 8.14

r A, z µ

4 -1 -1 -1 0

3 -1 -1 -(1+3l12)
1 (3-3 1/2)/ 12

3 -1 -1

Sym 3 -1
4 31/2 0

0-

1 0 0
2

4 0

Sym 4-

8.6 Eigenvalues and eigenvectors of a symmetric
tridiagonal matrix

In this section a method of bisection is described for determining the
eigenvalues of a symmetric tridiagonal matrix. The eigenvectors are obtained
using inverse iteration. However, any of the methods described in Section
8.7 could also be used.

8.6.1 The bisection method

The first step in the bisection method is to determine upper and lower
bounds for all the eigenvalues. One of the simplest methods for determining
such bounds is by Gershgorin. The lower and upper bounds are given by

al=min (a,-Ib11-Ib,+11)
(8.71)

/3, = max (a;+Jb;1+Ib1+,1)
i

where i = 1, 2, ... , n and

b, = bn+1 = 0

(see (8.31) for notation). Therefore

a1 A --,6,

(8.72)

(8.73)

However, since the matrices considered here are either positive definite
or positive semi-definite, the eigenvalues are either positive or zero. There-
fore, the lower bound al could be taken to be zero. This fact can easily be
checked by evaluating the Sturm sequence for A = 0.
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Example 8.15 Find the lower and upper bounds for the eigenvalues of the
system shown in Figure P1.1 with k, = k2 = k3 = 1, k4 = 0 and m, = m2 =
m3=1.

In this case M =I and so
2 -1 0

A=K= -1 2 -1
0 -1 1

The values of (a, - Ib,I - fib;+, for each of the rows are 1, 0, 0 and so a, = 0.
The values of (a; + b; + b;+, I) for the rows are 3, 4, 2 giving ,6, = 4. Therefore

0-- A--4

The rth eigenvalue Ar can be located by taking

/al ='(a,+/31) (8.74)

and evaluating the sign count function S(µ, ). If S(µ,) is less than r, then
Ar is greater than µ, and closer bounds are given by

a2 = Al, 132 = Al (8.75)

If S(µ,) is greater than r, then Ar is less than µ, and the new bounds are

a2 = al, 132 = Al (8.76)

In either case, if

1132-a2l ,e (8.77)

where a is the accuracy required, then µ, is the required eigenvalue,
otherwise let

A2 = 2(a2+132) (8.78)

and repeat the procedure until (8.77) is satisfied [8.7].

Example 8.16 Calculate the smallest eigenvalue of the matrix A defined in
Example 8.15 using the method of bisection.

Example 8.15 showed that all the eigenvalues are between 0 and 4. The
successive steps in the bisection procedure for calculating the smallest
eigenvalue are shown in Table 8.8. At the thirteenth step the difference
between the upper and lower bounds is less than 0.001.

One of the main advantages of the bisection method is that as few or as
many eigenvalues as is required can be calculated. Also, the ones required
can lie anywhere in the spectrum of eigenvalues. They need not be the
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Table 8.8. Bisection for the smallest eigenvalue. Example 8.16

i a; $1 1131-a11 µi SON-r)

1 0 4 4 2 2

2 0 2 2 1 1

3 0 1 1 0.5 1

4 0 0.5 0.5 0.25 1

5 0 0.25 0.25 0.125 0
6 0.125 0.25 0.125 0.187 5 0
7 0.1875 0.25 0.0625 0.21875 1

8 0.1875 0.21875 0.03125 0.203 125 1

9 0.1875 0.203 125 0.015 625 0.195 3125 0
10 0.195 3125 0.203 125 0.007 8125 0.199 2187 1

11 0.195 3125 0.199 2187 0.003 9062 0.197 2655 0
12 0.197 2656 0.199 2187 0.001 9531 0.198 2421 1

13 0.197 2656 0.198 2421 0.000 9765

lowest few or highest few. This means that if the smallest ten, say, have
been calculated and this is found to be insufficient, then the next five or
ten can be calculated without the calculations being repeated for the first
ten. Another possibility is the calculation of all eigenvalues within a specified
range. If it is known that a structure is excited at frequencies within a
limited range, then the natural frequencies within that range can be calcu-
lated using this method without calculating any outside the range.

8.6.2 Inverse iteration

Inverse iteration is a procedure which converges to the eigenvector corre-
sponding to the eigenvalue having the smallest modulus. Therefore, in order
to find the eigenvector corresponding to the eigenvalue Ar the shift

A = ir+ µ (8.79)

is applied, where Ar is an approximate value of Ar. This means that the
equation

[B - A I]{4} = 0 (8.80)

where B is a tridiagonal matrix, becomes

[(B-1,I) -µI]{i;} = 0 (8.81)

The eigenvector is found by assuming a starting vector {g}, and solving
the equation

[B- A,I]{}k+l - {}k (8.82)

for Wk-11, k =1, 2, ... .
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The number of iterations required for convergence depends upon the
ratio where µ, is the smallest eigenvalue and µ2 is the second
smallest distinct eigenvalue. Since X, is a good approximation to A, µ, will
usually be small compared with µ2. In this case two iterations will be
sufficient, provided the initial vector {4}, is not almost completely deficient
in the eigenvector being computed. The procedure is, therefore, to solve

[B-Ji,I]{>}2={}, (8.83)

for {9}2 and

[B -.1,I]{}3 = W1 (8.84)

for {9}3. These equations are solved by putting

[B - 1,11 = LU (8.85)

where L is a lower triangular matrix and U an upper triangular matrix.
These matrices are determined by Gaussian elimination with row inter-
changes to ensure numerical stability [8.11].

Substituting (8.85) into (8.83) and (8.84) gives

LU[9}2 = {;;},

and

(8.86)

LU{9}3 = {9}2 (8.87)

The initial vector {g}, is taken to be

{>;}, = Le

where

(8.88)

eT= [1 I ... 1] (8.89)

In this case {9}2 is determined from

U{9}2 = e (8.90)

by backward substitution. {9}3 is then determined from (8.87) using a
forward and a backward substitution.

Improved estimates of the eigenvalue can be obtained using the Rayleigh
quotient

Ak+1 =
{ }k+1TB{zi}k+l (8.91)
{r;}k+l {Z}k+1

for k = 1, 2. {j} is a normalised version of {g}. This relationship can be
derived by premultiplying (8.80) by {g}T.
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Example 8.17 Calculate the eigenvector corresponding to the eigenvalue
found in Example 8.16.

In this case

2 -1 0

B= -1 2 -1
0 -1 1

and A, = 0.198. Therefore

1.802 -1 0

[B-A,I]= -1 1.802 -1
0 -1 0.802

1.802 is the largest element in the first column and will be used as the pivot.
Defining

1 0 0

T, = 0.5549389 1 0

0 0 1

1.802 -1 0

T,[B-A11]= 0 1.247061 -1
0 -1 0.802

1.247061 is the largest element in the second column below the first row
and so will be used as the pivot. Defining

1 0 0

T2= 0 1 0

0 0.8018853 1

1.802 -1 0

TZT,[B-A,I]= 0 1.247061 -1 =U
0 0 1.1461x10-4

Therefore

[B-A,I] =T,-'T2-'U =LU

and

L = T,-'T2-'
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Now

and

1 0 0

T1-1= -0.5549389 1 0

0 0 1

1 0 0

T2-1= 0 1 0

0 -0.8018853 1

Therefore
1 0 0

L = -0.5549389 1 0

0 -0.8018853 1

The solution of

is

U{>}2 = e

3883.710 0.445112

{>}2 = 6997.446 = 8725.242 0.8019772
8725.242 1.0

Substituting into (8.91) gives

A2 = 0.198062

The solution of

L = {9}2
is

3883.710

= 9152.668

16064.63

and the solution of

U{9}3 = t

is

1 0.6238057 0.445042

{9}3 = 108 1.124059 = 1.401678 x 108 0.801938

1.401678 1.0
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Substituting into (8.91) gives

A3 = 0.198062

The normalised eigenvector is correct to three figures whilst the eigenvalue
is correct to six.

In the case of very close or equal eigenvalues, the method of inverse
iteration is very sensitive to the magnitude of the eigenvalue used. Very
different eigenvectors are obtained for very slight variations in the eigenvalue
(see example on page 328 of reference [8.1]).

Theoretically, exactly coincident eigenvalues can exist only if at least
one of the off-diagonal elements of the tridiagonal matrix B is zero (see
Example 8.3). In such a situation equation (8.80) can be partitioned into
independent systems. The eigenvector of each partition is then found by
inverse iteration. If the eigenvector of the kth partition is {4}k, then the
eigenvector of the complete system is

{}T= [0 . . 0 {g}kT 0 ... 0] (8.92)

In practice it is possible that none of the off-diagonal elements of B are
zero or very small, even when equal eigenvalues exist (see example on page
366 of reference [8.12]). Also, in the event of B being partitioned, one or
more partitions could have multiple eigenvalues. In each of these cases, the
first eigenvector corresponding to a multiple eigenvalue is obtained by
inverse iteration. To obtain the subsequent eigenvectors a small error is
introduced into the eigenvalue and inverse iteration is again used. These
latter eigenvectors will not, in general, be orthogonal to the rest of the
eigenvectors. They can, however, be made orthogonal using the Gram-
Schmidt orthogonalisation procedure.

If are a set of orthogonal vectors, then (see Section
8.1)

{}iT{}; {0
o i (8.93)

If {l;}m is not orthogonal to the above set, then

{9}iT{C}m 0 0 (8.94)

for at least one i < m -1.
To ensure that {4}m is orthogonal to the above set, replace it by {}m where

{ }m = { }m - F, ai{g}i (8.95)
i=1
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Premultiplying by {g} jT gives
J_

J J}jT{j}m = {t}jT{g}m - L Gilt}jT { }i
i=1

Applying the condition (8.93) to (8.96) gives

{g}jT{S}m = {S}jT{}m - «j

and so {g} jT{j}m = 0 provided

aj = {g}jT{g}m

Substituting (8.98) into (8.95) gives

m-I
{}m = {}m - L ({9}iT{g}m ){g}i

i=1

The vector {i}m is, in turn, replaced by {}m where

({ }m { }m )

{}m is now orthogonal to

(8.96)

(8.97)

(8.98)

(8.99)

(8.100)

8.7 The LR, QR and QL methods

The LR, QR and QL methods all use a sequence of similarity transformations
to transform the matrix A to either upper or lower triangular form. The
eigenvalues of such a matrix are then equal to the elements on the main
diagonal. The methods can be applied to a fully populated matrix, but it
has been found in practice that it is more efficient to reduce the matrix to
tridiagonal form, using either Givens' or Householder's method, before
applying one of these techniques. Each method will produce both eigen-
values and eigenvectors, but in practice too much storage is required to
calculate the eigenvectors. It is, therefore, usual to determine only the
eigenvalues and then use the method of inverse iteration (Section 8.6.2) to
calculate the eigenvectors.

8.7.1 The LR method

The LR method [8.13] is based upon a triangular decomposition of the
matrix A in the form

A = LR (8.101)

where L is a lower triangular matrix with unit values on the diagonal and
R is an upper triangular matrix. Such a decomposition is known as a Crout
reduction [8.2].
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The matrix L is now used to apply a similarity transformation to A. This
gives

L-'AL= L-' (LR)L= RL (8.102)

Therefore, this similarity transformation can be obtained by multiplying
the triangular factors in (8.101) together in the reverse order.

The LR method, therefore, consists of carrying out the following sequence
of operations

A, = L,Rr, R,Lr = Ar+, (8.103)

for r = 1, 2, . . . , with A, = A. It can be shown that in the limit as r-> oo, Ar+,
converges to an upper triangular matrix.

In the case of a symmetric matrix, as considered here, the Crout reduction
can be replaced by a Cholesky decomposition (Section 8.1.2). The operations
(8.103) now become

Ar = LrLrT1

LrTLr = Ar+, (8.104)

In this case L no longer has unit values on the diagonal. A,+, is now a
symmetric matrix and converges to a diagonal matrix as r - oo. Convergence
takes place even when there are multiple eigenvalues. It turns out that
convergence is fastest to the smallest eigenvalues and so the procedure can
be terminated as soon as a sufficient number of eigenvalues have been
obtained to the required accuracy. If A has band form, then this form is
preserved by the above transformations.

One disadvantage of the LR method is, that in performing the triangular
decomposition, a leading sub-matrix may be singular or nearly singular. It
is preferable, therefore, to perform triangular decomposition with inter-
changes (Section 8.6.2). However, this process has proved to be far from
satisfactory [8.1].

The LR method is more important as a historical landmark than as a
practical procedure. Its introduction led to the much more important QR
method described in the next section.

Example 8.18 Calculate the eigenvalues of the matrix A defined in Example
8.15 using the Choleskey LR method.

The matrices A, and Lr for r = 1 to 6 are shown in Table 8.9. Reference
[8.5] shows, using the Crout reduction, that the eigenvalues converge after
15 steps to 0.1981, 1.5550 and 3.2469. The values of the diagonal elements
for r = 6 in Table 8.9 are 0. 1981, 1.6187 and 3.1832 which are in error by
0, 4.1 and -1.96%. Therefore the method has converged to the smallest
eigenvalue before any of the others and the magnitude of the off-diagonal
elements in the third row and column are smaller than any other.
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Table 8.9. LR iteration. Example 8.18

A, L,

2.0 -1.0 0 1.4142 0 0

1 -1.0 2.0 -1.0 -0.7071 1.2247 0

0 -1.0 1.0 0 -0.8165 0.5774

2.5 -0.8660 0 1.5811 0 0

2 -0.8660 2.1667 -0.4714 -0.5477 1.3663 0

0 -0.4714 0.3333 0 -0.3450 0.4629

2.8 -0.7438 0 1.6733 0 0

3 -0.7483 1.9857 -0.1597 -0.4472 1.3363 0

0 -0.1597 0.2143 0 -0.1195 0.4472

3.0 -0.5976 0 1.7321 0 0

4 -0.5976 1.8 -0.05345 11 -0.3450 1.2965 0

0 -0.05345 0.2 0 -0.04123 0.4453

3.1190 -0.4473 0 1.7661 0 0

5 -0.4473 1.6827 -0.01836 -0.2533

11
1.2722 0

0 -0.01836 0.1983 0 -0.01443 0.4451

3.1832 -0.3222 0

6 -0.3222 1.6187 -0.006423
0 -0.006423 0.1981

8.7.2 The QR method

The QR method [8.14] is similar to the LR transformation except the lower
triangular matrix is replaced by an orthogonal matrix. The matrix A is,
therefore, expressed in the form

A = QR (8.105)

where Q is an orthogonal matrix and R an upper triangular matrix. Q can
be obtained from a product of matrices of the Jacobi and Givens type and
therefore, is not a triangular matrix.

If Q is now used to apply an orthogonal similarity transformation then

QTAQ = QT(QR)Q = RQ (8.106)

since QTQ = I. So, once again, the similarity transformation can be obtained
by multiplying the factors in (8.105) together in the reverse order.

The QR method, therefore, consists of carrying out the following
sequence of operations

A, = Q,R R,Q, = A,+, (8.107)
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for r = 1, 2, ... , with A, = A. It can be shown that in the limit as r -), co, Ar+,
converges to a diagonal matrix. As with the LR method convergence is
fastest to the smallest eigenvalues and the method can cope with
multiple eigenvalues. Also if A has a band form it is preserved by the trans-
formations.

The QR method has the advantage that the vanishing of a leading
principal minor does not cause a breakdown, as it does in the orthodox LR
method. Therefore, interchanges are not needed to preserve accuracy.

Unfortunately, the amount of computation per iteration for the QR
method is greater than for the LR method. However, the QR method
produces, in one iteration, the same result that the Choleskey LR transforma-
tion produces in two iterations [8.5]. Also the convergence can be speeded
up using the method of shifting. If T)r is the estimate of the smallest
eigenvalue for matrix Ar then (8.107) is replaced by

(Ar - 71,1) = QrRr, RrQr + 71,1 = Ar+,

In this case

QrTArQr = QrT(QrRr+ rlrl)Qr

(8.108)

= RrQr+ rirl = Ar+, (8.109)

Therefore Ar, Ar+, are similar matrices.

Example 8.19 Perform the first QR iteration on the matrix in Example 8.18.
In this case

2 -1 0

A,=A= -1 2 -1
0 -1 1

Element (i + 1, i) can be reduced to zero by premultiplying A, by pT as
defined in (8.56). This gives

- a;; sin 0 + a;+,,; cos 0 = 0

and so

tan 0=
a;,
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Eliminating element (2, 1)

1 0.8944 -0.4472 0 2 - 1 0

P,TA, = 0.4472 0.8944 0 - 1 2 -1
0 0 1 0 - 1 1

2.236 -1.7888 0.447 2

0 1.3416 -0.894 4

0 -1.0 1.0

Eliminating element (3, 2)

P T

1 0 0 2.236 -1.7888 0.4472

ZP,T A, = 0 0.8018 -0.5976 0 1.3416 -0.8944
0 0.5976 0.8018 0 -1.0 1.0

2.236 -1.7888 0.4472

0 1.6733 -1.3147 = R,
0 0 0.2673

Therefore

A2 = R,Q, = RIPIP2

2.7998 -0.7483 0

= -0.7483 1.9856 -0.1597

0 -0.1597 0.2143

Note that this is identical to A3 in Table 8.9 which was obtained using two
iterations of the Cholesky LR method.

8.7.3 The QL method

The QL method [8.15] is a modified version of the QR method. It is defined
by

Ar = QrLr, LrQr = Ar+1 (8.110)

where Qr is an orthogonal matrix and L. a lower triangular matrix. The
matrix Q is again obtained from a product of matrices of the Jacobi type.
The method has similar capabilities to the QR method.

Example 8.20 Perform the first QL iteration on the matrix in Example 8.18.

2 -1 0

A,=A= -1 2 -1
0 -1 1
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Element (1, i + 1) can be reduced to zero by premultiplying A, by P as
defined in (8.56). This gives

- a;,;+, cos 0 - a;+, ;+, sin 0 = 0

and so

tan 0 =
a,,,+j

a;+1,1+1

Eliminating element (2, 3)

1 0 0 2 -1 0

P2A, = 0 0.7071 0.7071 -1 2 -1
0 -0.7071 0.7071 0 -1 1

2 -1 0

-0.7071 0.7071 0

0.7071 -2.1213 1 . 4142

Eliminating element (1, 2)

0.5774 0.8165 0 2 - 1 0

P,P2A, = -0.8165 0.5774 0 -0.7071 0.7071 0

0 0 1 0.7071 - 2.1213 1.4142

0.5774 0 0

-2.0412 1.2247 0 = L,
0.7071 -2.1213 1.4142

Therefore

,A2= LiQj = LIPz
TPT

0.3333 -0.4714 0

-0.4714 2.1667 -0.8660
0 -0.8660 2.5

Note that the resulting matrix is different from the one produced by the
QR method (see Example 8.19).

8.8 Reducing the number of degrees of freedom

The methods described in the previous sections for solving the eigenproblem
are used extensively for analysing systems which have a moderate number
of degrees of freedom. Reference [8.4] suggests that they are efficient when
using in-core solution techniques on a reasonably sized computer. If the



356 Analysis of free vibration

system is too large for it to be analysed directly in this way, then a technique
for reducing the number of degrees of freedom should be employed, before
attempting to solve the eigenproblem.

8.8.1 Making use of symmetry

If a structure and its boundary conditions exhibit either an axis or plane
of symmetry, then the modes of free vibration will be either symmetric or
antisymmetric with respect to this axis or plane. For example, consider a
uniform, slender beam which is simply supported at both ends. The first
four modes of vibration are shown in Figure 8.4. The two modes in Figure
8.4(a) are symmetric with respect to an axis through the mid-point. This
means that for 0 , x < L/ 2

v(x) = v(-x)

and (8.111)

0z(x) = -6Z(-x)

where 0, = av/ax. This indicates that at x = 0, 8z = 0.
The two modes in Figure 8.4(b) are antisymmetric with respect to an

axis through the mid-point. Therefore

v(x) = -v(x)

and (8.112)

Bo(x) = O(-X).

Therefore, in this case v = 0 at x = 0.

V

-.x
- L/2 0 L/2

n=1 n=2

n=3 n=4

(a) (b)

Figure 8.4 Modes of free vibration of a simply supported beam.
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1 2 3 4 5

If L iI

(a)

1 2 3

- L/2 --+
(b)

Figure 8.5 Idealisation of a simply supported beam: (a) full model, (b) half model.

This means that the modes can be calculated using an idealisation of
half the beam and applying the condition 0, = 0 at the right hand boundary
for symmetric modes and v = 0 for antisymmetric modes. This procedure
is illustrated in Figure 8.5. Figure 8.5(a) shows the beam represented by
four elements. After applying the boundary conditions v = 0 at nodes 1 and
5 there are eight degrees of freedom. Figure 8.5(b) shows half the beam
represented by two elements. Again the boundary condition at node I is
v = 0. Applying the condition 0z = 0 at node 3 will give the symmetric modes
and v = 0 at node 3 will give the antisymmetric modes. In both cases there
are four degrees of freedom. Therefore, one eigenproblem having eight
degrees of freedom has been replaced by two having four degrees of freedom
each.

Using expressions (3.132) and (3.135) the assembled matrices for sym-
metric modes are

EIz
K

4a2

-3a 6

Sym

- 2a3 2a2

0

0

-3

8a2

-3a

8a Sym
_ pAa

M
13a 156

105 -6a2 0 16a2

0 27 13a

3-

78

(8.113)

(8.114)

where a = L/8. Similarly, the assembled matrices for the antisymmetric
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modes are

4a2 Sym

EI, -3a 6

K= 2a3 2a2 0 8a2

0 3a 2a2 4a2

8a2 Sym

M=
pAa 13a 156

105 -6a2 0 16a2

0 -13a -6a2 8a2

(8.115)

(8.116)

The boundary conditions on a plane of symmetry of a three-dimensional
structure, can be obtained by considering the displacements of two points
which are symmetrically placed with respect to the plane of symmetry. This
situation is illustrated in Figure 8.6 where X = 0 is the plane of symmetry.
Consider the displacements at points I and 2 with coordinates (X, Y, Z)
and (-X, Y, Z) respectively. For symmetric motion

(V,W,O )2=(V,W,O )I
and (8.117)

(U,OY,O )2=-(U,6Y,O A
Therefore, on X = 0

(U, 9Y,ez)=0

For antisymmetric motion

(V, W,6 )2=-(V,W,O )i
and

(U, OY, OA = (U, 6Y, GZ)1

z,w,ez

(8.118)

(8.119)

Figure 8.6 Coordinate system for a three-dimensional structure.
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In this case on X = 0

(V,X )W, O)=0 (8.120)

If the structure has two planes of symmetry, then it is only necessary to
idealise one quarter of it and apply four combinations of symmetric and
antisymmetric boundary conditions on the two planes. This situation is
illustrated in Example 3.9. Similarly, if the structure has three planes of
symmetry, then the modes can be calculated by idealising one-eighth of it
and applying eight combinations of symmetric and antisymmetric boundary
conditions (see Figure 7.3).

8.8.2 Rotationally periodic structures

A rotationally periodic structure consists of a finite number of identical
components which form a closed ring. There are many examples of such
structures including bladed disc assemblies as used in turbines, cooling
towers on column supports and antennae for space communications. The
natural frequencies and modes of such structures can be calculated using
a finite element idealisation of just one component.

Consider first an infinite one-dimensional periodic structure as shown
schematically in Figure 8.7. This consists of a number of identical com-
ponents linked together in identical ways. If one of the components, r, is
represented by a finite element model, then its equation of motion, when
vibrating harmonically with angular frequency to, is of the form

[K'-w2M']{u}'={f}' (8.121)

where {u}' are the nodal degrees of freedom and If)' the equivalent nodal
forces.

If a free harmonic wave of frequency w propagates in the X-direction,
then a physical quantity ¢ can be expressed in the form

(k = exp {i(wt - kX )} (8.122)

The wave will propagate without attenuation provided k is real.

A B C

X
` C,

Figure 8.7 Schematic representation of a one-dimensional periodic structure.
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Now consider the motion at two points in identical positions, x, within
adjacent components r and (r+ 1), where x is a local coordinate. Then

r = (P exp {i(wt - kx)} (8.123a)

W r+' = ¢ exp {i(wt - kx - kl)} (8.123b)

where I is the dimension of the component in the X-direction. Comparing
(8.123a) and (8.123b) shows that

0r+'=.0rexp(-iµ) (8.124)

where µ = kl.
The column matrix {U}r in equation (8.121) will contain degrees of

freedom corresponding to nodes on the left hand boundary AN, {UL}r, the
right hand boundary BY, {u,}', and all other nodes {Ul}r. Therefore

UL
Ir

{u}r = U1 (8.125)

UR

Equation (8.124) shows that

{UR}r = {UL }r+1 = exp l-1tA,){UL}r (8.126)

The forces {f}r can also be partitioned in a similar way to (8.125) giving

fl r

{f}r= f, (8.127)

fR

Since a free wave is propagating { fl } will, in fact, be zero. The nodal forces
at the boundary nodes, {fL} and {fR}, are not zero, since these forces are
responsible for transmitting the wave motion from one component to the
next.

For equilibrium at the boundary BY

{fR}r+{fL}r+l = 0 (8.128)

Therefore

{fR}r = -{fL}r+1= -exp (-iµ){fL}r (8.129)

The relationships (8.126) and (8.129) give rise to the following transforma-
tions

UL
Jr

0 r

{u}r= ul = 0 I
[UL]rW

I ULJ (8.130)

uR exp (-iµ)I 0
u1 U1
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and

fL ' I 0 r 1
rf `{f}' = f, = 0 I I "J (8.131)

fR -exp (-iµ) I 0 L f,

When the transformations (8.130) and (8.131) are substituted into (8.121),
the unknown boundary forces can be eliminated by premultiplying by the
matrix WH. H is used to denote taking the complex conjugate of the matrix
and then transposing it. Therefore

WH _ I 0 exp (iµ)I
(8.132)

0 I 0

Taking { f, }' = 0 results in the eq

[UL

uation

0 (8.133)
uI

where

K`(µ)=WHKrW

and 8.134)

Mr(µ) = WHM'W

' '(µ) and M (µ) are Hermitian matrices, sinceNote that both K

(WHK'W)H= WHK'W

and (8.135)

(WHM'W)H = WHM'W

(Note: a matrix A is Hermitian if AH = A).
Dropping the superscript r in equation (8.133) and separating the

matrices into their real and imaginary parts, that is

K(µ) = KR+iK'

M(µ) = MR+iM'
(8.136)

and

Coil ={UR}+1{u'} (8.137)

gives

u,

[(KR+iK') - w2(MR+iM')]({uR}+i{u' }) = 0 (8.138)
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Separating out the real and imaginary parts and combining the resulting
two equations gives

[MR

MR1]LU1
(8.139)

LLKR
KR)-0)2

Since the matrices K(µ) and M(µ) are Hermitian then KR and MR are
symmetric and

-(KI)T=K', -(M')T=M' (8.140)

Therefore, (8.139) represents a real symmetric eigenproblem. For any given
value of µ, which is real, this equation can be solved by one of the techniques
presented in the previous sections.

Consider now a rotationally periodic structure as shown schematically
in Figure 8.8. The modes of free vibration of such a structure are standing
waves. For a free wave, which is propagating round the structure, to be a
standing wave, the amplitude and phase of the displacements on the right
hand boundary of component N should be equal to the amplitude and
phase of the disllacements on the left hand boundary of component 1.

Using (8.126) repeatedly shows that

{UR}' =exp (-iNµ){uL}' (8.141)

Therefore

I UL)'
={UL}'

provided

exp (-iNµ) = 1

The solutions of this equation are

µ =2rlr/N

(8.142)

(8.143)

(8.144a)

Figure 8.8 Schematic representation of a rotationally periodic structure.
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where

_ 0, 1, 2, ... , N12 N even

r 0, 1,2,...,(N-1)/2 Nodd (8.144b)

The natural frequencies of a rotationally periodic structure are, therefore,
given by the solutions of equation (8.139) corresponding to the values of
µ given by (8.144). The mode shapes are obtained by substituting the
eigenvectors of (8.139) into (8.137) and

ut .+I =
exp (-i/-L) IU, l

r

(8.145)

A discussion of the modes of a rotationally periodic structure can be found
in reference [8.16].

Example 8.21 Use the theory of rotationally periodic structures to calculate
the frequency parameters wa2( p/ D) 1/2, corresponding to modes having up
to 3 nodal diameters and 1 nodal circle, of an annular plate, whose internal
radius b is clamped and outer radius a free. Take b/ a = 0.3 and v = 0.3.

The annulus was divided up into eighteen equal sectors, each of which
subtended an angle of 20° at the centre. One sector was represented by four
elements in the radial direction and one element in the circumferential
direction as shown in Figure 8.9. The element used was a modified version
of the element RH described in Section 6.7. The element was formulated
in polar coordinates instead of Cartesian. This meant that the nodal degrees
of freedom consisted of the transverse displacement, the radial rotation and
the rotation in the circumferential direction. Details of the element are given
in [8.18].

The values of r in (8.145) indicate the number of nodal diameters. The
two lowest eigenvalues of equation (8.139) correspond to modes having 0

i
20°i

Figure 8.9 Idealisation of a 20° sector of a clamped-free circular annulus.
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Table 8.10. Frequency parameters, wa2(p/D)1/2, of a clamped free
circular annulus. b/a = 0.3, v = 0.3

n s FEM [8.21] Analytical [8.20] % Difference

1 0 6.56 6.33 3.6
0 0 6.66 6.66 0.0
2 0 8.10 7.96 1.8

3 0 13.6 13.3 2.3
0 1 42.7 42.6 0.2
1 1 44.8 44.6 0.4
2 1 51.8 50.9 1.8

3 1 65.3 62.1 5.2

n = number of nodal diameters; s = number of nodal circles.

and 1 nodal circle. The frequency parameters obtained are given in Table
8.10 where they are compared with the analytical frequencies.

Examples of the analysis of bladed disc assemblies are given in references
[8.16, 8.18, 8.19, 8.21]. Analyses of cooling towers with column supports are
described in references [8.16, 8.22].

8.8.3 Elimination of unwanted degrees of freedom

Very often some of the degrees of freedom are only of secondary importance.
These may be, for example, in-plane displacements in a folded plate struc-
ture. The analysis may, therefore, be carried out more efficiently if these
unwanted degrees of freedom can be eliminated by some procedure before
solving the eigenproblem. Such a method was proposed simultaneously in
references [8.23, 8.24].

Consider the equation of free vibration

Mii+Ku = 0 (8.146)

The degrees of freedom u are partitioned into a set um termed master
degrees of freedom, which are to be retained, and a set us termed slave
degrees of freedom, which are to be eliminated.

Partitioning M and K in a compatible manner, equation (8.146) becomes

[Mmrn Mms 1 um 1
+

J
[Krnm Kms 1 [Um

0
(8.147)

J
1 J=

Msm Mss ns Ksm Kss ms

The second of the two matrix equations in (8.147) is

Msmnm + MsS63 + Ksmum + Kssus = 0 (8.148)
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The assumption is now made that the relationship between us and um is
not affected by the inertia terms in this equation. This is an approximation
and so the selection of the slave degrees of freedom is of vital importance.
Equation (8.148) now reduces to

Ksmum + Kssus = 0

Solving for us gives

(8.149)

Us = -Kss-'Ksm1lm

Therefore

(8.150)

u
=

The kinet

T =

UUms

) =

ic and s

ZUTMu

-Kss)(K]Um=Rum

sm

train energy of the system are

(8.151)

U = 'zuTKu

Substituting (8.151) into (8.152) gives

T = z11mTMRllm

(8.152)

U = 2UmTKRUm

where

MR =R T MR

(8.153)

and

KR =R T KR

Substituting for R from (8.151) into (8.154) gives

(8.154)

MR = Mmm - MmsKss-'Ksm - KmsKss-'Msm

+ KmsKss-' MssKss-'Ksm (8.155)

KR = Kmm - KmsKss-'Ksm

Substituting (8.153) into Lagrange's equations gives

(8.156)

MRUm+KRUm = 0 (8.157)

as the equation of motion. Comparing (8.157) with (8.146) indicates that
the order of the inertia and stiffness matrices has been reduced by the
number of slave degrees of freedom. The method is often referred to as the
reduction technique or Guyan reduction.
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Reference [8.24] indicates that the slave degrees of freedom can be
eliminated sequentially rather than simultaneously. This means that all the
slave degrees of freedom associated with a particular node can be eliminated
as soon as all the elements connected to that node have been assembled.
The slave degrees of freedom are, therefore, eliminated during the assembly
process resulting in a considerable reduction in computer storage.

If the system has a number of massless degrees of freedom and these
are chosen as slaves, then (8.149) is exact and (8.155) reduces to

MR = Mmm (8.158)

Equation (8.156) is unchanged. This result agrees with equation (8.12).

Example 8.22 Use the reduction technique to eliminate u2 from the
equations of motion of the system shown in Figure P1.l.

The equations of motion, for free vibration, are

m, 0 0 u, (k, + k2) -k2 0 u,

0 m2 0 u2 + -k2 (k2+k3) -k3 u2 0

0 0 m3 U3 0 -k3 (k3+k4) U3

Neglecting the inertia term in the second equation of motion gives

-k2u,+(k2+k3)u2-k3u3=0

Solving for u2 gives

1
U2

_
(k2+k3) (k2u,+k3u3)

Therefore

u, 1 0

[U2

= [k2/(k2+k3) k3/(k2+k3)
LU31

U3 0 1

and so

R T r(m, +k22m2/(k2+k3)2) k2k3m2/(k2+k3)2M =R MR=
L k2k3m2/(k2+k3)2 (m3+k32m2/(k2+k3)2)

and

KR=RTKR=
[(ki + k2 - k22/(k2+ k3)) -k2k3/(k2+k3) l

-k2k3/(k2+k3) (k3+k4-k3 2/(k2+k3))J
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Example 8.23 Determine the error in the eigenvalues and eigenvectors
caused by the reduction technique for the system defined in Example 8.22
when m,=m2=m3=m and k,=k2=k3=k,=k.

Putting u = d exp (iwt) and w2m/k = A then, without reduction, the
eigenproblem is

(2-A) -1 0 4,
-1 (2-A) -1 02 =0

0 -1 (2-A) 43

The solution of this equation is

A = 0.5858, 2.0, 3.4142

0.7071 1.0 -0.7071

4, = 1.0 0.0 1.0

0.7071 -1.0 -0.7071

With reduction the eigenproblem is

(6-5A) -(2+A) 01 -0
-(2+A) (6-5A), 1031

The solution of this is

A = 0.6667, 2.0

L4)3J L1 -1]
Transforming to the complete set of degrees of freedom gives

11 0 1

r1 11 1. 0 1.0

0.5 0.5 I

1]
- [ 1. 0 0.0

0 1

1

L
-

1. 0 -1.0

Comparing the two sets of results shows that the first eigenvalue is in
error by 13.8%. Multiplying the first eigenvector by 0.7071 shows that the
master degrees of freedom are exact but the slave degree of freedom is in
error by -29.3%. The reason for these large errors is that the slave degree
of freedom has the largest amplitude in this mode. On the other hand, the
second eigenvalue and eigenvector is exact. In this case the slave degree of
freedom has zero amplitude in this mode. This example suggests that the
smaller the amplitude of the slave degree of freedom is, in relation to the
master degree of the freedom, the more accurate are the results.



368 Analysis of free vibration

Example 8.24 Repeat Example 8.23 using m, = m3 = m, m2 = 0.1 m and k, _
k2=k3=k4=k.

Without reduction the eigenproblem is

(2-A) -1 0 ¢,
-1 (2-0.1A) -1 02 =0

0 -1 (2-A) ¢3

The solution of this equation is

A = 0.950, 2.0, 21.05

0.9524 1.0 -0.0525
= 1.0 0.0 1.0

0.9524 -1.0 -0.0525

With reduction the eigenproblem is

(6-4.1A) -(2+0.1A) ¢, -0
-(2+0.1A) (6-4.1A) ] [¢3]

The solution of this is

A = 0.9524, 2.0

Transforming to the complete set of degrees of freedom gives

1 0 1.0 1.0

0.5 0.5
[1

l
-11]

= 1.0 0.0

0 1 1.0 -1.0

This time the first eigenvalue is in error by 0.25%. Multiplying the
eigenvector by 0.9524 shows that the master degrees of freedom are exact,
whilst the slave degree of freedom is in error by -4.8%. Again the second
eigenvalue and eigenvector are exact. This example indicates that the smaller
the inertia associated with a slave degree of freedom, the more accurate
the solution is.

The previous two examples indicate that the slave degrees of freedom
should contribute very little to the kinetic energy of the system. References
[8.25, 8.26] have investigated the accuracy of the method and suggest that
the slave degrees of freedom should be chosen in regions of high stiffness
and the master degrees of freedom in regions of high flexibility. This is to
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Table 8.11. Automatic selection of slave
degrees of freedom

i Example 8.23 Example 8.24

1

2

3

2

2

2

2

20

2

satisfy the criterion that the lowest eigenvalue of the equation

[K5s-AM.]{+5}=0 (8.159)

has a maximum value. This will be so if the terms of M. are small and/or
the terms of K., are large. Reference [8.27] therefore suggests that the master
and slave degrees of freedom can be selected on the basis of the ratio of
the diagonal terms in the stiffness and inertia matrices K and M in equation
(8.146). Those degrees of freedom which yield the largest values of the ratio
K;;/M,; are selected as slave degrees of freedom. References [8.27, 8.28]
describe automatic procedures for this.

Example 8.25 Use the automatic selection procedure described above to
select one slave degree of freedom for Examples 8.23 and 8.24.

The ratios of the diagonal terms for both examples are given in Table
8.11. In the case of Example 8.24 the largest ratio is 20 for degree of freedom
number 2. This will then be selected as slave degree of freedom. However,
for Example 8.23 all the ratios are the same. The procedure described in
reference [8.27] will tend to select the degrees of freedom assembled first,
as master degrees of freedom and those assembled last, as slave degrees of
freedom. In such a case it is better to use manual selection rather than
automatic selection, to ensure that the master degrees of freedom are evenly
distributed.

Experience has shown that the number of master degrees of freedom
should be between two and three times the number of frequencies of interest.
Examples of the use of the method can be found in references [8.25-8.32].

8.8.4 Component mode synthesis

Another technique for reducing the number of degrees of freedom is known
alternatively as component mode synthesis, substructure analysis or building
block approach. Such methods involve dividing the structure up into a
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number of separate components or substructures. Each component is then
represented by a finite element model. The next step is concerned with
reducing the number of degrees of freedom for each component by modal
substitution. All the components are then assembled together and the
complete structure analysed. In this way one large eigenproblem is replaced
by several smaller ones.

Such a technique has several advantages:

(1) It is more efficient to confirm a large quantity of input data via subsets.
(2) The input data for each component/ substructure can be prepared by

separate analysts almost independently.
(3) Long computer runs are avoided.
(4) Numerous restart points are automatically provided.
(5) Re-analysis time is minimised when localised modifications are investi-

gated.

There are various methods of component mode synthesis. Only the two
major ones, which are referred to as fixed and free interface methods
respectively, will be considered.

8.8.4.1 Fixed interface method
The first step in the analysis, as noted above, is to divide the complete
structure into a number of substructures. This is illustrated in Figure 8.10(a)
where a clamped-clamped beam has been divided into two. Each substruc-
ture is then represented by a finite element idealisation (Figures 8.10(b)
and (c)). The energy expressions for a single substructure take the form

TS = i{d}gT{M}s{d}s

US = 2{U}ST
(8.160)

[K]5{u},

where the subscript s denotes a substructure. In order to reduce the number

I

I

II

C

(a)

J

(b)

V

t

Figure 8.10 Division of a clamped-clamped beam into two components and their
idealisation.
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of degrees of freedom, the following transformation is applied

{u}s= Lul J =
(4) N -6c]

[qN, =[TF]s{q}s (8.161)
u8 L 0 I is UB s

Here suffix I refers to internal node points and suffix B to node points
on boundaries common to two or more substructures.

The columns of the matrix 4 N are the natural modes of the substructure
with interface boundaries fixed. They are obtained by solving the eigen-
problem

[K11-cu2M11]{+1}=0 (8.162)

where K11, M are the appropriate partitions of [K]5 and [M]5. In general,
N is a rectangular matrix with fewer columns than rows. This is because
it is assumed that only the first few lower frequency substructure modes
contribute significantly to the modes of the complete structure. The degrees
of freedom qN are generalised coordinates related to the natural modes of
the substructure.

The matrix +c is a matrix of constraint modes of the substructure. Each
column represents the values assumed by the degrees of freedom at the
internal nodes for a unit value of one of the degrees of freedom at an
interface boundary node. These are given by the solution of

[K11]{u1}+[K1B]{uB}=0 (8.163)

namely

{u1} _ -[K ]-'[K,B]{u8}

_4 {uB} (8.164)

Both the fixed interface and constraint modes of substructure I in Figure
8.10 are illustrated in Figure 8.11.

Substituting (8.161) into (8.160) gives

Ts=;{4},T[M]s{q}s

U5='{q)J[]R]s{q}s
(8.165)

(a) (b)

Figure 8.11 (a) Fixed interface modes, (b) constraint modes.
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where

and

[M]s = [TF]ST[M]s[TF]s =
MNN MNB
MBN MBBis

L

f(0NN
[K]s = [TF]ST[K]s[TF]s =

I KNN 0 1
(8.167)

Now

MNN - 'ON
TMII-ON

KNN-'PN
T
KIIM'N

and so will be diagonal matrices. Also

KBB=KBB -

(8.168)

(8.169)

where KBB, KBI, K,B, K are partitions of K, which is the stiffness matrix
of the substructure in terms of the interface boundary degrees of freedom.
Note that the interior node point degrees of freedom have been eliminated
by static condensation.

Adding the contributions from the two substructures in Figure 8.10
together gives

T = i{q}T[M]{q}
(8.170)

U = i{q}T[K]{q}

where

and

qN

{q} = qN
UB

MINN 0 MNB
II II[M] = 0 MNN MNB

1 11 1 IIMBN MBN MBB+MBB

(8.171)

(8.172)

(8.173)

KNN 0 0

[K] = 0 KNN 0

0 0 KBB+KBB

where superscripts I and II indicate the substructure.
The equation of motion of the complete structure is

[M]{q}+ [K]{q} = 0 (8.174)
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After solving this equation, the displacements for each substructure are
calculated using (8.161).

Reference [8.33] presents the original derivation of this method and gives
an example of a cantilever plate divided into two substructures. Reference
[8.34] gives details of a containment and reactor vessel divided into two
substructures and a piping system divided into six substructures.

The method has very good convergence properties as the number of
component modes are increased, but can result in a large number of interface
degrees of freedom if too many substructures are used.

8.8.4.2 Free interface method
In the free interface method the number of degrees of freedom for a

substructure are reduced using the transformation

{U}s = [+N ]{qN }s (8.175)

where the columns of the matrix +N are the natural modes of the substructure
with interface boundaries free. They are obtained by solving the eigen-
problem

[K- w2M]s{4} = 0 (8.176)

Again 4N has fewer columns than rows. Free interface modes for the
substructure I in Figure 8.10 are illustrated in Figure 8.12.

If a substructure is completely free, which would be the case for substruc-
ture II in Figure 8.10 if the right hand boundary was free, then any rigid
body modes are treated as modes with zero frequency.

Substituting (8.175) into (8.160) gives

Ts = 214111s T[M]s{qN }s

Us = z{qN }sT[K]s{qN Is
(8.177)

Figure 8.12 Free interface modes.
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where

and

[M]s = [4N ]T[M]s[IN ]

(8.178)

[K]s = [4N ]T[K]s[4N ]

which are both diagonal matrices. If the columns of [dN] are mass nor-
malised (see equation (8.4)) then

[M]s = I (8.179)

Putting s = r in (8.15) and introducing (8.179) shows that

[K]5 = As (8.180)

which is a diagonal matrix containing the eigenvalues on the diagonal.
Adding the contributions from the two substructures in Figure 8.10

together gives expressions of the form (8.170) where

(8.181)jqj
N

_ I 0
[M] 0 1]

and

[K] _ [A' 0 ]
0 A"

(8.182)

(8.183)

The next step is to apply the constraints that the two substructures have
the same displacements at their interface. This can be expressed by

{uB} = {uB' } (8.184)

where subscript B denotes displacements on the interface boundary.
Substituting (8.175) into (8.184) gives

[+B]{qN) =[+B ]{qN} (8.185)

where 4B are the rows of 4) N which relate to the interface boundary degrees
of freedom. Equation (8.185) defines a set of linear constraint relations
between the generalised coordinates of the two substructures.

Let there be n,, n11 modes representing substructures I and II respectively
and nB degrees of freedom on the interface boundary (nB = 2 for the system
shown in Figure 8.10). If n,> nB, then [4)B] can be partitioned as follows

[+B = [+B. dB2 ] (8.186)
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Equation (8.185) becomes

[4 14 21
qN2 =

[+B ]{qN}

Solving for {q N, } gives

-[d31 N2}+[4)1]-1[4 B]{qN}

Therefore

where

and

qN]

{q} = [qn] = qNz = [Te]{r}
qN

qN

{r} = g 1

qN]

-[Y B1 ]-1 [462] [`1' B1 ]-'[PB ]
[T ] = I 0

0 I

375

(8.187)

(8.188)

(8.189)

(8.190)

(8.191)

Substituting the transformation (8.189) into the energy expression (8.170)
and using (8.182) and (8.183) gives

T = z{r}T[MR]{r}

U = z{r}T[KR ]{r}
(8.192)

where

[MR] = [T,: ]T[T.] (8.193)

and

[KR] = [TC]T[K][TJ (8.194)

The equation of motion of the complete structure is

[MR ]{'r} + [KR ]{r} = 0 (8.195)

After solving this equation, the displacements for the complete structure
are calculated using

U 0 ]
11

[T`]{r} (8.196)
= [ 0N +[u"
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This method was first presented in reference [8.35]. Examples of the
analysis of beam structures are given. It is also shown that by using different
sets of substructure modes, a wide range of frequencies can be calculated
by repeated application of the method.

References [8.36, 8.37] present an alternative formulation which is par-
ticularly useful when applied to machinery. In this method it is assumed
that the substructures are connected together via springs, as illustrated in
Figure 8.13.

The kinetic and strain energy of the two substructures, in terms of modal
coordinates, are again given by (8.170) with {q}, [M] and [K] defined by
(8.181) to (8.183). The strain energy of the connectors is

U z IUBIT[Kc]

I

Now from (8.175)

OB 0''
0 ] qN][qI1

- [q's]{q}N

Substituting (8.198) into (8.197) gives

Uc=

The total strain energy of the system is, therefore,

UT = i{q}T([K] + [(bB ]T[Kc ]['I'B ]){q}

The equation of motion of the complete structure is

{q} + ([K] + [bB ]T[K. ][(bB ]){q} = 0

(8.197)

(8.198)

(8.199)

(8.200)

(8.201)

After solving this equation, the displacements for each substructure are
calculated using (8.175).

Reference [8.37] analyses two beams connected by springs, whilst refer-
ence [8.36] considers a packet of turbine blades connected by means of a
shroud.

Figure 8.13 Two substructures connected by springs.
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The obvious advantage of free interface methods is that the interface
degrees of freedom do not appear in the final equations of motion. In the
two methods presented here the total number of degrees of freedom are
(n, + n - ne) and (n,+ respectively for two substructures.

Another advantage is that if a particular component is difficult to model
using finite element techniques, its modal representation can be determined
experimentally [8.38] and included in the analysis. In this case it is simpler
to test the component with interface boundaries free rather than fixed.
Examples of the combined use of theoretical and experimental models can
be found in references [8.40-8.42].

The main disadvantage of the method is that the convergence is weak.
This can be overcome by including a low-frequency approximation for the
contribution of the neglected high frequency modes (see Chapter 9). This
is usually termed residual flexibility. Details of this modification are given
in references [8.40, 8.43, 8.44]. Further information on component mode
synthesis techniques can be found in references [8.45-8.51].

8.9 Solution of large eigenproblems

The methods previously described for solving the eigenproblem (8.2), that
is

[K- AM]{4} = 0 (8.202)

are recommended for systems having only a few hundred degrees of freedom.
For larger systems, methods of reducing the number of degrees of freedom
have been described. However, for very large systems this is an inefficient
process. The methods described in this section have been used for solving
systems having several thousand degrees of freedom.

8.9.1 Bisection/inverse iteration

In Section 8.6.1 a method of bisection is described for determining the
eigenvalues of a symmetric tridiagonal matrix, B. This method utilises the
Sturm sequence property of the sequence of functions IB, - All, where B,
is the leading principal minor of order r of B. In Section 8.2 it is indicated
that the sequence of functions I - A M, I, where K. and M. are the leading
principal minors of order r of K and M respectively, also form a Sturm
sequence. This means that the bisection method can also be used to deter-
mine the eigenvalues of equation (8.202).

Section 8.62 describes a method of inverse iteration for determining the
eigenvectors of a tridiagonal matrix. It is shown that the eigenvector corre-
sponding to a known eigenvalue A, can be determined using the inverse
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iteration scheme

[B-ari]{ }k+1={ }k (8.203)

An eigenvector of equation (8.202) can be obtained using the inverse
iteration scheme

[K-ArM]{4}k+, = [M]{4}k (8.204)

Details and applications can be found in references [8.52-8.54].

8.9.2 Subspace iteration

Subspace iteration is a very effective method of determining the p lowest
eigenvalues and corresponding eigenvectors of equation (8.202) simul-
taneously. The procedure can be summarised as follows. Fuller details can
be found in references [8.4, 8.55].

Step I

Select a starting matrix X, having q columns where q > p.

Step 2

Perform the following operations for k = 1, 2, .. .

(a) Solve the equation

KXk+1= MXk (8.205)

(b)

for Xk+l
Calculate

Kk+1 - Xk+ITKXk+I
T 8.206)

(c)

Mk+l = Xk+l MXk+1

Solve the reduced eigenproblem

Kk+lQk+1 = Mk+IQk+IAk+1 (8.207)

(d)
for the q eigenvalues Ak+1 (a diagonal matrix) and eigenvectors Qk+1.
Calculate an improved approximation to the eigenvectors of the
original system using

Xk+I = Xk+IQk+1 (8.208)

The eigenvalues Ak+1 and eigenvectors Xk+, converge to the lowest
eigenvalues and eigenvectors of equation (8.202) as k - oo. As soon as the
lowest p eigenvalues have converged to the required accuracy the process
is terminated.
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Step 3

Use the Sturm sequence check to verify that all eigenvalues within the range
have been calculated.

Reference [8.4] suggests the following procedure for deriving the starting
matrix X1. The first column of the product MX, consists of the diagonal
terms of the matrix M. The other columns in MX, are unit vectors each
with the entry +1 at the position with the smallest ratio Kii/ Mii , where Kii
and Mii are the diagonal terms of K and M. With such a starting matrix, it
is suggested that q should be given by q=min (2p, p + 8).

Equation (8.205) is solved by factorising K in the form

K = LDLT (8.209)

where L is a lower triangular matrix with unit values on the main diagonal
and D a diagonal matrix. This is a modified version of the Cholesky
symmetric decomposition described in Section 8.1.2. The elements of D and
L are given by

j-1
djj = Kjj - y_ dkk 1jk2

k=1
j=1,2,...,n

jCC j(n-1)
lij =

\
Kij - L dkk lik ljk

/
djj

v k=1 l=(j+l),...,n
Substituting (8.209) into (8.205) gives

LDLTXk+, = MXk

(8.210)

(8.211)

Now put

DLTXk+I = Y (8.212)

giving

LY = MXk (8.213)

Equation (8.213) is solved for Y by forward substitution. The result is
substituted into equation (8.212) which is then solved for Xk+, by division
and backward substitution provided K is non-singular.

The eigenproblem (8.207), which is of order q, can be solved by any of
the techniques described in Sections 8.4 to 8.7. It must be remembered,
though, that all the eigenvalues and eigenvectors are required. Noting that
Kk+, and Mk+, in (8.206) tend toward diagonal form as the number of
iterations increases, reference [8.4] suggests that the generalised Jacobi
method, referred to in Section 8.4 is a very effective one.

It is possible that some eigenvalues may be missed using the above
technique. This can be overcome by including one or more columns of
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random numbers in the starting matrix. Also if eigenvalues are close, then
convergence can be very slow. This problem can be overcome by the method
of shifting (see Section 8.1). If a large number of eigenvalues and eigenvec-
tors is required, then it is better to evaluate them in small groups near shift
points. Details of these modifications are given in reference [8.56] where it
is suggested that q be given by q = max (4, b is the bandwidth
of K and M.

8.9.3 Simultaneous iteration

Simultaneous iteration is a similar technique to subspace iteration. In this
case it is applied to the eigenproblem in standard form, that is

[A- AI]{tlr} = 0 (8.214)

The method converges to the highest eigenvalue of A. Therefore, in order
to determine the lowest eigenvalues of (8.202), the stiffness matrix K is
expressed in the form

K = LLT (8.215)

Following the procedure given in Section 8.1.2 shows that

and

A = L-'ML-T

(8.216)

A = 1/cot

This means that the stiffness matrix must be non-singular.
The procedure can be summarised as follows.

Step 1

Select a starting matrix X, having q columns where q > p and satisfying
X,X,=I.

Step 2

Perform the following operations for k = 1, 2, .. .

(a) Multiply

AXk =Vk+1 (8.217)

(b) Multiply
r ()

Xk Vk+l - Bk+1 8.218

This means that

Bk+1 = XkTAXk (8.219)
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(c) Solve the reduced eigenproblem

Bk+IQk+1 = Qk+IAk+1

for the q eigenvalues Ak+l (a diagonal
(d) Multiply

Vk+IQk+I = Wk+l

(e) Ortho-normalise Wk+1 - Xk+l

(8.220)

matrix) and eigenvectors Qk+I .

(8.221)

The eigenvalues Ak+l and eigenvectors Xk+I converge to the largest
eigenvalues and eigenvectors J of equation (8.214) as k - oo.

Step 3

Calculate the eigenvectors of equation (8.202) from

41 = L-'* (8.222)

Reference [8.57] suggests taking the first q columns of a unit matrix of
order n for the starting matrix X1, whilst [8.58] suggests generating random
numbers. This latter reference also indicates that q should be in the range
1.2p<q<2p.

Reference [8.59] suggests that the reduced eigenproblem (8.220) be solved
using the Jacobi method, whilst reference [8.57] describes an approximate
method which bears some resemblance to the Jacobi method.

The ortho-normalising procedure consists of ensuring that Xk+1 satisfies
TXk+I Xk+I - I (8.223)

This can be carried out using the Gram-Schmidt procedure described in
Section 8.6.2 [8.58, 8.60]. Further details can be found in reference [8.5]
and applications in references [8.61, 8.62].

8.9.4 Lanczos' method

Before applying the Lanczos method, the eigenproblem (8.202) is reduced
to the standard form (8.214) where A and A are defined in (8.216). The
Lanczos algorithm produces an orthogonal matrix P which can be used to
transform the matrix A in (8.214) to tridiagonal form. If only the p largest
eigenvalues are required, then P will have q columns where q > p.

Applying the transformation

{*} = P> (8.224)

where

PPT = 1 (8.225)
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to equation (8.214) gives

where

as shown in Section 8.3. If P is chosen such that B is tridiagonal, then the
reduced eigenproblem (8.226) can be solved using any of the techniques
described in Sections 8.6 and 8.7.

The columns of P are generated one at a time in such a way that column
(i + 1), that is P;+, , is orthogonal to columns P; and P1_1. Premultiplying
(8.227) by P and using (8.225) gives

AP = PB (8.228)

Now B is tridiagonal and of the form (8.31). Equating the kth columns
of the right and left hand sides of (8.228) gives

APk = bkPk_I + akPk + bk+lPk+l

[B-AI]>;=0 (8.226)

B = PTAP (8.227)

(8.229)

for k=1,2,...,q with b,=0,bq+,=0.
Rearranging (8.229) gives

If Pk+1

bk+lPk+l = APk - bkPk-1 - akPk

is orthogonal to Pk then

Pk
T

Pk+1 = 0

(8.230)

(8.231)

Substituting (8.230) into (8.231) gives

Now

PkTAPk - bkPkTPk_, - akPkTPk = 0

PkTPk=1

and Pk is orthogonal to Pk_,, so

Pk
TPk-1-O

Equations (8.232) to (8.234) together give

ak = PkTAPk

(8.232)

(8.233)

(8.234)

(8.235)

This is substituted into (8.230) and bk+1 determined from the relation

Pk+lTPk+1 = 1 (8.236)
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The procedure can be summarised as follows

Step 1

Select an arbitrary column P, such that P, P, =1.

Step 2
Perform the following operations for k = 1, 2,... , q

(a) Yk = APk - bkPk-1 (b1= 0)

(b) ak = PkTYk

(c) Zk = Yk - akPk

(d) bk+1 = (ZkTZk)1/Z

(e) Pk+1 = (1/bk+l )Zk

Step 3

Solve the reduced eigenproblem

BE = EA

for the p highest eigenvalues A and eigenvectors $.

(8.237)

(8.238)

(8.239)

(8.240)

(8.241)

(8.242)

Step 4

Calculate the eigenvectors of A from

*=PB (8.243)

Step 5

Calculate the eigenvectors of equation (8.202) from

0 = L-TP (8.244)

References [8.5, 8.63] suggest using the first column of a unit matrix for
the first column P1. However, reference [8.64] suggests using a random
number generator to obtain the elements of P, . Experience has shown that
q should be of the order of 2p.

If the orders of the matrices K and M are large, the implicit orthogonality
conditions

PjTPk+l = 0 (8.245)

for j<k are not satisfied accurately, due to the accumulation of rounding
errors. Various techniques for overcoming this problem have been tried (see
references [8.65, 8.66]). Several examples of the use of the method can be
found in [8.63].



384 Analysis of free vibration

Problems

8.1 Calculate the natural frequencies and modes of the system shown in
Figure P1.1 with k, = k3 = 9, k2 = k4 = 3, m, = m3 = 3 and m2 = 2.

8.2 Investigate the Sturm sequence properties of the eigenproblem given
by the system shown in Figure P1.1 with k, = 3, k2 = k3 = 2, k4 = 1 and m, _
m2=m3=1.

8.3 Determine how many eigenvalues there are below A = 0.5 when K and
M are as defined in Example 8.7.

8.4 Repeat Example 8.12 after applying a shift to eliminate the zero eigen-
value.

8.5 Reduce the matrix

4 -1 -1 -1

A=
-1 3 -1 -1

-1 -1 3 -1

-1 -1 -1 4

to tridiagonal form using Givens' method.

8.6 Repeat Problem 8.5 using Householder's method.

8.7 Calculate the second smallest eigenvalue of the matrix A defined in
Example 8.15 using the method of bisection.

8.8 Calculate the eigenvector corresponding to the eigenvalue found in
Problem 8.7 using inverse iteration.

8.9 Calculate the eigenvalues of the matrix given in Example 8.13 using
the QR method.

8.10 A two-dimensional structure has X = 0 as an axis of symmetry. It is
to be analysed using an idealisation of half the structure. Derive the
boundary conditions to be applied on the axis of symmetry for the symmetric
and antisymmetric modes.

8.11 Figure P8.11 shows a simply supported uniform beam which is rep-
resented by two elements. Calculate the two lowest natural frequencies by
the following methods:

L
3

Figure P8.11
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(1) use a half-model and apply the appropriate conditions of symmetry
and antisymmetry

(2) use a full model and apply the reduction technique to eliminate two
degrees of freedom.

Compare the results with the analytical solution a,, = 7r2(EIz/pAL°)V 2 and
wz = 47r2(EIZIpAL4)'"z
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Forced response I

In Chapters 1 and 3 it is shown that the equation of motion of a structure
is

Ma+Cu+Ku=f (9.1)

where

u = colum matrix of nodal displacements
M = inertia matrix
C = damping matrix
K = stiffness matrix
f = column matrix of equivalent nodal forces

Chapters 3 to 7 give details of how to derive the matrices M, K and f. The
derivation of the damping matrix C is treated in Section 9.2.

The method of solving equation (9.1) depends upon whether the applied
forces are harmonic, periodic, transient or random. This and the following
chapter present solution techniques for each of these cases.

9.1 Modal analysis

Whatever the nature of the applied forces, the solution of equation (9.1)
can be obtained either directly or by first transforming it into a simpler
form. This can be achieved by means of the expansion theorem [9.1].

Any vector in n-dimensional space can be expressed as a linear combina-
tion of n linearly independent vectors (see Section 3.1). The eigenvectors
+, of the eigenproblem (8.2) are orthogonal (see Section 8.1.1) and so are
linearly independent. This means that the solution u of equation (9.1) can
be expressed in the form

u = Fq(t) (9.2)

where the columns of 4 consist of the eigenvectors (b,.
Substituting (9.2) into the energy expressions

T = ZuTMu, D =- ziiTCd
(9.3)

U=ZUTKu, SW=SuTf

386
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and using Lagrange's equations gives

Mq+Cq+Kq=Q (9.4)

where

M=(bTMb

C=4)TC4)

K=fiTK41
(9.5)

Q=$Tf

Both M and K are diagonal matrices by virtue of equations (8.18) and
(8.19). In addition, if the columns of 4) satisfy (8.4) then

M=l and k=A (9.6)

where

(9.7)

and w, is the rth natural frequency. In general C will not be diagonal (but
see Section 9.2). Equation (9.4) now reduces to

q+Cq+Aq=Q (9.8)

This equation is solved for q and the result substituted into equation (9.2).

9.2 Representation of damping

Section 2.10 indicates that it is difficult to formulate explicit expressions
for the damping forces in a structure. Instead, simplified models, based
more on mathematical convenience than physical representation, are used.
Two types are considered: structural (sometimes referred to as hysteretic)
and viscous.

9.2.1 Structural damping
Generalising the treatment of structural damping presented in Section

2.10 to a multi-degree of freedom system indicates that equation (9.1) should
be replaced by

M6+[K+iH]u = f (9.9)
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This form of damping can only be used when the excitation is harmonic
[9.2]. The complex matrix [K+iH] is obtained by replacing Young's
modulus E by a complex one E(1+irl), where 71 is the material loss factor,
when deriving the element stiffness matrices. Reference [9.3] indicates that
1) can vary from 2 x

10-5
for pure aluminium to 1.0 for hard rubber.

Equation (9.9) can be simplified using modal analysis (see Section 9.1)
to give

q+[A+iFi]q= Q

where A, Q are defined by (9.7), (9.5) and

H=(DTH4

(9.10)

(9.11)

In general, H will be a fully populated matrix, unless every element has
the same loss factor. In this case

H=r7K (9.12)

and

H = ?A (9.13)

Equation (9.10) now becomes

q+ (1 +iri)Aq = Q (9.14)

All the equations in (9.14) are now uncoupled and each one is of the form
of a single degree of freedom system.

9.2.2 Viscous damping

Viscous type damping can be used whatever the form of the excitation. The
most common form of such damping is the so-called Rayleigh-type damping
[9.4] given by

C = a,M+ a2K (9.15)

The advantage of this representation is that the matrix C (equation (9.5))
becomes

C = a,I+ a2A (9.16)

which is diagonal. So once again the equations in (9.8) are uncoupled. Each
one is of the form

9.+2y.W.9.+W:9. = Q,

where y, is the modal damping ratio and

2y,W,=a,+W,.z az

(9.17)

(9.18)
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The two factors a, and a2 can be determined by specifying the damping
ratio for two modes, 1 and 2, say. Substituting into (9.18) gives

a,+w, z a2=2y,co,

a,+u0zz a2=2yzwz

The solution of these two equations gives

a, = 2w1W2(0)2YI - (O1y2)/(0)22- -W]
2
)

a2 = 2(W2Y2- WI YO/(W22 - w12)

(9.19)

(9.20)

The damping ratios in the other modes are then given by (9.18), that is

Yr=2 +a2 r (9.21)
r

A typical variation of yr with (Or is shown in Figure 9.1.
If a direct solution of equation (9.1) is preferred, the values of a,

and a2 given by (9.20) can be substituted into (9.15), to give the required
matrix C.

Mass-proportional and stiffness-proportional damping can be used separ-
ately. For mass-proportional damping a2 = 0 in (9.15) and (9.18). Specifying
the damping ratio for mode 1 gives

a,=2y,w,

Therefore

Y1W1
Yr -

Wr

Yr

wr

(9.22)

(9.23)

Figure 9.1 Rayleigh damping.
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This means that the damping ratios decrease with increase in mode
frequency.

For stiffness-proportional damping a, = 0 in (9.15) and (9.18). Again
specifying the damping ratio for mode 1 gives

aZ=
2y,

(9.24)-
W1

Therefore

7'1Wr
yr - (9.25)

W1

In this case the damping ratios increase with increase in mode frequency.
Typical variations of mass- and stiffness-proportional damping ratios are
shown in Figure 9.2. In practice it has been found that mass-proportional
damping can represent friction damping, whilst stiffness-proportional damp-
ing can represent internal material damping.

Accepted values of modal damping ratios for typical forms of construc-
tion vary from 0.01 for small diameter piping systems, to 0.07 for bolted
joint and reinforced concrete structures. If all the modal damping ratios
can be estimated, it is not necessary to form the damping matrix. The values
of yr are substituted into equation (9.17).

In cases where the damping varies considerably in different parts of the
structure the above techniques cannot be used directly. An example of this
is the analysis of soil-structure interaction problems, where there is sig-
nificantly more damping in the soil than in the structure. This type of
problem should be analysed using component mode synthesis techniques

Yr
Mass proportional

Wr

Figure 9.2 Mass and stiffness-proportional damping.



Harmonic response 391

(see Section 10.5.4). Further information on damping can be found in
references [9.5-9.9].

9.3 Harmonic response

If the nodal forces are harmonic, all with the same frequency, w, but having
different amplitudes and phases, then

f(t) = f exp (iwt) (9.26)

In general the elements of f will be complex since

fk = IfkI exp (iOk) (9.27)

where 0k is the phase of force fk relative to a reference force.

9.3.1 Modal analysis

Equations (9.5) and (9.26) indicate that the generalised forces take the form

Q(t) = FTf exp (iwt) = Q exp (iwt) (9.28)

Equation (9.8) now becomes

q+Cq+Aq=Q exp (iwt) (9.29)

The steady state response is obtained by assuming that the response is
harmonic with frequency w. This gives

[A-W2I+ic ]q=Qexp(i(ot) (9.30)

Solving for q gives

q=[A-cw2I+iWC]-'Q exp (i(ot) (9.31)

If either structural or proportional damping is used, the matrix to be inverted
is diagonal. Its inverse is also a diagonal matrix with diagonal elements

(1) (W r2-W2+111Wr2)-' for structural damping
or
(2) (wr2-W2+i2yrWrW)-' for proportional damping

Substituting (9.31) and (9.28) into (9.2) gives

u = 4D[A - W21+ iWC]-' I Tf exp (iwt) (9.32)

Equation (9.32) is often written in the form

u = [a(w)]f exp (i(ot) (9.33)

where

[a(W)] =t[A- W2I+iWC]-',bT (9.34)
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is a matrix of receptances. ajk(W) is a transfer receptance which represents
the response in degree of freedom j due to a harmonic force of unit
magnitude and frequency w applied in degree of freedom k. Likewise ajj(W)
represents a point receptance. From (9.34) it can be seen that

/ jn' Y'jr4krajk(W) _ (9.35)r=1

for structural damping, and

n 4jr4'kr/
ajk(W)= Y 2 2 (9.36)

r=1 (Wr -W +i2yrwro)

for proportional damping. The term 4jr4'kr will be referred to as a modal
constant [9.10].

If the damping in mode s is small and its frequency Ws well separated
from the frequencies w _1 and w,,, of the neighbouring modes, then term
s in the series will dominate the response whenever the exciting frequency
w is close to WS.

Example 9.1 Calculate the receptances aj,(W), 1=1, 2, 3 for 0<w<
94.25 rad/s (i.e., 15 Hz) of the system shown in Figure P1.1 with k, = k4 =
3000 N/m, k2 = k3 =1000 N/m, m, = m3 = 2 kg and m2 =1 kg. Assume no
damping.

From Example 8.1 it can be seen that

1000

A = 2000

1 21/2

(D
= 2(2) 1/2

2 0 -2
1 -2'/2 1

1 2 1 f1

Q= YTp I= 1

L2112

0 -2'/2 110

2(2)1/2
1 -2 1 0

11
1 21/2

= 2(2)1/2 f1

1
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Therefore

1

f
1(1) (21/2)(21/2) 1(1)a ) 8 (1000- W2)+(2000- (02)+(3000- W2)

a2I(W) = 1

f
2(1) +

0(21/2) + (-2)(1) l
8

(1000-('02) (2000-W2) (3000-W2)

a31(W) =
1 I 1(1) +(-21/2)(2h12)+ 1(1)
8 (1000-W2) (2000-W2) (3000-W2)

The variations of the modulus of all, a21 and a31 with frequency are
shown in Figures 9.3(a) to 9.3(c).

The point receptance a shown in Figure 9.3(a) has three resonant peaks
at the natural frequencies of the system 5.03, 7.12 and 8.72 Hz. Each resonant
peak is separated by an anti-resonance, one at 5.72 and the other at 8.28 Hz.
The reason for this can be seen by inspecting the series expression for a .

All three modal constants are positive. At a frequency between the first two

10-1

z
E

10-1

(a)

10-2

10-3

10-

0 2 4 6 8 10 12 14

Frequency (Hz)

Figure 9.3 Receptances of spring-mass system. No damping.
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10-51
0 2 4 6 8 10 12 14

Frequency (Hz)

2 4 6 8 10 12 14
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Figure 9.3-(continued)
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resonant frequencies the first term is negative whilst the second one is
positive. The contribution from the third term is significantly smaller.
Therefore, it is possible to find a frequency for which the receptance is zero.
Similarly, at a frequency between the second and third resonant frequencies
the second term is negative whilst the third is positive, giving rise to an
anti-resonance in this range.

The anti-resonant frequencies can be found by equating a to zero. This
gives

(2000-w2)(3000-w2)+2(1000-w2)(3000- w2)

+(1000- w2)(2000-w2) =0

That is

4w4-16x 103w2+14x 106=0

giving

w2 = 1.2929 x 103 or 2.7071 X 103

dan

to = 35.96 or 52.03 rad/s

The transfer receptance a21 has only two resonant peaks at 5.03 and
8.72 Hz. This is because the modal constant for the second mode is zero,
due to the fact that the displacement u2 is zero in this mode. An anti-
resonance does not occur between the two resonances, since the two non-
zero terms are both negative in this range. This is because the modal constant
for the third mode is negative.

The transfer receptance a31 has three resonant peaks at the three natural
frequencies. Anti-resonances do not occur between either pair of resonances.
In between the first two resonances the first two terms are both negative,
whilst in between the second two resonances the second and third terms
are both positive. Both these situations are due to the fact that the modal
constant in the second mode is negative.

Example 9.2 Calculate the receptances aj1(w), j = 1, 2, 3 for the frequencies
5.03, 5.72, 7.12, 8.28 and 8.72 Hz of the system considered in Example 9.1
when the damping is proportional to the stiffness matrix with y, = 0.02.

From (9.25) y, _ (y1/(o,)w,. Now y, = 0.02 and w1 = 31.623. This gives
y2 = 0.02828 and y3 = 0.03464. Including this damping in the expressions in
Example 9.1 gives

'+2(2000-w2+i2.5294w)-'

+(3000-w2+i3.7946w) '}
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Table 9.1. Receptances for three degree of freedom system with
stiffness proportional damping

(Modulus of receptance) x 10' m/N

Frequency (Hz) all C121 a3l

5.03 3.17 6.25 3.12
5.72 0.115 0.986 0.694
7.12 2.24 0.493 2.18
8.28 0.291 0.830 0.579
8.72 0.708 1.20 0.598

a21(w) -2(3000-c) 2 +i3.7946w)-'}

a31(w) ='-g{(1000-(0 2+il.2649w)-' -2(2000-w2+i2.5294w)-'

+(3000-w2+i3.7946w)-'}

The values of the moduli of the receptances at the required frequencies
are given in Table 9.1. The undamped natural frequencies of the system are
5.03, 7.12 and 8.72 Hz. The receptance a,, (w) has finite values at these
frequencies in contrast to the infinite values obtained for the undamped
case. Without damping a11(w) exhibited anti-resonances at 5.72 and 8.28 Hz.
With damping a11(w) is no longer zero at these frequencies. Neither a21((0)
nor a31(w) exhibited anti-resonances in the undamped case. a21(w) has two
infinite peaks at 5.03 and 8.72 Hz which become finite when damping is
added. Similarly a31(w) had three infinite peaks which are now finite.

The variations of the modulus of a,,, a21 and a31 with frequency are
shown in Figure 9.4(a) to 9.4(c). Comparison with Figures 9.3(a) to 9.3(c)
clearly indicates the overall effect of including damping.

Example 9.3 Calculate the receptances aj1(w), j = 1, 2, 3 for the frequencies
5.03, 7.12 and 8.72 Hz of the system considered in Example 9.1 when the
damping is structural with 71= 0.04.

Including this type of damping in the expressions in Example 9.1 gives

all(w)

+(3000- w2+i120)-1}

a21(w) =8{2(1000-w2+i40)-' -2(3000-w2+i120)-'}

a3l(w) ='-s{(1000- (02+i40)-' - 2(2000 - w2+i80)-'

+(3000-w2+i120)-'}
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Figure 9.4 Receptances of spring-mass system. Stiffness-proportional damping.
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The values of the moduli of the receptances at the required frequencies
are given in Table 9.2. The values at 5.03 Hz are similar to the values given
in Table 9.1 for stiffness proportional damping. However, the values at 7.12
and 8.72 Hz are larger than the corresponding values in Table 9.1. This is
because the effective damping ratios at the natural frequencies are 0.02
compared with the values 0.02, 0.02828 and 0.03464 used in Example 9.2.
The values quoted in these tables are not necessarily peak values, since
these occur at frequencies which are slightly lower than the undamped
natural frequencies. For a single degree of freedom system the maximum
response occurs at w(1 - 272) V2, where w is the undamped natural
frequency.

Example 9.4 Calculate the receptances a;, (w), j = 1, 2, 3 for frequencies
5.03, 7.12 and 8.72 Hz of the system considered in Example 9.1 when the
damping is of the Rayleigh-type with y, = 0.02 and y3 = 0.03.
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Table 9.2. Receptances for three degree of freedom system with
structural damping

(Modulus of receptance) x 103 m/N

Frequency (Hz) all a2l a31

5.03 3.16 6.24 3.11
7.12 3.14 0.496 3.11
8.72 1.11 2.08 1.04

Equations (9.20) and (9.21) give y,=0.02544. Including this type of
damping in the expressions in Example 9.1 gives

a11(w)=8{2(1000-w2+il.2649w) '+2(2000-w2+i2.2754w) '

+(3000-w2+i3.2863w)-'}

a21(w) = 8{2(1000-w2+il.2649w)-' -2(3000-w2+i3.2863w)-'}

a31(w)=s{(1000-w2+i1.2649w) -2(2000-w2+i2.2754w) '

+(3000-w2+i3.2863w)-'}

The values of the moduli of the receptances at the required frequencies
are given in Table 9.3. The values at 5.03 are similar to the values given in
Table 9.1. The values at 7.12 and 8.72 Hz are slightly larger than the
corresponding values in Table 9.1. This is because the damping ratios in
the three modes are 0.02, 0.02544 and 0.03 compared with the values 0.02,
0.02828 and 0.03464 used in Example 9.2.

Section 8.1 indicates that if a system is unsupported, it is capable of
moving as a rigid body with one or more zero frequencies. In this case the
response to externally applied forces (9.2) can be written in the form

U = 4)R 4)E (9.37)

where 4R are the rigid body modes and fiE the elastic modes. Equation
(9.4) can be partitioned in a similar manner. The equation of motion for
the rigid body motion is

9R = QR (9.38)

where

QR=4RTf (9.39)
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Table 9.3. Receptances for three degree of freedom system with
Rayleigh damping

(Modulus of receptance) x 103 m/N

Frequency (Hz) aI1 a21 a31

5.03 3.16 6.25 3.12
7.12 2.48 0.494 2.43
8.72 0.790 1.39 0.691

U3

Figure 9.5 Unrestrained system subject to a harmonic force.

The solution of equation (9.38), when the motion starts from rest, is

qR(t) = QR(TI) dT, dr2
0 f'72

(9.40)

Example 9.5 Derive expressions for the response of the three masses of the
system shown in Figure 9.5. The units of mass are kg and the stiffnesses in
N/ m.

From Example 8.2 it can be seen that

F2 -51/2 -1
1

2(2)1/212 0 4

1/22 5 -1

2 2 2 11 f, 2
Q=OTf= 1 _51/2 0 51/2 0

1 _51/22(5)1/2
-1 4 -1 0 2(5) 1/2 -1

1i
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Equation of motion for the rigid body mode is

q, = Si/2fi exp (iwt)

Integrating gives

1 1

q, = f, - {exp (iwt) -1}i0j

and

q, = 12 W2 {1 +iwt -exp (i(ot)}

Taking the imaginary part gives

q,=512 2(wt-sin wt)

Equations of motion for the elastic modes are

l l l
[_51/2

4+L500 0 25001
r
[g3J 2(5)1'2_1

Jf'exp(iwt)

The solution is

q2 _ (500-w2)-, 0 5112 A
q31 - 1 0 (2500-w2)-11 -1

]2(2)I/2exP(iwt)

Taking the imaginary part gives

q2=-2(500-w2)-`f, sin wt

q3 = -
1

2(5), 2 (2500- w2)-If, sin wt

The total response is given by

1 4 5 sin wt sin wtu,=- (wt- sin t)+ 2)+. 2 fj
20 ;2- (500-w(2500-w )

1 4
U2 20

(w2 (wt - sin wt) -
4

(2500-
sin wt

w2)
fi

1 4 5 sin wt sin wt

u3
20(w2(wt-sinwt)-(500-w2)+(2500-w2) J
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9.3.2 Direct analysis
The steady state response can also be obtained by solving the equation

Mu+Cu+Ku=f exp (iwt) (9.41)

directly. This has the advantage that the frequencies and modes of free
vibration of the undamped system do not have to be calculated prior to the
response analysis. Assuming that the steady state response is harmonic with
frequency w gives

[K-w2M+iwC]u=f exp (iwt) (9.42)

The solution of this equation is

u = [K - w2M+iwC]-'f exp (iwt) (9.43)

which can be evaluated in various ways. In the following only supported
structures are considered. Putting

K-w2M=AR, wC=A, (9.44)

and

[AR+iA,]-' = [BR+1B,] (9.45)

then

[AR+IA,][BR+1B,] = I

Equating real and imaginary parts gives

ARBR - A,BI = I

A,BR+ ARBI = 0

From (9.47b)

BR --","RBI
Substituting (9.48) into (9.47a) gives

BI = -[AI+ARAI
IAR]-I

Finally, substituting (9.49) into (9.48) gives

BR = AI-'AR[AI + ARAI-IAR]-I

(9.46)

(9.47a)

(9.47b)

(9.48)

(9.49)

(9.50)

Example 9.6 Calculate the response of the system shown in Figure 9.6 at
the frequency 5(10)'2/ 1T Hz when the damping is structural with 71 = 0.04.
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Figure 9.6 Two degree of freedom system subjected to a harmonic force. m = 1 kg,
k= 1000N/m.

The inertia and stiffness matrices for the system shown in Figure 9.6 are

M=10 1J, K=1031
2

When w =10(10)"2 L

-11

2

1 1
AR=K-w2M=101

-1 1

A1=wC=r1K=40
2 1

_1 2]

Substituting for AR and A, in (9.49) and (9.50) gives

12.515 -12.485
B, = 10-a

-12.485 -12.515

and

0.2491 -0.2491
BR =

10-3

L-0.2491 0.2491

Now

f= Nf, exp (iwt)

and so

u, = 10-3 (0.2491 - i 12.515)f, exp (iwt)

u2= 10-3(-0.2491-i12.485)f, exp (iwi)

Note that expressions (9.49) and (9.50) do not involve inverting the
matrix AR, which is singular whenever the exciting frequency is equal to
an undamped natural frequency. The matrix A, does have to be inverted
and so the form of damping assumed should ensure that C and hence A,
is not singular. Provided A, is symmetric, the only situation considered
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here, the product A,,-'AR can be obtained by expressing A, in the form

A, = LLT (9.51)

by means of a Cholesky decomposition (see Section 8.1.2) and solving the
equations

LA = AR, LTB=A (9.52)

by forward and backward substitution for A and B respectively. This gives

B = A,-'AR (9.53)

The matrix [A,+ARA,-'AR]-' can be obtained by putting

[A, + ARA,-' AR] = LLT (9.54)

and solving

LA = I, LTB = A (9.55)

for A and B.
An alternative way of evaluating (9.43) is to write

u = (uR+iu,) exp (icot) (9.56)

and

f = (fR+if,) (9.57)

Substituting (9.56) and (9.57) into (9.42) gives

(fR+if,) (9.58)

Separating out the real and imaginary parts results in

K-w2M -wC huR _ [fR]
C K - w2M u, f,

(9.59)
w

This set of equations has the disadvantage that the number of equations
is equal to twice the number of degrees of freedom. The matrix of coefficients
is non-symmetric. Equations (9.59) can be solved using Gauss elimination
(see Section 8.2). However, since the sub-matrix [K-w2M] is singular
whenever to is equal to an undamped natural frequency, it is necessary to
use row interchanges (Section 8.2).

Example 9.7 Obtain the solution to Example 9.6 by solving equation (9.59).
The steps in the solution of equation (9.59) by means of Gauss elimination

with row interchanges are shown in Table 9.4. The matrix of coefficients
has been augmented by the column on the right hand side of equation
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Table 9.4. Gauss elimination with row interchanges. Example 9.7

Row order Matrix x 10-3

1 1 -1 -0.08 0.04 0.001
2 -1 1 0.04 -0.08 0
3 0.08 -0.04 1 -1 0
4 -0.04 0.08 -1 1 0

1 1 -1 -0.08 0.04 0.001
2 0 0 -0.04 -0.04 0.001
3 0 0.04 1.0064 -1.0032 -0.00008
4 0 0.04 -1.0032 1.0016 0.00004

1 1 -1 -0.08 0.04 0.001
3 0 0.04 1.0064 -1.0032 -0.00008
2 0 0 -0.04 -0.04 0.001
4 0 0 -2.0096 2.0048 0.00012

1 1 -1 -0.08 0.04 0.001
3 0 0.04 1.0064 -1.0032 -0.00008
4 0 0 -2.0096 2.0048 0.00012
2 0 0 0 -0.0799044 0.9976115 x 10-3

(9.59). A process of back substitution using the final set of equations gives

[uIR1 0.2491

U2R 3 -0.2491
=

u11
10

-12.515
u21 -12.485

,f

This gives

u, = 10-3(0.2491-i12.515)f, exp (iwt)

u2= 10-3(-0.2491-i12.485)f1 exp (iwt)

as before.

An alternative but equivalent method of solving equation (9.59) is to use
Doolittle-Crout factorisation [9.11 ]. In this method the matrix of coefficients
on the left hand side of equation (9.59) is expresssed as the product LU,
where L is a lower triangular matrix and U an upper triangular matrix.
Either L or U is defined to have unit values on the main diagonal. As in
the Gauss elimination process it is necessary to use partial pivoting. This
process is then followed by both a forward and backward substitution.

If U has unit values on the main diagonal the method is known as Crout
factorisation. If the matrix has n rows and columns, then there are n steps.
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Each step produces one column of L and one row of U. These can overwrite
the corresponding elements of the original matrix A, say. At the beginning
of the rth step the stored array with n = 4, r = 3 will be of the form

111 u12

121 122

131 132

141 142

u13 u14

U23 U24

a33 a34

a43 a44

where l;;, ui;, ai; are the elements of L, U and A respectively. Note that the
diagonal elements of U, which are unity, are not stored. The rth step consists
of the following:

(1) Calculate

r-1
fir = air - L likukr

k=1

and overwrite air ( i = r, ... , n).
(2) If int is the smallest integer for which

I lint.rl = max Ilirl
i-- r

(9.60)

(9.61)

then interchange the whole of rows r and int in the current array.
(3) Calculate

r-1 1
uri =1 ari _ ' lrkuki f lrr (9.62)

\ k=1 /

and overwrite ari (i = r+1, ... , n).

After n steps, A is replaced by L and U and the product LU gives a
matrix A, which is A with the row interchanges. It is necessary to apply the
same row interchanges to the right hand side of the equation to be solved.

Example 9.8 Use Crout factorisation to solve the equations in Example 9.7.
The steps in the Crout factorisation of the matrix of coefficients are

shown in Table 9.5. The first step produces the first column of L and the
first row of U. These are identical to the first column and row of A. The
second step produces the second column of L and the second row of U
after interchanging rows 2 and 3. During the third step rows 3 and 4 are
interchanged. This means that the rows of A end up in the order 1, 3, 4
and 2.
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Table 9.5. Crout factorisation with row interchanges. Example 9.8

Step no. R ow order Matrix x 10-3

1 1 -1 -0 .08 0.04
2 -1 1 0 .04 -0.08
3 0.08 -0.04 1 -1
4 -0.04 0.08 -1 1

1 1 1 -1 -0 .08 0.04
2 -1 1 0 .04 -0.08
3 0.08 -0.04 1 -1
4 -0.04 0.08 -1 1

2 1 1 -1 -0 .08 0.04
3 0.08 0.04 25. 16 -25.08
2 -1 0 0. 04 -0.08
4 -0.04 0.04 -1 -1

3 1 1 -1 -0. 08 0.04
3 0.08 0.04 25. 16 -25.08
4 -0.04 0.04 -2. 0096 -0.997 6114
2 -1 0 -0. 04 -0.08

4 1 1 -1 -0. 08 0.04
3 0.08 0.04 25. 16 -25.08
4 -0.04 0.04 -2. 0096 -0.997 6114
2 -1 0 -0. 04 -0.079 9044

Solving the equations

1 0 0 0 x , 0.001

0.08 0.04 0 0 x 2 _ 0
1.1-0.04 0.04 -2.0096 0 x 3 0

-1 0 -0.04 - 0.0799044 x 4 0

by forward substitution gives
x1 0.001

x2 -0.002
x3 -5.971338 x 10-5
x4 -12.48506 x 10-3

Solving the equations
1 -1 -0.08 0.04 UIR 0.001

0 1 25.16 -25.08 U2R -0.002
0 0 1 -0.997 6114 ul,

_
-5.971338 x 10-5

0 0 0 1 u21 -12.48506 x 10-3
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for the real and imaginary parts of the displacements by backward substitu-
tion gives

UIR 0.2491

U2R = 103
-0.2491

u11 -12.515

u2t -12.485

Crout factorisation with row interchanges can also be used to solve equation
(9.42) directly if complex arithmetic is used. This procedure is illustrated
in the next example.

Example 9.9 Use Crout factorisation to solve equation (9.42) for the system
defined in Example 9.3 when cot = 1000 (rad/s)t.

The stiffness, inertia and damping matrices are

4 -1 0

K= 103 -1 2 -1
0 -1 4

2 0 0

M= 0 1 0

0 0 2

4 -1 0

wC=77K=40 -1 2 -1
0 -1 4

The steps in the Crout factorisation of the matrix [K-w2M+i-7K] are
shown in Table 9.6. Solving the equations

(2+10.16) 0 0 x1

0 (-1-iO.04) 0 xt
(-1-10.04) (0.500795+10.0799364) (-0.0031069+10.1601278) x3

by forward substitution gives

x1 0.4968203 - iO.0397456

xt = 10_3

0

x3 -0.1844289 - i3.109008
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Table 9.6. Crout factorisation of a complex matrix with row interchanges.
Example 9.9

Step Row
no. order Matrix x 10-3

1 (2+10.16) (-1-iO.04) 0

2 (-1-iO.04) (1+iO.08) (-1-iO.04)
3 0 (-1-iO.04) (2+10.16)

1 1 (2+iO.16) (-0.4984101+iO.0198728) 0
2 (-1-iO.04) (1+10.08) (-1-iO.04)
3 0 (-1-iO.04) (2+10.16)

409

2 1 (2+iO.16) (-0.4984101+10.0198728) 0
3 0 (-1-10.04) (-2.0031948-10.0798722)
2 (-1-iO.04) (0.500795+iO.0799364) (-1-iO.04)

3 1 (2+10.16) (-0.4984101+10.0198728) 0
3 0 (-1-10.04) (-2.0031948-10.0798722)
2 (-1-10.04) (0.500795 + iO.0799364) (-0.0031069+10.1601278)

Solving the equations
1 (-0.498410+i0.0198728) 0 ul
0 1 (-2.0031948-iO.0798722) u2

0 0 1 U3

(0.4968203 - iO.0397456

= 10-3 0

(-0.1844289 - i3.109008)

for the components of displacement by backward substitution gives

ul (0.3124-i3.149)
u2 = 10-3

(-0.1211-i6.243)
u3 (-0.1844-i3.109)

The moduli of ul, u2 and u3 agree with the values given in Table 9.2.

9.4 Response to periodic excitation

Periodic forces, such as those that arise during the operation of machinery,
can be represented by means of a Fourier series, which is a series of
harmonically varying quantities of the form

oo

f(t) =?ao+ Y_ (a, cos co,t+b, sin w,t) (9.63)
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where

Wr = r(27T/ T) (9.64)

22 T
a = f(t) cos W t dt (9.65a)r

T

b = 2

r

t dtf(t) Sin WT (9.65b)r
T

r
o

In these expressions, T denotes the period of the force.
Sufficient conditions for the convergence of Fourier series are known as

Dirichlet conditions. They state that if a periodic function is piecewise
continuous in the interval 0 < t < T and has left and right hand derivatives
at each point in the interval, then its Fourier series converges and the sum
is f(t), if the function is continuous at t. If the function is not continuous
at t, then the sum is the average of the left and right hand limits of f at t.

Example 9.10 Find the Fourier series expansion of the forcing function
illustrated in Figure 9.7.

The relationships (9.65) give
2T

ao=1 f Pdt-1 Pdt=O
T p T T

For r % I
T 2T

cos Wrt dt -P cos Wrt dtar =P
T o T T

P
_- (2 sinWrT-stn2o2(0r

(JrT

f(t)

P

T

-P

2T 3T 4T 5T
0- t

Figure 9.7 Periodic forcing function.
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since WrT = r7r.

r z
br=

P
sinWrt dt--P sinWrt dt

T 0 T
,.

P
(1 -2 COS WrT+COS 20)rT)

WrT

= {1-(-1)r}.2P
r7r

Therefore

14P

br = r7r
r odd

0 r even

The Fourier series expansion is, therefore

0 ) 5 t
7r

where Wr = r7r/T.

Equation (9.63) can be expressed in complex form by substituting the
relationships

cos Wrt =12{exp (iWrt)+exp (-iWrt)}
(9.66)

sin Wrt = -zi{exp (iWrt) -exp (-iWrt)}

and defining

Co=iao, Cr=zlar-ibr), c_r='z(ar+ibr) (9.67)

This gives

f(t) = I Cr exp (iWrt) (9.68)

where

1 T
Cr = 7., of(t) exp (-iWrt) dt (9.69)

Example 9.11 Repeat Example 9.10 using the complex form of Fourier
series.
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The relationship (9.69) gives

P T

c,=2T exp (-iWrt) dt -, exp (-iW,t) dt
2T0

Integrating gives

_ iP
{-1 +2 exp (-iwrT) -exp (-i2WrT)}Cr

2&),T

Now WrT = rTr and so

c,= iP
--

{-1+2exp (-ir7r)-exp (-i2ri,-)}

tP
= {(-1)r_1}

ror

Therefore

iP
r odd

r even

If the periodic force cannot be expressed as a mathematical function,
only as a set of values fo, f, , ... , fN at times to = 0, t1, ... , tN = T, as shown
in Figure 9.8, then it can be represented by means of a finite Fourier series
[9.12]. Taking N to be even and

.fo=0, J =.f(jat), j=1,2,..., N (9.70)

P zr

Figure 9.8 Numerical representation of periodic forcing function.
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then

/ 2f(t)
= L Cr exp (jWrt)

r=-N/2

At the points t = jit (j = 1, 2, ... , N)

(9.71)

N/2
f =f(jtlt)= Y- crexp{i(2-rr/N)jr} (9.72)

r=-N/2

Multiplying both sides by exp {-i(2ir/ N)js} and summing over j gives
N

Cr = N,Y fexp {-i(2rr/N)jr} (9.73)

since

N

Y_ exp{i(2ir/N)(r-s)j}=O forr#s
j=I

(9.74)

The highest frequency present in (9.71) is WN/2 = Nir/T =,7r/AT rad/s =
1/2zt Hz. If there are any frequencies higher than this present in the periodic
force, they will contribute to frequencies below this maximum. This is
referred to as aliasing in the terminology of signal processing. Therefore,
it is necessary to choose At small enough to ensure aliasing does not occur.
The efficiency of computing (9.73) can be increased by using a Fast Fourier
Transform algorithm [9.12].

If the complete set of nodal forces acting on a structure is periodic, then

f(t) = Cr exp (iWrt)

where

1 T
Cr =

T
f(t) exp (-iWrt) dt

0

The equation of motion (9.1) becomes
+W

Ma+Cu+Ku = Cr exp (iWrt)
r=-ao

(9.75)

(9.76)

(9.77)

Since this equation is linear, the solutions corresponding to each term on
the right hand side can be obtained separately and superimposed to give
the complete solution. This gives

U= Y- [Ct(Wr)]cr eXp (iWrt)
r=-ao

(9.78)
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where [a(wr)] is the matrix of receptances evaluated at the frequency Wr.
This matrix is given by (9.34) if the modal method is used and (9.43) if the
direct method is used.

9.5 Transient response

If a structure is excited by a suddenly applied non-periodic excitation, the
response is transient since steady state oscillations are not produced. Strictly
speaking, the term `transient' should be applied to the situation when the
forces are applied for a short interval of time. Subsequent motion of the
structure is free vibration, which will decay due to the damping present.
However, it is often applied to a continually changing situation for an
indefinite period of time. In this case the column matrix of nodal forces,
f(t), is an arbitrary varying function of time.

9.5.1 Modal analysis
Assuming viscous damping and that the transformed damping matrix is
diagonal, gives equation (9.17) for the rth mode, that is

9r+2yrwr4r+wr29r = Qr(t) (9.79)

The solution of (9.79) at time t is given by the Duhamel integral [9.13]

9r(t) = Qr(T)hr(t-T) dT (9.80)
0

if the motion starts from rest, where hr(t) is the impulse response function
which is

hr(t) = I exp (-'Yrwrt) sin Wdrt
wdr

(9.81)

war is the damped natural frequency of mode r which is defined as

wdr = wr(1 y r)1/2 (9.82)

If the forces are applied for a short time, the maximum response (displace-
ment, stress, etc.) will occur during the first few oscillations. If the damping
is small, its effect on the maximum response will be small. Thus damping
is often neglected to simplify the analysis. If, in addition, the applied force
can be represented by an analytical function, then equation (9.80) can be
evaluated analytically. Reference [9.14] tabulates the results for some typical
loading functions. A brief selection is presented in Table 9.7, with subscript
r omitted for convenience.
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Table 9.7. Response functions for undamped single degree of freedom systems

Cas Forcing function
no Q(t)

1

2

t<to

Displacement response

Q0(1-coswt) t<to
w

Q0 {cosw(I-to)-coswt} t> to
(0

(Qoto/w)
{(Wto)z - i2} {wto sin (at/ to) - 7r sin wt}

-(Qoirto/w)
{(wto)2 -,rz}

{sin w(t - to)+ sin wt}

t> to

3
Qo

to

0 t

to

to wto
t<to

Qo sin w(t- to) sin wt
-cos wt -

+ sin
(0to wto

t > to

4
QoeXp (-,6t)

- . t0

Qo ( t sin ---
1 -cos wt --+

w

(wzQo/3z) S exp (-/3t)-COS
wt+a s n wt}

415

In many practical situations, however, the loading is known only from
experimental data. The expression (9.80) must, therefore, be evaluated
numerically. Reference [9.15] suggests the following technique. Noting that

sin Wdr(t-T)=Sin wdrt COS (OdrT - COS wdrt sin (OdrT (9.83)

then (9.80) can be written in the form

qr(t) = Ar(t) sin Wdrt - B,(t) COS Wdrt (9.84)

where

Ar(t) = Q,(T) exp (yr(OrT) COS wd,T dT (9.85a)
Wdr 0
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and

exp (-Y^0
Br(t) = Qr(T) exp (YrWrT) Sin WdrT dT (9.85b)

Wdr 0

The integrals in the expressions for A,(t) and Br(t) are now evaluated
numerically using, for example, the trapezium rule or Simpson's rule. Since,
however, the time history of the response is required, it is better to evaluate
(9.85) in an incremental manner. For example, evaluating Ar(t) and Br(t)
at equal intervals of time AT and using the trapezium rule, A,(t) can be
evaluated as follows

Ar(t) = Ar(t - AT)

AT
+ exp (-YrWrt)

2Wdr

X [ Qr(t - AT) exp IYrWr(t - OT)} COS Wdr(t -AT)

+Qr(t) exp (YrWrt) COS Wdrt]

= Ar(t - AT)

AT+2W[Qr(t-AT)exp( YrW,AT)COSWdr(t-AT)dr

+ Qr(t) cos Wart] (9.86)

Br(t) is calculated using a similar expression with the cosine functions
replaced by sine functions.

The accuracy of the solution given by this procedure will depend upon
the choice of AT. It should be chosen small enough to ensure the loading
history and the trigonometric functions are accurately defined.

Example 9.12 Calculate the response of the system

q+(167r2)q = 24arz

with q = 0 and 4 = 0 at t = 0 for t < 0.6 s, by evaluating the Duhamel integral
numerically using AT = 0.05. Compare the results with the analytical solution
[9.14]

q=?(1-cos4Trt)

The values of the response are given in Table 9.8 where they are compared
with the analytical solution. The maximum response is underestimated by
3.3%.
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Table 9.8. Transient response of single degree of
freedom system. Example 9.12

t Approximate solution Analytical solution

0 0 0

0.05 0.2786 0.2865
0.1 0.5011 1.036
0.15 1.899 1.964
0.2 2.624 2.714
0.25 2.901 3.0
0.3 2.624 2.714
0.35 1.899 1.964
0.4 0.5011 1.036
0.45 0.2786 0.2865

0.5 0 0

0.55 0.2786 0.2865

0.6 0.5011 1.036

An alternative way of calculating the transient response, which is more
commonly used, is to solve equation (9.79) numerically by a step-by-step
procedure. The method will be presented with reference to the equation

mu+cti+ku=f (9.87)

This will facilitate the extension of the method to the direct analysis of
multi-degree of freedom systems in Section 9.5.2. In applying the technique
to the modal method put

m=1, c=2yrWr, k=Wrz, f=Qr (9.88)

The initial displacement and velocity at time t = 0, uo and tio, are usually
known. The acceleration at t = 0, uo, can then be calculated using equation
(9.87), that is

uo = (fo - ctio - kuo)/ m (9.89)

where fo is the value of f(t) at t =0.
In order to evaluate the response at time T, the time interval (0, T) is

divided into N equal time intervals At= TIN. The response (u, ti and u)
is then calculated at the times At, 2At, 3t,..., T, by an approximate
technique. This is illustrated in Figure 9.9. There are many such techniques
available, each with its own advantages and disadvantages. A few of the
more commonly used ones are described in the following sections.
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U

Figure 9.9 Step-by-step solution for transient response.

9.5.1.1 Central difference method
The central difference method consists of expressing the velocity and acceler-
ation at time tj in terms of the displacements at times tj_,, tj and tj+l using
central finite difference formulae. These are obtained by approximating the
response curve, shown in Figure 9.10, by a quadratic polynomial within the
interval (tj_, , tj+, ). That is

u=ar2+bir+c T60t

Evaluating (9.90) at r = -At, 0, At gives

a(t t)2-btt+c=uj_,
c=uj

a(tt)2+btt+c=uj+l

Solving (9.91) for a, b and c gives

a =
2(At)2

(uj+, -2uj+ uj_1)

1b=I t(uj+l-uj-1)

(9.90)

(9.91a)

(9.91b)

(9.91c)

c=uj

Differentiating (9.90) with respect to r and evaluating at t = 0 gives

1
uj = b =20t (uj+l - uj-l) (9.92)
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U

I

Uj-11
At I At

0 tJ + i

Figure 9.10 Central difference approximation.

and

t

ii;=2a= 1
(Qt)2(uj+,-2u1+uj_,) (9.93)

Reference [9.16] shows that the error in these approximations is of the
order (At)2.

The response at time t;+, is obtained by substituting (9.92) and (9.93)
into the equation of motion evaluated at time t;, that is

mii;+cii,+ku;=f; (9.94)

Methods based upon equation (9.94) are called explicit methods. Performing
the substitution gives

(ot)2(u;+,-2u;+u;_,)+2At(u;+,-u; _,)+ku;=f (9.95)c

Solving for u;+, gives

{m/(At)2+c/tot}u;+,

=f+{2m/(Ot)2-k}u;-{m/(At)2-c/2At}u;_, (9.96)

Hence, if the displacements u;_, and u1 are known, then the displacement
u;+, can be calculated. The time history of the response can be obtained
by taking j = 1 , 2, ... , provided u, and u° are known.

u, can be determined by evaluating (9.92) and (9.93) for j = 0

1u0_
2At(u'-u_1) (9.97)

(9.98)
(A t)
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Table 9.9. Central difference solution of single degree of
freedom system. Example 9.13

Approximate solutions

t At=1 At = 0.5 Analytical solution

0 1.0 1.0 1.0

0.5 0.8750 0.8776
1.0 0.5 0.5313 0.5403
1.5 0.0547 0.0707
2.0 -0.5 -0.4355 -0.4161
2.5 -0.8169 -0.8011
3.0 -1.0 -0.9940 -0.9900
3.5 -0.9226 -0.9365
4.0 -0.5 -0.6206 -0.6537
4.5 -0.1634 -0.2108
5.0 0.5 0.3346 0.2837

and eliminating u_, to give

u, = uo+AttiO+12(i t)zuo (9.99)

As previously mentioned, uo and do are given and iio can be calculated
using (9.89). The velocity and acceleration at each time step can be obtained
using (9.92) and (9.93).

Example 9.13 Calculate the response of the system

u+u=0
with uo = 1, do = 0 at t = 0 using the central difference method with At = 0.5,
1.0 and 3.0. Compare the results with the analytical solution, u = cos t.

When At = 1, uo = -1 and u, = 0.5. Repeated application of equation
(9.96) gives the values in Table 9.9. When At = 0.5, uo = -1 and u, = 0.875.
Subsequent values of u are also given in Table 9.9. Both sets of values are
compared with the analytical solution. The results given by the smaller time
step are closer to the analytical values. However, even the coarse time step
gives remarkably good accuracy. But, too large a time step should not be
used, as illustrated by the results for At = 3 given in Table 9.10. Not only
are the amplitudes in gross error, they increase in magnitude as time
increases. In such a situation, the numerical solution is said to be unstable.

The maximum value of At for which the solution is numerically stable
can be obtained by applying equation (9.96) to free vibration of an
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Table 9.10. Central difference solution of single degree of
freedom system. Example 9.13

Approximate solution

t At=3 Analytical solution

0 1.0 1.0

3 -3.5 -0.9900
6 23.5 0.9602
9 -161.0 -0.9111

12 1103.5 0.8439

undamped system. That is, f = 0 and c = 0. This gives

m 2m m
(AI)2 u;+, = (At)2- k u; - FA t-)-2 u1 (9.100)

Multiplying by (At)2/m and rearranging gives

u1+1 + {(c)0At)2 - 2}u1 + u1_, = 0 (9.101)

where coo=(k/m)'/2.
The solution of equation (9.101) is of the form

u1= A,61 (9.102)

where 6 is a parameter to be determined and A a constant. Substituting
(9.102) into (9.101) gives

A/31+'+{(wozt)2-2}A,(31+A(31-'=0 (9.103)

Dividing by A/31-' gives

,6 2+{(wo4t)2-2}f3+1 =0 (9.104)

Equation (9.104) is a quadratic equation in /3, the solution of which is

131,2=-i{(w0z t)2-2}±2{(w0 t)2-2)2-4}1/2 (9.105)

The general solution of equation (9.101) is of the form

u1= A1/3,1 +A2/321 (9.106)

This will represent an oscillation provided /3, and R2 are complex conjugates.
This will be the case if

{(a)o0t)2-2}2-4<0 (9.107)
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That is

((O0At)z{(w0At)z-4} <0 (9.108)

or

w0Ot<2

If this is the case then

102 = 91
*

(9.109)

(9.110)

where

( oAt)2-2}+i ((,),At)
{4-(wo t)2}112N1 = -2{()

2

and the asterisk denotes the complex conjugate. Putting

/3, = p exp (iO) (9.112)

then

-1}
z +(w0Lt)211-(,00t)2}

= 1 (9.113)pz= {(t)22
and so

p=1 (9.114)

This means that the oscillations will not increase in magnitude and the
numerical solution is stable.

Relationship (9.109) is the criterion for numerical stability. In Example
9.13, wO = 1. The results in Tables 9.9 and 9.10 indicate stable solutions
when At= 0.5 and 1.0 and an unstable solution for At= 3.0. Since wO =
27r/ rO, where TO is the period of oscillation, an alternative way of expressing
(9.109) is

AT/TO<1/Tr=0.318 (9.115)

Because of this restriction on step size for numerical stability, the method
is said to be conditionally stable.

From equations (9.111) and (9.112)

(wOAt){4-(wOOt)z}1/z
tan 0 = (9.116)

{2 - (wOAt )2}

Equation (9.106) now becomes

u; =A, exp {i(jO)}+A2 exp {-i(j9)}

= A3 cos (jO) + A4 sin (j8) (9.117)
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Table 9.11. Variation of the
distortion in frequency with
time increment for the central
difference method

wo0t 9/wo4t

0.00 1.0
0.25 1.0026
0.50 1.0106
0.75 1.0251
1.00 1.0472
1.25 1.0802
1.50 1.1307
1.75 1.2177

Now

j = t/Ot (9.118)

and so

u3=A3cosl 0 (9.119)

This equation represents an oscillation of constant amplitude with frequency
(O/Ot). The distortion in frequency caused by the numerical procedure is

0 _ 1 , wo/t{4-(wozt)2}'"z
woAt

w-Qt tan-
{2-(wo4t)2} (9.120)

The variation of 9/wo4t with too At is given in Table 9.11.
Reference [9.17] concludes that for good accuracy woAt = it/10 (i.e.,

At/ ro = 1/20). This will give a distortion in frequency of 0.4%.

Example 9.14 Repeat Example 9.12 using the central difference method
and a time step At = 0.05.

Changing to the present notation, the equation of motion is

u + (16Ir2) u = 24rr2

with uo = 0 and do = 0 at t = 0. Equation (9.89) gives iio = 24ir2 and (9.99)
U, = 0.296. Repeated application of (9.96) then gives the values in Table
9.12 where they are compared with the analytical solution. The maximum
response is underestimated by 0.07%.
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Table 9.12. Transient response of a single degree of
freedom system. Example 9.14

t Central difference Analytical solution

0 0 0
0.05 0.2961 0.2865
0.1 1.067 1.036
0.15 2.010 1.964
0.2 2.751 2.714
0.25 2.998 3.0
0.3 2.654 2.714
0.35 1.854 1.964
0.4 0.9148 1.036
0.45 0.2065 0.2865
0.5 0.088 0
0.55 0.3998 0.2865
0.6 1.225 1.036

U

U I U1' Uj+11

U1_21 i I i

r, At .r, At , i . At
. i

0 tj_2 t1_, t1 t1 + 1

Figure 9.11 Backward difference approximation.

b.- t

9.5.1.2 The Houbolt method

The Houbolt method [9.18] consists of expressing the velocity and acceler-
ation at time t;+1 in terms of the displacements at times ti-2 to t;+1 using
backward difference formulae. These are obtained by approximating the
response curve, shown in Figure 9.11, by a cubic polynomial within the
interval (tj_2i t,+,). Using Lagrange interpolation functions (Section 3.8)
gives

(2T+3T2+T3)UJ_2+'(37+4T2+ r3)U1_1U = -'6 2

-z(6T+5 r2+T) U1 +'-(6+ 11T+6T2+T3)U1+i

for -3-- T--0 (9.121)

where T = t/Ot.
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Rearranging gives

u =6{6u;+,+(-2u1_2+9u;_,-18u;+llu;+,)z

+(-3uj_2+ 12u;_, -15u;+6u;+,)T2

+(-u;_2+3u3_,-3u;+u;+,)T3}

Now

1 duu;+1 =-
At dT T-o

and so

ti;+1 =
1

6I
(-2uj_2+9u;_, -18u; + 11 u,+,)

Similarly

1
2

uj+1(L)t)2(d;) T=0

and so

1

u;+1 = (ot)2 (-u;-2+4u;_, - 5u; +2u;+1)

(9.122)

(9.123)

(9.124)

(9.125)

(9.126)

Reference [9.17] indicates that the error in the approximations (9.124) and
(9.126) is of the order (At)3.

The response at time t;+1 is obtained by substituting (9.124) and (9.126)
into the equation of motion evaluated at time t;+,, that is

mi +l+cti;+l+ku;+1=f+1 (9.127)

Methods based upon equation (9.127) are called implicit methods. Perform-
ing the substitution gives

m
2 u;+,)(0t)2 (-uj_2+4u;_, - 5u3 +

+6Qt (-2u;_2+ 9u;_, -18u;+11u;+,)+ku;+1=f+1 (9.128)

Solving for u;+, gives

{2m/(Ot)2+ 11 c/60t+ k}u;+1

=j +1+{5m/(At)2+3c/Ot}u; -{4m/(ot)2+3c/20t}u;_,

+{m/(At)2+c/30t}U _2 (9.129)
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If the displacements uj_2i u;_, and u3 are known, then the displacement
u;+, can be calculated. The time history of the response can be obtained
by taking j = 2, 3, ... , provided u0, u, and u2 are known. uo and Rio at t = 0
are specified. It is usual to obtain u, and u2 using a different numerical
procedure, for example, the central difference method. This may involve a
smaller time step, At, for this initial phase.

Stability of the method is investigated by considering free vibration of
an undamped system. Equation (9.128) reduces to

m +k+4 +2 =0-5 (9 130)u;+,) u;+,u;_, u;(Ot)2(-u;_2 .

Multiplying by (At)2/m and rearranging gives

{2+(wo4t)2}u;+,-5u;+4u3_,-uj_2=0 (9.131)

where wo=(k/m)'12.
The solution of equation (9.131) is of the form

u;=AI3 (9.132)

Substituting (9.132) into (9.131) gives

{2+((Oo4t)2}A(3'+'-5A/33+4A$'-'-A,3j-2=0 (9.133)

Dividing by AI3 2 gives

{2+ (wo4t)2},(33 -5p2 +4/3 -1= 0 (9.134)

This is a cubic equation in f3. All the coefficients are real and they alternate
in sign. Therefore, there will be one real root, which will be positive, and
one pair of complex conjugate roots. For stability, the modulus of each
root must be less than or equal to unity. The largest modulus is known as
the spectral radius. Therefore, for stability the spectral radius must be less
than or equal to unity.

Example 9.15 Investigate the stability of the Houbolt method for the case
wo0t = 0.5.

When wont = 0.5 equation (9.134) becomes

2.25/33-5132+4,6 -1 =0 (9.135)

Substituting

a 2.25
(a+3)

into (9.135) gives the reduced cubic equation

a3+aa+b =0

(9.136)

(9.137)
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where
293 (9.138)a=3, b-4322

Now put

a = r+s

where r and s are to be determined. Now

a3= r3+s3+3rs(r+s)

or

a3-3rsa-(r3+s3)=0

Comparing (9.137) and (9.141) gives

r3+s3 = -b,

(9.139)

(9.140)

(9.141)

rs = -.a/3 (9.142)

Hence r3 and s3 are the roots of the quadratic equation

A2+bA -a3/27=0 (9.143)

and so

A, = r3={-b/2+(b2/4+a3/27)1/2}
(9.144)

A2 = s3 = {-b/2 - (b2/4+ a2/27)"2}

Substituting for a and b gives

r3 = 0.0158113, s3 = -0.6940519 (9.145)

The roots of equations (9.145) are

r = 0.25099, 0.25099 exp (i2a/3), 0.25099 exp (i4vr/3)
(9.146)

s = -0.885382, -0.885382 exp (i27r/3), -0.885382 exp (i47r/3)

From (9.142) and (9.138)

rs = -a/3 = -2/9 (9.147)

Therefore the roots r and s can only be taken in the following combinations

r, = 0.25099, s, = -0.885382

r2 = 0.25099 exp (i27r/3), s2 = -0.885382 exp (i4ar/3) (9.148)

r3 = 0.25099 exp (i47r/3), s3 = -0.885382 exp (i21-/3)
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Using (9.139), the roots of (9.137) are

a, = -0.634392

a2 = 0.317196+iO.984127 (9.149)

a3 = 0.317196 - iO.984127

Finally, substituting the solutions (9.149) into (9.136) gives the roots of
equation (9.135), namely

f3, = 0.4587887

R2 = 0.8817167+iO.4373897 (9.150)

R3 = 0.8817167 - iO.4373897

The spectral radius is, therefore, 0.9842428 and the solution is stable.
Reference [9.19] shows that the method is stable however large the time
step is. Because of this, the method is said to be unconditionally stable.

Example 9.16 Repeat Example 9.13 using the Houbolt method with At= 0.5.
The values u, and u2 were obtained using the central difference method.

The same time step was used, as this is within the limit for stability, and
so the values are identical to the corresponding ones in Table 9.9. These
and subsequent values, obtained by a repeated application of equation
(9.129) are given in Table 9.13 where they are compared with the analytical
solution. There is a suggestion that the period is increased and the maximum
amplitude has decreased. This is confirmed in Figure 9.12 where the response
has been plotted for an increased length of time. The figure clearly indicates
that the numerical solution has introduced artificial damping or amplitude
decay. Reference [9.19] indicates that both period elongation and amplitude
decay increase, with an increase in At. It is concluded that for good accuracy
0 t/ To = 0.01 (i.e., woo t = ir/ 50).

Example 9.17 Repeat Example 9.12 using the Houbolt method and a time
step of 0.05.

The values of u, and u2 were obtained using the central difference method
using the same time step. These values are given in Table 9.12. The complete
set of values are given in Table 9.14, where they are compared with the
analytical solution. The maximum response is overestimated by 2.4% and
there is period elongation. Comparing Tables 9.12 and 9.14 indicates that
the Houbolt method requires a smaller time increment than the central
difference method, to give the same accuracy.
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U

Table 9.13. Solution of a single degree of freedom system
using the Houbolt method. Example 9.16

Approximate solution

t At=0.5 Analytical solution

0 1.0 1.0

0.5 0.8750 0.8776
1.0 0.5313 0.5403
1.5 0.0694 0.0707
2.0 -0.4012 -0.4161
2.5 -0.7790 -0.8011
3.0 -0.9869 -0.990
3.5 -0.9866 -0.9365
4.0 -0.7841 -0.6536
4.5 -0.4272 -0.2108
5.0 0.0062 0.2837

1.0

A

A

0

-1.0

V

49.5

t (s)

Figure 9.12 Response of a single degree of freedom system using the Houbolt
method. At= 0.5.
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Table 9.14. Transient response of a single degree
of freedom system. Example 9.17

t Houbolt Analytical solution

0 0.0 0.0

0.05 0.2961 0.2865

0.1 1.067 1.036
0.15 1.981 1.964
0.2 2.725 2.714
0.25 3.073 3.0
0.3 2.939 2.714
0.35 2.388 1.964
0.4 1.609 1.036
0.45 0.8435 0.2865

0.5 0.3187 0
0.55 0.1755 0.2865
0.6 0.4320 1.036

u

0
tj T tj+1

a- t

Figure 9.13 Linear acceleration approximation.

9.5.1.3 The Newmark method

The Newmark method [9.20] is a generalisation of the linear acceleration
method. This latter method assumes that the acceleration varies linearly
within the interval (t t;+,) as illustrated in Figure 9.13. This gives

1u=u;+ 1 (4i;+1-u;)T for0-T-- At (9.151)

Integrating gives

1u=u,+UjT+2 (iii +1-iii )T2 (9.152)
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since ti = ti; when T = 0. Integrating again gives

1
2u = uj+U;T+2U;T +60t (U;+1 - U;)T3 (9.153)

since u = uj when r = 0.
Evaluating (9.152) and (9.153) at r =At gives

A ut+ j+uj+,)Uj+,=Uj+u;
6

(2 (9.155)

In the Newmark method, equations (9.154) and (9.155) are assumed to
take the form

iij+1 =ti;+zt{(1-y)uj

and

Uj+l = Uj+UjOt+(Ot)2{(2-/3)uj+/3u;+1}

(9.156)

(9.157)

Taking y = 2 and /3 = 16, equations (9.156) and (9.157) reduce to equations
(9.154) and (9.155). The linear acceleration method is, therefore, a special
case of the Newmark method. It can be similarly shown that taking y = 2
and /3 = a corresponds to assuming that the acceleration is constant and
equal to the average value (u;+u;+,)/2 within the interval (tj, tj+,).

The response at time tj+, is obtained by evaluating the equation of motion
at time t;+, , that is

mu;+, + cij+, + kuj+1 = f +I (9.158)

The method is, therefore, an implicit method.
In order to get an equation for uj+,, equation (9.157) is solved for

which gives
uj+1

(9.159)

Substituting (9.159) into (9.156) gives

Uj+,=-Qt(u;+,-u;)+I 1-Za )iii (9.160)
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Now substitute (9.159) and (9.160) into (9.158) to give

N(At)2(u;+1-u;)- M Iii-M(2 u;+/3At`u;+l-ul)
PAt

+cl P) 4i + CAt ( 1-2a Iu;+ku;+,=f+, (9.161)

Solving for uj, gives

{m//3(Ot)2+yc/f3z t+k}u;+1

1+{m/a(ot)2+ yc/pLt}u; l+{m//3zt -c(1-=1+14

+ 2R - (9.162)

If u;, ii; andii are known, then u;+, can be calculated using (9.162).
Equations (9.159) and (9.160) can then be used to calculate ii;+, and ti;+, .

The time history of the response is obtained by taking j = 0, 1, 2, .... At
t = 0, u0, do are given and uo can be calculated using equation (9.89) and
so no special starting procedure is required.

Reference [9.19] investigates the stability of the method and indicates
that it is unconditionally stable provided

y-2 and a 4(y+2)2 (9.163)

Unless y is taken to be 12, the method introduces artificial damping, which
can be negative (when y < D. This means that the oscillations will increase
in amplitude. Note that the constant average acceleration method is uncondi-
tionally stable, whilst the linear acceleration method is conditionally stable.
Reference [9.19] indicates that for good accuracy, the constant average
acceleration method should be used with a time step given by Ot/TO=0.01
(or w0At = IT/50).

Example 9.18 Repeat Example 9.12 using the Newmark method with y =
2and /3 = 4 and a time step of 0.05.

Equation (9.89) gives iio = 24x2. Repeated application of equations
(9.162), (9.159) and (9.160) gives the values in Table 9.15 where they are
compared with the analytical solution. Comparing Tables 9.14 and 9.15
indicates that the Newmark method, with y = 2 and i6 = 4, produces less
period elongation than the Houbolt method.

Reference [9.13] presents an alternative formulation of the Newmark
method. The equation of motion (9.87) is evaluated at times t;+,, t; and t;_,
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Table 9.15. Transient response of a single degree
of freedom system. Example 9.18

t
Newmark
y =1,13 =12 4 Analytical solution

0 0 0
0.05 0.2695 0.2865
0.10 0.9810 1.036
0.15 1.879 1.964
0.20 2.641 2.714
0.25 2.993 3.0
0.30 2.808 2.714
0.35 2.154 1.964
0.40 1.264 1.036
0.45 0.4596 0.2865
0.50 0.0288 0
0.55 0.1266 0.2865
0.60 0.7179 1.036

to give

m6;+, + cti1+1 + ku1+1 = f+1

mul+cti;+kul=fl

ma;_, + ctil_, + ku;_, =f1 _,

(9.164)

(9.165)

(9.166)

Multiplying (9.164) and (9.166) by (At)26 and (9.165) by (At)2(l -2f3)
and adding gives

(Ot)2m[{Ru1+i+(2I -l3)u1}

-{f3u1+(z-/3)u1_,}+2{u1+u1_,}]

+(At)2C[I(u1+u1-1)+{/3(u1+.-111)}+{(2 f3)(u1 u1-1)}]

+(At)2k{/3uu+1+(1-2,6)u1+ f3u1-1}

_ (zt)2{f3f+1+(1-21).f +(3.1;-,} (9.167)

Note that the terms multiplied by m and c have been expanded in a form
that facilitates simplification. Writing equation (9.156) with y = z and (9.157)
in the forms

(At)2{f3ui+.+(z- f3)u1} = u1+1- u1-Atti1

2t (iii +u1-1) = (u1 - u1-1)

(9.168)

(9.169)
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Otit;=u;+,-u;-(Ot)2{(''2-/3)u;+Ru;+,} (9.170)

uj+l -uj = At(u;+1 + uj)

and substituting in (9.167) gives, after collecting terms

m[u;+1-2u;+u;_1]+c'
(At

)(ui+l-uj-1)

(9.171)

+ k(A t)2{/3u;+1 + (1- 2/3) u; + /3u;_

_ (Ot)2{/3j;+1+(1-2/3)f +/if-1} (9.172)

Solving for u;+, gives

{m+ZCOt+/3(At)2k}U;+1

_ (At)2{/3f+1
+(1 -2a)f +/3f-1}

+{2m -(1-2/3)(Ot)2k}u; -{m -ZCOt+$(Ot)2k}u;_, (9.173)

Taking /3 = 0, equation (9.173) reduces to equation (9.96). The central
difference method is, therefore, a special case of the Newmark method.

This form of the Newmark method requires a special starting procedure
as does the central difference method. The displacement u, at time At is
obtained using (9.164), (9.165), (9.156) and (9.157). Taking j=0 in these
equations gives

mu,+cu,+ku,=ft

muo+ ctio+ kuo =fo

ti, = tio+
At

(uo+ u, )

and

(9.174)

(9.175)

(9.176)

U1 = uo+Ottio+(At)2[(z-/3)uo+/3u",] (9.177)

Substituting for iio and u, in (9.176) and (9.177) from (9.174) and (9.175)
gives

2
) 2 2)m+Ot c u,=-Ot k(uo+u,)+ m--t c uo

+ 2t(.fo+.f1) (9.178)
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and

f3(Ot)2cU1={m-(2-/3)(Ot)2k}uo-{m+a(ot)2k}u,+{mit

-(z- )(Ot)2C}tio+(Ot)2{(2-Q).fo+/3.f1}
(9.179)

Eliminating ti, between (9.178) and (9.179) gives

a, u, = a2 uo + a3 tiio + a4 fo + a5 f, (9.180)

where

al=m+At c+3(At)2k

At ck
«2 = m+- c - (2- f3)(Ot)2k - (4'-l3)(t t)3 m

a3= mAt-(a-l3)(ot)2 f2 (9.181)

J( /
m

a4=(Ot)21 (2-Y)+(4-a)zt C}
l m

a5 = p(At)2

Stability of the method can be investigated in the same way as the central
difference method. Considering free vibration of an undamped system,
equation (9.173) becomes

{m +/3(At)2k}u;+,

={2m-(1-2/3)(Ot)2k}u;-{m+a(Ot)2k}u;_, (9.182)

Dividing by m and rearranging gives

{1+/3((Oozt)2}u,+,

+{(1-2,0 )(u,oot)2-2}u;+{1+/3(woAt)2}u;_, = 0 (9.183)

where wo=(k/m)112.

The solution of (9.183) is of the form

uj = AS' (9.184)

Substituting (9.184) into (9.183) and dividing by AS'-' gives

{1+/3(WOAt)2}S2

+{(1-20 )(wOOt)2-2}3+{1+/3(wOOt)2}=0 (9.185)
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The condition that the roots of (9.185) are complex conjugates is

{(1-2/3)((eoit)2-2}2-4{1+/3((OoAt)2}2<0 (9.186)

that is

(wo0t)2{(1-4/3)((Oo0t)2-4}<0 (9.187)

or

/ 22
( ---- I(1-4/3)< (9.188)

This will be satisfied for /any value of wo0t, however large, provided

4 (9.189)

The modulus of the two complex roots is given by

Isle-{1+/3(wo1t)z}=1
(9.190){1+/3(w0At) }

The method is, therefore, unconditionally stable provided (9.189) holds.
This agrees with (9.163) when y=21. Reference [9.21] recommends using
/3 =N-3

Example 9.19 Repeat Example 9.12 using the alternative formulation of the
Newmark method with 9 =3' and a time step of 0.05.

u, is calculated using equation (9.180) whilst subsequent values are
calculated using equation (9.173) repeatedly. The values are given in Table
9.16 where they are compared with the analytical solution. Comparing
Tables 9.15 and 9.16 indicates that using /3 = 3 produces greater period
elongation than when using /3 = 4.

Reference [9.21] indicates that the error in frequency is given by

Wf = 1 -8((O0Ot)2
wo

(9.191)

where wf is the frequency given by the numerical procedure. This means
that the period elongation is

PE=100(Tf-TO) 12.5(woAt)2
(9.192)

To {1 - (wo0t)2/8}

9.5.1.4 The Wilson 0 method
The Wilson 0 method [9.22] is an extension of the linear acceleration
method. The acceleration is assumed to vary linearly over the extended
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Table 9.16. Transient response of a single degree
of freedom system. Example 9.19

Newmark
t y = 2 =; Analytical solution

0 0 0
0.05 0.2617 0.2865
0.10 0.9553 1.036
0.15 1.839 1.964
0.20 2.604 2.714
0.25 2.985 3.0
0.30 2.847 2.714
0.35 2.239 1.964
0.40 1.374 1.036
0.45 0.5522 0.2865
0.50 0.0614 0
0.55 0.0726 0.2865
0.60 0.5817 1.036

ii

0 tj

uj+e

T tj+1 ti+o
t

Figure 9.14 Linear acceleration approximation over extended interval.

interval (t;, tj+B), where 0 -- 1, as illustrated in Figure 9.14. This gives

ii=iii +
1e (ii;+e-li;)T for 0-- T-- 90t (9.193)

Integrating gives

U = t i , + ujr+
1

( uJ+9 - uj)T2
20At

since ti = iy when r = 0. Integrating again gives

/
u = U , + UST+Z UjT2+

1
(U +0 - U3)T3

60At

(9.194)

(9.195)

since u = u; when r = 0.
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Evaluating (9.194) and (9.195) at z = 9At gives

OAt
tij+e=Iii + 2 (uj+e+iii)

and

(901)2
uj+e = uj+OAtuj+ 6 (uj+B+2uj)

(9.196)

(9.197)

The response at time tJ+B is obtained by evaluating the equation of motion
at time tj+ei that is

muj+e+cuj+0+kuj+e=f +0(fj+1-.f) (9.198)

where fj+B is obtained by linear extrapolation.
In order to get an equation for uj+B, equation (9.197) is solved for uj,

which gives

6 6
t)2(uj+,,-u)----- uj-2uj (9.199)uj+e=(6,

OAt

Substituting (9.199) into (9.196) gives

j- 2 uj6j+0 =
3

eot(u;+e-uj)-2u
60t

(9.200)

Substituting (9.199) and (9.200) into (9.198) and solving for uj+B gives

{6m/(6z t)2+3c/(Oz t)+k}uj+e

=f+9(fj+,-fj)+{6m/(Oz t)2+3c/(9z t)}uj

+{6m/(9At)+2c}uj+{2m+(OAt)c/2}uj (9.201)

If uj, tij and uj are known, then uJ+q can be calculated using (9.201).
Putting r = At in (9.193) gives

uj+1-uj+B(uj+9-uj)

Substituting for uj+q in (9.202) from (9.199) gives

uj+t=B At{90t(uj+e-uj)-uj}+(1-e)uj

(9.202)

(9.203)

After calculating uj+B from (9.201), iij+, can be calculated using (9.203).
and uj can now be obtained from (9.194) and (9.195) with r =At and
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0 = 1, that is

u;+1 = tii+ 2t(u;+1+u;)

and

(At)2
Uj+1=u;+Atti;+ 6 (u;+1+2u;)

(9.204)

(9.205)

The time history of the response is obtained by taking j = 0, 1, 2, .... At
t = 0, uo and uo are given and uo can be calculated using equation (9.89)
and so no special starting procedure is required.

Reference [9.19] investigates the stability of the method and indicates
that it is unconditionally stable provided 0 , 1.37. It is usual to take 0 = 1.4.
With 0 = 1.4, the method produces less period elongation than the Houbolt
method but more than the Newmark method with y = 2 and a =;. The same
applies to the amplitude decay. For good accuracy the Wilson 0 method
should be used with a time step given by Ot/-ro=0.01 (or w0It=7x/50).

Example 9.20 Repeat Example 9.12 using the Wilson 0 method with 0 = 1.4
and a time step of 0.05.

Equations (9.201), (9.203), (9.204) and (9.205) become

u;+,, = 0.1713469+0.8857688u; +0.06200382ti3 +0.001446756ii;

u;+1= 874.6355(u3+e - u;) -61.22449tiu -1.142857u3

tij+1= ti; + 0.025 (uj+1 + ii;)

u;+ 1 = u; + 0.05 ti; + 0.0004166667 (u;+ 1 + 2 ii; )

At t =0, uo = 0, do = 0 and iio = 247rz.

Repeated application of these equations gives the values in Table 9.17 where
they are compared with the analytical solution. Comparing Tables 9.15 and
9.17 indicates that the Wilson 0 method, with 0 =1.4, produces more period
elongation than the Newmark method with y = 2 and a = 4. Also comparing
Tables 9.14 and 9.17 indicates that the Wilson 0 method, with 0 = 1.4,
produces less period elongation than the Houbolt method.

9.5.2 Direct analysis

The methods presented in the previous sections can be used to solve the
equation

Mu + Cu + Ku = f (9.206)
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Table 9.17. Transient response of a single degree of freedom
system. Example 9.20

t Wilson 0, 0 = 1.4 Analytical solution

0 0 0

0.05 0.2719 0.2865

0.10 0.9707 1.036
0.15 1.841 1.964
0.20 2.583 2.714
0.25 2.948 3.0
0.30 2.818 2.714
0.35 2.245 1.964
0.40 1.430 1.036
0.45 0.6526 0.2865
0.50 0.1736 0
0.55 0.1501 0.2865
0.60 0.5827 1.036

directly. This has the advantage that the frequencies and modes of free
vibration of the undamped system do not have to be calculated prior to the
response analysis. The form of the equations as applied to multi-degree of
freedom systems are given in the following sections.

9.5.2.1 Central difference method
In Section 9.5.1.1 it is shown that for a single degree of freedom system the
central difference method consists of

(1) calculating uo using (9.89),
(2) calculating u, using (9.99) and
(3) repeated application of (9.96).

For a multi-degree of freedom system these become

(1) solve the equation

Muo = fo - Cu0 - Kuo

for the column matrix iio.

(2) calculate u, using

u, =uo+Otuo+{(At)2/2}uo

and
(3) repeated solution of the equation

(9.207)

(9.208)

[a,M+a2C]u1+, =f;+[2a,M-K]u;-[a2M-a2C]u;_, (9.209)
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for u;+, where

a, =1/(At)2, a2 = 1/2zt (9.210)

It is necessary to solve a set of linear equations in order to determine both
uo and u3+, . These can be solved using the modified Cholesky symmetric
decomposition described in Section 8.9.2.

For lightly damped systems the effect of damping on the response is
negligible. Putting C = 0 in (9.207) and (9.209) gives

Miio = fo - Kuo (9.211)
and

a, Mu;+, = f; + [2a, M - K]u, - a, Mu; _, (9.212)

If the inertia matrix M is diagonal, then both iio and u;+, can be calculated
without solving a set of linear equations. This is why the method is called
an explicit method.

The inertia matrices for various elements are presented in Chapters 3 to
7. These use the same displacement functions as the derivation of the
stiffness matrices. The resulting matrices are termed consistent inertia
matrices and are non-diagonal.

One method of obtaining a diagonal inertia matrix is to place discrete
masses, that do not have any rotary inertia, at each node. The resulting
matrix is termed a lumped mass matrix. The discrete masses are chosen in
such a way that the total mass of the element is preserved.

The lumped mass matrix for the rod element presented in Section 3.3 is

01
[m] = pAa

r0
1 (9.213)

This result can also be obtained by taking

NI(f)_ 1 -10
0 0<

and (9.214)

N2()
(0 -1_- 6<0

1 0<1=_-1

in (3.52).

The lumped mass matrix for the beam element presented in Section 3.5
is

[m]=pAa
1

a1

(9.215)
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This result can be obtained by taking

Nj)_ 1

0 0<e,1

N2() = 0

N3()
0 e<0
1 O1

N4(b) = 0

(9.216)

in (3.124).
An alternative procedure is to derive the diagonal inertia matrix from

the consistent inertia matrix [9.23]. The technique is to compute the diagonal
terms of the consistent inertia matrix and then scale them so as to preserve
the total mass of the element. The scalar factor is obtained by dividing the
total mass, by the sum of the diagonal terms associated with translation.

Applying this technique to the rod element (3.59) gives (9.213). The beam
element (3.132) gives the following matrix

178

[m] - pAa 8a2

78 78
(9.217)

Example 9.21 Repeat Example 3.3 using the diagonal inertia matrix (9.213).
Example 3.3 analyses a clamped-free rod using one and two element

idealisations.

One element solution In this case a = L/2 and so the inertia matrix is

pAL I I 01
[m] 2

0 1

The equation of motion is

L z=LA-cot p2LJA 0

the solution of which is

E 1/2

to, = 1.4141
P
L2>
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Two element solution
In this case, a = L/4 and so

pAL 1 0

4 0 1

The equation of motion is

2

[2LA[-1 1]
-w2p4L[0

1]]LA3J -0
Letting w2pL2/8E = A, this equation simplifies to

[(2-1A) (1-A)JLA3]-0

For a non-zero solution

(2-2A)(1-A)-1=0

that is

2A2-4A+1 =0

The two roots of this equation are

A = 0.293 and 1.707

The natural frequencies are therefore

l
1/2 E \ 1/2E

(8A 1)1122= 1.531(_ )
GL oL

E 1/2 / E I/2

w2 = 3.6951 PL2)
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The values of w (pL2/ E )1/2 obtained are compared with exact values in
Table 9.18. The approximate frequencies are less than the exact ones and
approach them as the number of elements increases. These results should
be compared with the ones obtained with consistent inertia matrices in
Table 3.3.

Example 9.22 Repeat Example 3.7 using the diagonal inertia matrices
(9.215) and (9.217).

Example 3.7 analyses a cantilever beam using a one element solution.
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Table 9.18. Comparison of approximate frequencies with
the exact solution for a rod

FEM solutions

Mode 1 element 2 elements Exact solution

1 1.414 1.531 1.571
2 - 3.695 4.712

Since a = L/2 matrix (9.215) becomes

[m]
=p2L 0 1

0

The equation of motion is

E
IZ[

612 -6L]
L 4L2 2pL[0 0JJL9 2J =0[ L

Letting w2pAL4/2EIZ = A, this equation simplifies to

(12-A) -6 V24J[LBZ2J
=0

This equation has non-zero solution provided

4(12-A)-36=0

that is

A=3

and so

1 =
EI q

1/2 ( EI 4) 1/2
(2A )'/Z (pAL = 2.499 pAL

Matrix (9.217) becomes

[m)-p2L L2/39

I
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The equation of motion is

E
IZ[ 6L 4L2 ] -w2 pL[0 L2/391110J 0

[ L

Letting w2pAL4/2EIz = A, it becomes

(12-A) -6 v2
0

[ -6 (4-A/39)] 6 2]

For a non-zero solution

(12-A)(4-A/39)-36=0
that is

A2-168A+468=0
the solutions of which are

A = 2.834 or 165.2

The natural frequencies are, therefore

EI 1'/2 EI \ 1/2

w, _ (2A )1/2
pALo = 2.381 pAL°

EI '/2 / EI l 'i2
wz= (2A2)1/2\pAL'/ =18.18\pAL'/

The values of w (pAL4/ EII )1"2 obtained are compared with the consistent
inertia and analytical solutions in Table 9.19. The frequencies obtained with
consistent inertia matrices are greater than the analytical frequencies, whilst
those obtained with both types of diagonal matrices are less than the
analytical ones.

Reference [9.23] has analysed a simply supported square plate having a
span/thickness ratio of 10 and v = 0.3. Half the plate was represented by
a (4 x 2) mesh of eight node isoparametric elements (RH) as described in
Section 6.7. Frequencies are calculated using consistent, lumped and
diagonal inertia matrices. The computed frequencies are compared with
analytical frequencies obtained using Midlin's thick plate theory in Table
9.20. In this Table m, n denote the number of half-waves in the x- and
y-directions. The diagonal inertia matrix produces accurate results. Further
comments on diagonal inertia matrices can be found in reference [9.24].

9.5.2.2 The Houbolt method
In Section 9.5.1.2, it is shown that for a single degree of freedom system,
the time history of displacement can be obtained by repeated application
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Table 9.19. Comparision of consistent and diagonal
inertia solutions for a cantilever beam using one element

Inertia matrix Mode 1 Mode 2

Consistent (3.132) 3.533 34.81
Lumped (9.215) 2.449 -
Diagonal (9.217) 2.381 18.18
Analytical 3.516 22.04

Table 9.20. Percentage errors in the natural frequencies of a
simply supported square plate when compared with
analytical solution [9.23]

Mode Type of inertia matrix

m n Consistent Lumped Diagonal

1 1 0.11 0.54 0.54
2 1 -0.05 -0.09 0.81
2 2 0.21 -3.6 -2.2
3 1 5.9 -5.1 0.70
3 2 5.5 -9.4 -2.2
3 3 14.9 -18.6 -4.2

of equation (9.129), after calculating u, and u2 using a different numerical
procedure. For a multi-degree of freedom system, equation (9.129) becomes

[a,M+ a2C+ K]u;+, = f,+, + [a3M+ a4C]uu - [2a,M+ a5C]u,_,

+ [a6M+ a7C]uj_2 (9.218)

where

a,=2/(At)2, a2=11/60t, a3=5/(At)2 (9.219)

a4=3/At, a5 = 3/2At, a6 = 1/(t t)2, a7=1/30t

It is necessary to solve a set of linear equations in order to determine
u;+, , even when C = 0 and M is diagonal. This is because K is never diagonal.
The method is, therefore, referred to as an implicit method.

9.5.2.3 The Newmark method
For a single degree of freedom system the Newmark method consists of
repeated application of equations (9.162), (9.159) and (9.160). For a multi-
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degree of freedom system these become

[a,M+a2C+K]uj+, =f;+,+[a,M+a2C]uj

+ [a3M - a4C]uj + [a5M - a6C]uj

aj+, = a,{uj+, -u}- asuj - a5uj

fi;+, = a2{u j+, - u3 } + a4u j + a6ii j

where

(9.220)

(9.221)

(9.222)

a,=1//3(ot)2, a2=ylait, a3=1/f3zt (9.223)

a4=(1-Y/f3), a5={(1/2/3)-1}, a6={1-(y/2f3)}At
It is necessary to solve a set of linear equations in order to determine uj+,.
The modified Newmark method, as applied to a single degree of freedom

system consists of

(1) calculating u, from (9.180) and
(2) repeated application of (9.173).

For a multi-degree of freedom system these become

[M + a,C+ a2K]u, = [M + a,C - a3K - a4M-'CK]uo

+ [2a,M - a4M-'C2]uo

+[a3+a4M-C]fo+a2f, (9.224)

and

[M+ a,C + a2K]uj+, = a2fj+i + 2a3fj + a2fj_, + [2M - 2a3K]uj

- [M - a,C+ a2K]uj_, (9.225)

where

a, = 0t/2, a2 = f3(At)2

(I4_ /
a3=(i-l3)(Ot)2,

a4=l3)(Ot)3

(9.226)

It is necessary to solve a set of linear equations to determine both u, and
uj+I

9.5.2.4 The Wilson 0 method

For a single degree of freedom system the Wilson 0 method consists of
repeated application of equations (9.201), (9.203), (9.204) and (9.205). For
a multi-degree of freedom system these become

[a,M+ a2C+K]uj+e = fj + 0(fj+, - fj) + [a,M+ a2C]uj

+[2a2M+2C]uj+[2M+a3C]aj (9.227)
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Uj+l =a4{uj+9-uj}-a51 j+a6Uj (9.228)

uj+l = uj + a7{uj+l +uj} (9.229)

uj+l = uj +2a7uj+ a8{iij+l +2uj} (9.230)

where

a,=6/(0ot)2, a2 = 3/(OAt), a3=0ot/2

a4-6/0(0ot)" a5=6/0(oAt) (9.231)

a6=(1-3/0), a7=At/2, a8=(1t)2/6

uj+9 is obtained by solving a set of linear equations.

9.5.3 Selecting a time step

When applying step-by-step integration techniques to multi-degree of free-
dom systems, the time step At is selected on the basis of the shortest period,
which corresponds to the highest frequency mode. It should also be small
enough to ensure that the time history of the excitation is adequately defined.

For large order systems the required time step will be very small indeed,
resulting in many time steps being required to determine the response over
the time interval of interest. One way of overcoming this is to use the modal
method, retaining only those modes which contribute significantly to the
response. These will usually be the lower frequency modes. The number to
be included is usually determined from considering the spatial distribution
and frequency content of the excitation, as described in Section 10.2. The
highest frequency of the modal model will be less than the highest frequency
of the complete system, resulting in a larger period on which to base the
time increment.

If a direct analysis is used, the time step can be based upon the period
corresponding to the highest frequency likely to contribute to the response,
if an unconditionally stable method is used. The response in the higher
frequency modes will be stable but inaccurate. However, this is of no
consequence since their contribution is negligible. Better still, use an uncon-
ditionally stable method which gives amplitude decay for large time steps.
This will ensure that the unwanted, high frequency components decay
rapdily.

The modal method should be used for large order systems or when many
time steps are required, especially when the high frequency response is not
important. The direct method should be used for small order systems and
when only a few time steps are required. It should also be used when
the high frequency response is important, such as is the case for shock
loading.
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f(t)

Figure P9.4

Problems

9.1 Use modal analysis to derive an expression for the transfer receptance
a21 of the system shown in Figure P1.1 with k, = 3000, k2 = k3 = 2000,
k4 = 1000 N/m and m, = m2 = m3 = 1 kg. Determine the frequencies at which
resonances and anti-resonances occur.

9.2 Use Crout factorisation to solve equation (9.42) for the system defined
in Example 9.2 when W2 = 3000 (rad/s)2.

9.3 A clamped-free rod of length 1 m and cross-sectional area 4 x 10-4 m2
is subject to a harmonic force of magnitude 1000 N at its free end. Calculate
the response at the free end at the lowest undamped natural frequency.
Take E = 207 x 109 N/ M2 and p = 7850 kg/m3. Assume structural damping
with a loss factor q = 0.04. Compare the solution with the analytical solution
24.52 x

10-5
exp {i(wt -1.5608)}.

9.4 Find the Fourier series expansion of the forcing function illustrated in
Figure P9.4 where

f(t)=Psin (vrt/T) 0,t ,'r
9.5 Repeat Example 9.12 using AT = 0.025.

9.6 Investigate the stability of the central difference method by considering
the free vibration of a viscously damped single degree of freedom system.

9.7 Derive expressions for velocity and displacement assuming constant
average acceleration within a time increment. Compare them with the
corresponding expressions for the Newmark method when y ='2 and 6 ='44-

9.8 Calculate the response of the system defined in Example 9.13 using the
linear acceleration method. Show that the method is stable for At = 1.0 but
unstable for At = 6.0.
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Forced response II

This chapter begins with the solution of equation (9.1) when the applied
forces are random. The next section presents methods of improving the
convergence and accuracy of the modal method of forced response. This
is followed by an analysis of the response of structures to imposed displace-
ments. Finally, the techniques of reducing the number of degrees of freedom
presented in Section 8.8 are extended to forced response analysis.

10.1 Response to random excitation

Harmonic, periodic and transient forces, which are treated in Chapter 9,
are termed determinisitic, since their magnitude can be described by explicit
mathematical relationships. In the case of random forces, which are caused
by gales, confused seas, rough roads, turbulent boundary layers and
earthquakes, there is no way of predicting an exact value at a future instant
of time. Such forces can only be described by means of statistical techniques.

This section begins by describing how to represent the applied forces
statistically. This is followed by an analysis of the response which is also
described statistically.

10.1.1 Representation of the excitation

A typical plot of a randomly varying force, f(t), against t (which represents
time) is shown in Figure 10.1. Although it is possible to plot f(t) for a given
time interval, if it has been measured during this interval, it is not possible
to predict from this the precise value of f(t) at any value oft outside the
interval. However, the essential features of the process f(t) can be described
by means of statistical concepts. The theory which has been built up to
describe these processes is known as random process theory.

Statistical theory is based on the concepts of probability. Defining the
probability of realising a value f(t) which is less than some specified value
fo to be P(fo) then

P(.fo) = Prob [f(t) <fo] (10.1)

450
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Figure 10.1 Randomly varying force.

The function P(f) is known as a probability distribution function which
increases as f increases. The following conditions are satisfied

(1) P(-cc) = 0 (impossible event) (10.2)

(2) P(+oo) =1 (certain event) (10.3)

The probability of the force being between f and (f + df) is

P(f+df)-P(f)=0P(f) (10.4)

OP(f) can be considered to be a probability increment. The rate of change
of this increment with f is

zP
=

dP
(10.5)r O Of df

dP/df is called the probability density and is denoted by p(f), thus

P(.f)=
dP(f)

df. (10.6)

From its definition it is easy to see that

(1) P(f+df)-P(f)=p(f)df (10.7)

(2) P(.f)=J p(f) dff
fil

(3) P(fb)-P(.fa)= ff. p(f) df (10.9)

and
(4)

Jp(f)df=1+ (10.10)

Various parameters are used to describe the shape of a probability density
curve. The most important one is the expected value or mean which is given
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by

E[f]=E fp(f) df (10.11)

This expression is sometimes called the first moment of f and given the
notation µf.

The spread, skewness and peakedness of the probability density curve
about the mean are given by the second, third and fourth central moments
about the mean. The rth central moment about the mean is

E[(f-lLf)T]=E (f-wf)'p(f)df (10.12)

In particular the second central moment is the variance which is

E[(f-lAf)z]=ofz (10.13)

where of is. the standard deviation off It is a measure of the dispersion or
spread about the mean. A measure of the departure from symmetry (or
skewness) is

E[(f t f )3]/Qf3.

The peakedness near the mean is measured by the excess of Kurtosis Y2
where

E[(f-,uf)4]
72- 4

3 (10.14)
Qf

A particularly important probability distribution is the Gaussian or
normal distribution whose probability density is

p(f) exp {-(f - µf)z/2o fz} (10.15)

with the shape shown in Figure 10.2.

P(f)

Figure 10.2 Gaussian probability density function.
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Note that the Gaussian distribution is completely defined by its mean
and standard deviation. It is symmetrical about the mean and so its skewness
is zero. The excess of Kurtosis is also zero. The reason for this is that the
peakedness of a distribution is measured by its departure from a Gaussian
distribution. From (10.15) and (10.9) the probability that

If-µfI <no (10.16)

is 0.683, 0.954, 0.997 for n = 1, 2 and 3 respectively.
The importance of the normal distribution in physical problems may be

attributed to the Central Limit Theorem, which essentially states that the
sum of a large number of independent variables under fairly general condi-
tions will be approximately normally distributed, regardless of the distribu-
tion of the independent variables. Since many physically observed
phenomena actually represent the net effect of numerous contributing vari-
ables, the normal distribution constitutes a good approximation to com-
monly occurring distribution functions.

So far the probability distribution of a single random variable has been
considered. However, it is often essential to consider the combined probabil-
ity distribution of two or more random variables which are not completely
independent. For the case of two random variables f, and f2, the probability
of realising values in the ranges (f,,f,+df,) and (f2,f2+df2) is the joint
probability density function. If P(f,, f2) is the joint probability distribution
function then

P(.fi ,.f2) = a fi af2

Conversely

P(f1,.f2) = f f f dfi df2

and

Jp(fi,f2)dfidf2=l

(10.17)

(10.18)

(10.19)

The probability density function, p(f, , f2), can be plotted as a surface
above a horizontal plane. Its shape is described by means of the various
joint moments E[ f,rf25] of order (r+s). The quantities of particular interest
are

(1) the means

µf, = E[.fi] _ AP(Ai,f2) df, df2f . _.

a2P

(10.20)
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Aft= E[f2] = f2P(f1,fz) df1 df2

(2) the variances

Qf,2=E[(fi-F"'fi)2]= J(fi-M1,)2P(fi,f2)df1 df2

(f2-lar2)ZP(f1,fz) dfi dfzQfZz= E[(fz-µr2)z]= E

and

(3) the covariance

afih=E[(f1-µf.)(f2-µf2)]

(A-µf,)(fz-µf,)P(f1,f2) dfz dfz

The normalised covariance

(10.21)

(10.22)

(10.23)

(10.24)

0'f'f2 (10.25)pfi Iz =
°f Ofz

is known as the correlation coefficient. It is a measure of the degree of
linear dependence between f1 and f2. If pff2 = ±1, then the two variables
are perfectly correlated and there is a linear dependence between them. On
the other hand, if pf, f2 = 0 the variables are said to be uncorrelated.

If the force, f(t), on n supposedly identical structures subject to the
same conditions is measured, then the signals fk(t) (k = 1 , 2, ... , n) might
look something like the ones shown in Figure 10.3. They are not identical

Figure 10.3 Ensemble of random signals.
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due to influencing factors which cannot be controlled. The ensemble of
randomly varying quantities f 1(t), f 2(t), ... , is called a random process
and denoted by {f(t)}. It is also referred to as a stochastic process or time
series.

To characterise the process completely in a probabilistic sense, it is
necessary to determine the multivariate probability density function
p (.f1, f2 , ,.fn ), where f = f (t; ), for m =1, 2..... Usually, in engineering
applications, it is sufficient to determine only the first two, namely, p(f,)
and p(f1, f2). The main parameters which describe these probability
densities are:

(1) the means µf,=µf(t,) and µf2=µf(12)

where

1 n

µf= lim - E fk(t)n-"' n k=1

(10.26)

(10.27)

(2) the variances Qf,2=Qf2(t,) and Qf22=u 2(t2) (10.28)

where

inQf2= hm - y If k(t)
n- n k=1

and

(3) the covariance where

in
OM2= lim -

n-,eo /1 k=1

(10.29)

(10.30)

Expressions (10.27), (10.29) and (10.30) are known as ensemble averages
and denoted by the angular brackets ( ).

In general, the properties of a random process are time dependent (see
equations (10.27), (10.29) and (10.30)). However, in many practical situ-
ations the probability density functions are independent of time. A random
process is said to be weakly stationary if the probability density functions
p(fl) and p(f1 ,f2) are independent of the time origin. This implies that
p(f) is independent of the choice of t, and p(f1, f2) is dependent only on
(t2 - t,). Thus, for a weakly stationary process, the mean and variance is
constant, that is

µf=(fk(t))=constant (10.31)

Qf2 = ({ f k(t) - µf(t)12) = constant (10.32)
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and the covariance is a function of T=(t2-t1) only, that is

Ohf2=({fk(tl)-µf}{fk(t,+T)-lpf}) (10.33)

is independent of ti. The covariance, as defined in (10.33), can also be
written in the form

z
off, = Rf(T) -A/ (10.34)

where

Rf(T)=(fk(tl)fk(t1+T)) (10.35)

and is known as the autocorrelation function. If the mean is zero, then the
covariance and autocorrelation functions are identical. In vibration analysis
a constant mean value represents a static state superimposed upon a dynamic
one. Therefore, in what follows, a zero mean will be assumed.

The autocorrelation function has the following properties:

(1) Rf(0) = Qf2 (10.36)

(2) Rf(-T) = Rf(T) and (10.37)

(3) IRf(T)I < Rf(0) (10.38)

Property (1) follows from the definitions (10.32) with µf = 0 and (10.35),
whilst Property (2) follows from (10.35) since Rf is independent of t,, thus

Rf(-T)=(fk(tl-T)fk(tl))

=(fk(tl)fk(t1+T))=Rf(T) (10.39)

Therefore, the autocorrelation function is an even function of T Next
consider

({fk(tl)±fk(t1+T)}2)=({ k(tl)}2)±2(fk(tl)fk(t1+T))

+({fk(t1+T)}2)

= 2of2±2Rf(T) (10.40)

since o f2 is constant. The above expression must be larger than zero and so

I Rf(T)I = O'f2 = Rf(0) (10.41)

The autocorrelation function gives a direct measure of the statistical
dependence of the variables f(t,+T) and f(t,) upon each other. For most
stationary processes, the autocorrelation function decays rapidly with
increasing value of r.

All averages introduced so far have been ensemble averages. It is also
possible to describe the properties of a stationary random process by means
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of averages along a single record, that is time averages. For the record f k(t)
the mean and autocorrelation function are:

T_ 1

µf T-02T _Tfk(t)dt (10.42)

and

Rf(r)= urn 27, T fk(t)fk(t+T)dt (10.43)

The variance is given by Rf (0).
Stationary random processes are said to be ergodic if the time averages

are equal to the equivalent ensemble averages. This assumption allows the
use of only one sample function from a random process in calculating
averages instead of the entire ensemble. This implies that the chosen sample
function is representative of the complete random process. Since any of the
functions, f k(t), can be taken as representative, the superscript k is omitted
from expressions (10.42) and (10.43). Time averages are denoted by a bar
and so

µf = f (10.44)

f2
(10.45)

Rf(r)=f(t)f(t+r) (10.46)

Equation (10.45) indicates that the variance is the mean square value.
Equation (10.15) indicates that for a zero mean, the Gaussian probability

density function is completely defined by the standard deviation, of, which
is also the root mean square value. Its square, the variance, is given by
Rf(0) (see (10.45) and (10.46)). A spectral decomposition of the mean
square value can also be obtained.

A random signal is essentially a non-periodic function. Such a function
can be represented by means of a Fourier integral, namely,

f(t) =
J

+
F(iw) exp (iwt) dw (10.47)

where
f+f(t)

exF(iw) = (-iwt) dt (10 48)p
r

.2 .

w denoting frequency.
The function F(iw) is the Fourier transform off (t) and the two quantities

f(t) and F(iw) are said to be a Fourier transform pair. A necessary condition
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for the existence of the Fourier transform is that the integral J± I f(t)I dt
be finite. This will be the case if f(t) tends to zero as t - too.

A random signal cannot be represented directly by means of Fourier
transforms. To have stationary properties a random signal must be assumed
to continue over an infinite period of time. In this case the condition that
J±'O I f(t)I dt be finite is not satisfied. But there is no difficulty in determining
the Fourier transform of the signal fT(t) which is identical to f(t) within
the interval -T, t<+T and zero at all other times, as shown in Figure
10.4. In this case

fr(t) = J
+

FT(iw) exp (iwt) dw (10.49)

and
1

Fr(ies) =2I fr(t) exp (-iwt) dt

The mean square or variance of fT(t) is

.fre(t) =2T J fT2(t) dt

=21
2T MOf f--'O
I +oo

J

+o

=
2T

F-(iw) - fT(t) exp (iwt) dt dw

IT

J
+FT(iw)FT*(iw)

dw

T

IFr(iw)I2 dw

where * denotes a complex conjugate quantity.

f(t) t

-T 0 +T

A A

MI)

(10.50)

(10.51)

Figure 10.4 Truncation of a random signal.
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The mean square of f(t) is, therefore

f2(t) T wfT2(t)

C lim
r

jFT(iw)Iz dw
T- o T

J
Sf(w) dw

where

Sf(w) = lim
IT

IFT(iw)12
T-o T

(10.52)

(10.53)

is called the power spectral density.
The power spectral density function, Sf(w), is an even function which

is defined over the range -oo, w , +oo. When making practical measure-
ments it is more convenient to deal with positive frequencies only. In this
case a one-sided spectral density function, Gf(w), is introduced such
that

Gf(w) = 2Sf(w)

and

for w > 0 (10.54)

f 2(t) = J oo Gf(w) dw (10.55)
0

If a random variable has a constant power spectral density over all
frequencies it is often referred to as white noise, from analogy with white
light which contains waves of all frequencies. However, a white spectrum
cannot occur in practice because this would imply an infinite mean square
value (see (10.55)). It is useful, though, to consider the power spectral
density to be constant over a limited frequency range. In this case it is
referred to as band limited white noise.

Both the autocorrelation and power spectral density functions can be
used to determine the mean square value. This infers a relationship between
them. The autocorrelation function of the signal fT(t) is

RfT(T) = zT J fT(t)fT(t+T) dt (10.56)
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The Fourier transform of this function is

1
Rf(r) exp (-iwr) dT

27r

- 1 r+- 1 r+

2ir
J 2T J fT(t)fT(t+T) exp (-iwr) dt dT

1

47rT _c
fT(t) exp (i(,Ut)fT(t+T) exp {-iw(t+T)} dt dT

1 r+' f+4zrT

J f -(t) exp (iwt)fT(s) exp {-iws} dt ds

In 1 +°° I

7 21T
fr(t)exp(iwt)dt2E

= T FT*(iw)FT(i(o)

T IFT(iw)I2

Taking the limit as T co of (10.57) gives

1Sf(w) =2
J .

Rf(r) exp (-iwr) dT

fT(s) exp (-iws) ds

(10.57)

(10.58)

Therefore, the power spectral density is the Fourier transform of the
autocorrelation function. This implies that

R1(T) = E S1(w) exp (iwr) d&) (10.59)

If a structure is subjected to two random forces there is a possibility that
they are related in some way. Assuming that ft(t) and f2(t) are stationary,
ergodic processes with zero mean values, then the essential features of the
process (ft(t)+f2(t)) are described by its autocorrelation function

Rc(T)={fl(t)+f2(t)J{fl(t+?)+f2(t+T)}

where

=ft(t)ft(t+T)+ft(t)f2(t+T)+f2(t)ft(t+T)+f2(t)f2(t+T)

= & f,(T)+Rfz(T) (10.60)

Rfif2(T) =fl(t)f2(t+T)

Rlzfi(T) = f2(t)ri(t+T)

(10.61)

(10.62)
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are referred to as cross-correlation functions. They will be zero if f,(t) and
f2(t) are completely unrelated. If the two processes are in any way related,
the cross-correlation functions will not be zero. Since f,(t) and f2(t) are
stationary, then

RfJ2(T) =fl(t)f2(t+T)

=fl(t-T)f2(t)
=f2(t)fl(t -T) = Rf2f(-T) (10.63)

By taking the Fourier transform of the cross-correlation function of the
truncated signals fli(t) and f2T(t) and letting T oo, it can be shown that

tar Rff2(T) exp (-iwT) dr = lim -1r7. F,T*(iw)F2T(iw) (10.64)J
The right-hand side of (10.64) is defined as the cross-spectral density
function Sf, f2(w) and so

1

Sff2(w)=2 Rff2(T)exp(-iwr)dT (10.65)

The inverse relationship is

Rf, f2(T) =
J

+
Sf, f2(w) exp (iwT) dw (10.66)

The cross-spectral density function is a complex function. Using (10.63) it
can be shown that

Sfif,(w) = Sf2fi*(w) (10.67)

This analysis can be extended to the case where a structure is subjected to
several discrete forces.

When a structure is subjected to distributed forces the random process
describing the forcing will be a function of position as well as time. For
example, in the case of a one-dimensional structure f = f(x, t).

If the process is stationary and ergodic with a zero mean value, then the
essential features of the probability density are described by the cross-
correlation between the forces at two points x, and x2i that is

Rf(XI a X2, T) = f (Xl , t)f(X2, t +T) (10.68)

This function is sometimes known as the space-time correlation function.
The cross-spectral density of the forces at x, and x2 is the Fourier

transform of the cross-correlation function and these two functions form a
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Fourier transform pair and so

Sf(x,, x2i w) =
2

Rf(xI, x2i T) exp (-iwr) dT (10.69)

and

Rf(x,, x2i T) = J Sf(xl, x2, w) exp (iwr) do) (10.70)

If the force distribution is weakly homogeneous in space, then the
cross-correlation and cross-spectral density functions depend only on the
separation of the points and not on their absolute positions, that is

Rf(x,, X2, T) = Rf(x2-x1, T) (10.71)

and

Sf(x,, x2, w) = Sf(x2-x1, w) (10.72)

More details of random process analysis can be obtained from references
[10.1-10.5].

10.1.2 Response of a single degree of freedom system

The equation of motion of a single degree of freedom system is

mu+cti+ku=f (10.73)

where m, c and k are the mass, damping and stiffness respectively and u
the displacement. f is the applied force which is assumed to be a weakly
stationary, ergodic process having a Gaussian probability density distribu-
tion with a zero mean. The probability density function is, therefore

P(f) = exp (-f2/2vf2) (10.74)

The variance or mean square is given by

Qf2=E Sf(w)dw (10.75)

where Sf(w) is the power spectral density function which is given by

Sf((o) = Ti m T jFT(iw)12 (10.76)

where FT(iw) is the Fourier transform of the truncated function f,-(t).
The response of a linear structure to such an excitation is also weakly

stationary, ergodic and has a Gaussian probability density distribution with
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zero mean [10.6]. This means that the response can be described in a similar
manner to the excitation. The first requirement is to calculate the power
spectral density of the response which is given by

T T I UT(iW)12 (10.77)

where UT(iw) is the Fourier transform of the truncated response function
UT(t).

If both the functions u(t) and f(t) in equation (10.73) are truncated so
that they are zero outside the interval (- T, T), then they can be expressed
in terms of their Fourier transforms, namely,

and

MT(t) =
J

+
FT(iw) exp (iwt) dw (10.79)

Substituting (10.78) and (10.79) into (10.73) gives

L
FT(iw) exp (i(ot) do (10.80)

Since the equality must hold for all values of t, the integrands must be
equal so that

(k-W2m+iwC) UT(iw) = FT(iw) (10.81)

Solving for UT(iw) gives

UT(IW)- FZ(iW) =a(iw)FT(iw)
(k-w m+iwc)

where a(iw) is the receptance of the system.
Substituting (10.82) into (10.77) gives

(10.82)

I a(iw)IZ
Ti.m T

IFT(io)I2 (10.83)

Equations (10.76) and (10.83) together show that

s,.(W) = I a(i o)12st(W) (10.84)
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The power spectral density of the response is, therefore, equal to the square
of the modulus of the receptance multiplied by the power spectral density
of the excitation. The mean square response is given by

au2= E dw

Substituting for from (10.84) gives

a'"2 J
la(iw)12Sf(w) do)

Finally, the probability density function for

P(u) = exp (_U2 /2a u2)

If the excitation is white, then

Sf(w) = So = constant

The mean square response is, therefore

(10.85)

(10.86)

(10.87)

(10.88)

(10.89)

Now according to reference [10.5] an integral of the form

I = E
IH(w)12

do)

with

H(w) - (Bo+iwB,)
(Ao+iwA, _W2 A2)

has the following value

1r(AOB,2+A2Bo2)I=
AOA,A2

Comparing (10.82) and (10.91) it can be seen that

o 2=1rSO
ck

the response is

(10.90)

(10.91)

(10.92)

(10.93)

The integral (10.89) represents the area under the curve in Figure 10.5.
For lightly damped systems the greatest contribution to the area occurs in
a relatively narrow frequency band centred on the undamped natural
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S,(w)

0 w
Figure 10.5 Power spectral density of the response to white noise.

u(t)

Figure 10.6 Sample function of a narrow band process.

frequency w,,. This indicates that the predominant frequency components
in a sample response, u(t), will be contained in this narrow band. The
response envelope of a narrow band system can be expected to show beat
characteristics similar to that associated with two harmonics whose frequen-
cies are close together. However, since the predominant frequencies are
spread over a narrow band, the beat behaviour is random in character, as
shown in Figure 10.6. The response appears as a slightly distorted sine
function with a frequency near the natural frequency of the system and
with amplitudes that vary slowly in a random fashion.

If the excitation is band limited white noise, then the mean square
response is

Jla(i(0)12dw (10.94)

where we is the cut-off frequency. References [10.2, 10.7] give expressions
for (10.94), but indicate that its value differs from (10.93) by less than 1%,
even for values of we/wn as low as 2 and damping ratios as high as 10%.

If Sf(w) varies slowly in the vicinity of wn, the mean square value for
the response is often approximated by

u2 = 7rSflwn)
(10.95)

ck
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where is the power spectral density of the excitation at the undamped
natural frequency.

10.1.3 Direct response of a multi-degree of freedom system

The equation of motion of a multi-degree of freedom system is

Mu+Cu+Ku=f (10.96)

where M, C, K are the mass, damping and stiffness matrices, u the displace-
ments and f the applied forces.

Truncating the time histories of the excitation and response, taking the
Fourier transform of (10.96) and solving gives

UT(IW)=a(iw)FT(iw) (10.97)

where UT(iW) and FT(iw) are the Fourier transforms of UT(t) and fT(t)
respectively and

a(iw)=[K-W2M+iWCJ-' (10.98)

is the receptance matrix.
In what follows the subscript T will be omitted, but it should be remem-

bered that it is always inferred.
The Fourier transform of the response in degree of freedom r, is therefore

Ur(iW) = [a(iw)J rF(iW) (10.99)

where [a(iw)J r indicates row r of a. Note that degree of freedom r will
represent one of the degrees of freedom at a particular node. The power
spectral density of the response in degree of freedom r is

Su,(W)=Ti m T I Ur(iW)I2

Substituting (10.99) into (10.100) gives

(10.100)

Su,(W)= [a*(1W)]r limTF*(iw)FT(iW)[a(iW)JT (10.101)

Now

lim
IT

F*(iw)FT(i(o)=Sf(iw)
T-.oo T

(10.102)

is the cross-spectral density matrix of the applied forces. The diagonal terms
are the power spectral densities of the individual forces, whilst the off-
diagonal terms are the cross-spectral densities of pairs of forces. Substituting
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(10.102) into (10.101) gives

S,,,(w)= La*(ia)Jrsl(iw)L«(i(O)j T (10.103)

This is a generalisation of (10.84) to multi-degree of freedom systems.
In the case of a two degree-of-freedom system equation (10.103) gives

5,,,(ca)= [all*(iw) al,*(iw))SI(iw)l (10.104)

and

(w) = [a2i*(w)S
1

(10.105)

with

u,

SI(iw)
_ E )(wS

azz(iw)

(10.106)
slzt1( w) ) Jf,hh

If the two forces arise from independent sources, then they will be
uncorrelated. This means that

RR,h(r)=0=Rhh(r) (10.107)

Substituting into equation (10.65) gives

S,,h(iw)=0=Sh A (iw) (10.108)

Equations (10.104) and (10.105) therefore reduce to

S.,((,)) = Jail(iw)I2SIJ,(w)+l a12(iw)12Slzlz(w) (10.109)

and

(10.110)

The power spectral density of the response is, therefore, equal to the sum
of the power spectral densities obtained with the forces acting separately.

If the two forces f,(t) and f2(t) are directly related, then

f2(t)=Af1(t) (10.111)

where A is a constant. This means that

RJh(r) = ARht(r) = Rhl,(r) (10.112)

and

R1212(r) = A2RJJ,(r) (10.113)

Also, from (10.65)

Shh(iw) = ASll,(w) = Shh(iw) (10.114)
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and

Shh(w) = A2Sf1f,(w)

Therefore, equation (10.106) becomes

Sf(iw) I A]1 SfIft(W)

=
1a11

AJSf,,(W)

(10.115)

(10.116)

Substituting (10.116) into (10.104) and (10.105) gives

S,,,(w) = Ia11(iw)+a12(i(O)I2Sf, f,(w) (10.117)

and

)I2Sr,(w) (10.118)

The power spectral density of the response, in this case, depends upon the
vector sum of two receptances.

If a structure is subjected to a distributed pressure distribution, the
equivalent nodal force matrix is given by (see Chapter 3)

f=Y_ aTRTJ [N(ii)] Tp(s"i,r)dAi (10.119)
i qi

where the summation is over the number of elements. Taking the Fourier
transform gives

TA,
F(iw) aTR[N()JTP(, i(o) dA; (10.120)

Substituting (10.120) into expression (10.102) for the cross-spectral density
matrix of the applied forces gives

Sf(iw)=Y_ Y_ aTRTt
J

[N(i,)] TSS(ii,ij,iw)[N(j)] dA;dAjRjaj
i j qi

where
IT

SP(ii, ij, iw) = lim - P*(ii, iw)P(ij, iw)
T-.ao T

(10.121)

(10.122)

is the cross-spectral density of the pressure field. In equation (10.121) Ai
and Aj represent the surface areas of elements i and j. The power spectral
density of the response at a node is again given by (10.103).



Response to random excitation 469

Expression (10.121) involves double integrals over pairs of elements and
also a double summation over all elements. It has to be evaluated for a
range of frequencies. In order to simplify this procedure, reference [10.8]
assumes that the cross-spectral density is constant over each pair of elements
(which are triangles), the actual value being calculated at the centroids. An
improvement in accuracy can be obtained by assuming the cross-spectral
density over a pair of elements varies linearly. For example, in the case of
a uniform beam [10.9]

SS(x;, x3, iw)= e,+e2x;+e3x3+eax;x3 (10.123)

The parameters e, to e4 are evaluated in terms of S,, for the four node points
of the two elements i and j, taking them two at a time. A similar procedure
for triangular elements is given in references [10.10, 10.11]. References
[10.8-10.11] are concerned with predicting the response of aircraft structures
to jet noise and boundary layer turbulence.

In some engineering applications, the pressure distribution can be
assumed to be weakly homogeneous in space. In this case the cross-spectral
density of the pressures for two points depends only on the separation of
the points and not on their absolute positions, that is

S'(s";, i;, iw) = SD(ii - i;, i(O) (10.124)

Examples of such a situation are as follows:

(1) If a randomly distributed pressure field is convected in the x-direction
with constant speed Uc, then different points experience the same
randomly varying force but with time lags corresponding to their
positions. This situation is known as frozen convection and can be
considered to be a first approximation for boundary layer turbulence.
The cross-spectral density is given by

SS(x, -x2, iw) = SS((o) exp{-iw(x, -x2)/ Uc} (10.125)

where SS(w) is the power spectral density at all points in the field.
(2) A better approximation to boundary layer turbulence is a convected

field with statistical decay. In this case the cross-spectral density is
given by

i&J
Sp(x,-x2,iw)=S,(w) exp j -a Uc Ix,-x21-U (xI-x2)

(10.126)

where a is a boundary layer decay parameter. When a =0 (10.126)
reduces to (10.125).
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The function (10.124) can be represented in the spatial domain by means
of its Fourier transform, namely

Sp(i;-s";,iw)= J (10.127)

where the integration is over the entire range of k'. The vector k is known
as a wavenumber vector. The function S,(k, w) is the wavenumber/
frequency spectrum of the pressure field. This function has been derived
for boundary layer pressure fluctuations in reference [10.12]. A survey of
various models of atmospheric turbulence is given in reference [10.13].

Substituting (10.124) and (10.127) into (10.121) gives, after a little
manipulation

Sf(iw) = J f*(I)S,(k, (o)fT(k) dk (10.128)

where

J (10.129)

This last expression represents the equivalent nodal forces due to an
harmonic pressure wave of unit amplitude, frequency w and wavenumber
k travelling in the direction of k.. Although equation (10.128) is much simpler
to evaluate than equation (10.121), it is necessary to perform the calculations
for a range of wavenumbers in order to perform the integration.

Substituting (10.128) into (10.103) gives the power spectral density of
the response in the form

S.,(w) =
J

a*(k, w)SS(k, (o)a,(k, w) dI

=f Ia,(k, 0)j2S"(k' w) di (10.130)

where

a,(k,w)= jr?()[a(iw)k(10.131)
This function represents the response of the structure in degree of freedom

r due to the harmonic pressure wave

p(s, t) = exp {i(wt - k . i)} (10.132)

and is known as a wave receptance function.
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10.1.4 Modal response of a multi-degree of freedom system

In Chapter 9 it is shown that when the modal method is used the receptance
matrix is given by (see equation (9.34))

a(iw) =4D[A-w2l+iwC]-'4'T (10.133)

where the columns of 0 are the modes of free vibration of the undamped
system, A is a diagonal matrix containing the squares of the natural frequen-
cies and C the modal damping matrix. Substituting (10.133) into (10.103)
gives the following expression, for the power spectral density of the response
in degree of freedom r

S,,,= (10.134)

where

J = 4OSfqDT (10.135)

is the cross-spectral density matrix of the generalised forces in the various
modes. In some texts [10.3] non-dimensional forms of the elements of J
are referred to as joint acceptances.

If the natural frequencies are well separated and the damping is small,
then terms of the form

2 2 1(A; - w-iwc;;)- J;;(A;-w +iwci;)-

for j 0 i, are negligible in comparison with terms of the form
2 1 2 1

These two expressions assume the matrix C is diagonal. Using this approxi-
mation (10.134) is reduced to

N
= 2 2 2 (e)2}2J

i=1
(10.136)

where N is the number of modes. This expression can also be obtained by
omitting the off-diagonal terms of the matrix J in (10.134).

Now the matrix Sf is Hermitian. This means that

Sf*=Sf (10.137)

This can easily be seen from the definition of Sf in (10.102). Substituting
(10.137) into (10.135) shows that the matrix J is also Hermitian. This means
that the diagonal terms J;; are real. Also equation (10.136) gives a real value
for S,,,, which is to be expected. Because the J;; are real they can be calculated
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from

J;, = [4,],C1[4] iT (10.138)

where C1 is the real part of S1 and is known as the co-spectrum matrix.
Equation (10.136) is a good approximation in regions close to the natural

frequencies. Away from these regions some inaccuracy can be permitted
since the magnitudes are much smaller.

The question of frequency separation has been investigated in reference
[10.14]. The results presented indicate that in any analysis, it would be
better to retain the coupling between all modes, whose frequencies are
within a certain band, centred around the frequency being considered.
Therefore, in equation (10.134) the actual modes retained would vary with
frequency. This approach has been used in references [10.8, 10.10, 10.11].

In the case of a weakly homogeneous pressure field, the power spectral
density of the response is given by equation (10.130). Substituting (10.133)
into (10.131) gives the following expressions for the wave receptance
function

a,(k, to) = [O],[A _ w21 +iwC]-14DTf(k) (10.139)

Substituting (10.139) into (10.130) gives an expression of the form (10.134)
with J given by (10.135) where

S1=
J

f*(k')S'(k, w)fT(k) dk (10.140)

10.1.5 Fatigue and failure

So far, this chapter has concentrated on determining the statistical descrip-
tion of the response, knowing the statistics of the excitation. Both excitation
and response are assumed to be weakly stationary, ergodic processes having
a Gaussian probability density distribution with zero mean. Although the
analysis presented has concentrated on predicting the displacement
response, the techniques are equally valid for other response quantities such
as acceleration or stress. The question then arises as to how this information
can be used to predict fatigue and failure of structures and equipment. This
is one of the least developed areas in random vibration theory. Some simple
procedures are summarised in this section. Further details can be obtained
from references [10.2, 10.5].

In many applications the predominant response occurs in a single mode.
The system can, therefore, be considered to be represented by a single
degree of freedom system having a natural frequency w,,. In Section 10.1.2
it is shown that the response of a single degree of freedom system to random
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excitation is a narrow band process. The following results are based upon
the statistics of narrow band processes.

A material's `fatigue law' is generally expressed by means of an experi-
mentally determined S-N curve. Here S denotes the stress amplitude and
N(S) the number of cycles of stress, of fixed amplitude, which causes
failure. In many cases this curve can be approximated by a straight line
when log S is plotted against log N.

According to the Palmgren-Miner hypothesis, if n; cycles of stress occur
at a level of stress which would cause fracture after Ni cycles, then the
fractional damage done is n;/N;. When a structure is subject to various
stress levels the total fractional damage is

D=Y
ni

(10.141)
Ni

Failure is to be expected when D = 1. There is no restriction regarding the
order of the application of the various stress levels. The Palmgren-Miner
hypothesis may, therefore, be applied to random processes in which the
stress amplitude changes from cycle to cycle.

For a narrow band process, the average number of positive peaks in time
T is Since the probability density of the process is Gaussian, the
probability density distribution of the peaks is given by

p(S) =S2 exp (_S2 /20,S2) (10.142)
O's

where QS2 is the mean square stress. This distribution is known as a Rayleigh
distribution and is illustrated in Figure 10.7.

The number of peaks in the range S to (S+dS) in time T - is
dS and so the proportion of damage done is
dS/N(S). The total damage done by all the peaks is,

therefore,

w,I Tf=P(S)D=
21r

Jo N(S) dS

p(S)

(10.143)

Figure 10.7 Rayleigh probability density distribution.
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Figure 10.8 Failure occurs if u(t)> a for more than acceptable length of time.

Failure will occur when D = 1. Therefore the mean time to failure is

TF 1 (10.144)
T p(S) dS

JO N(S)

This result is subject to both statistical errors, due to the random nature of
the applied stress, and experimental errors, due to ignorance about the true
mechanism of fatigue. Provided the damping ratio of the system, , is not
too small and the number of cycles to failure, NF, is large (e.g., NF> 103),
the main error will be the experimental one. In this case the actual lifetime
is likely to be in the range (0.3TF, 3TF).

Other forms of failure in structures and mounted equipment due to
random vibration can arise. Failure may occur if the response is greater
than a fixed level, a, for more than an acceptable fraction of the total elapsed
time, e, as shown in Figure 10.8. The fraction of elapsed time for which
u> a is

J p(u) du
a

where p(u) is the probability density distribution for the instantaneous
amplitude, not the peaks, which is Gaussian. Failure is said to occur if

rp(u) du; a (10.145)

Alternatively, failure may occur when the response first crosses a given
level u = a, as illustrated in Figure 10.9. In this case the probability of failure
in time T is

p(T) = 1-exp (-voT) (10.146)

where Pa' is the average frequency of positive slope crossings of u = a which
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u(t)

a

0 t

Figure 10.9 Failure occurs when u(t) first reaches the level u = a.

is given by

w
vQ = " exp (-a2/2O-U2)

21r
(10.147)

The permissible operating time for a {1- p(T)} probability that u will not
reach the level `a' is

T=-1 log, {1-p(T)} (10.148)
va

Thus if p(T)=0.01, there will only be on the average one failure in a
hundred trials lasting T s each, where

T=0.01/vQ (10.149)

Numerous assumptions have been made in arriving at these results and so
they must be applied with care.

10.2 Truncation of the modal solution

Section 9.1 shows that when the modal method of solution is used the
displacements, u, are given by

u=4oq(t) (10.150)

where q is the solution of

q+Cq+Aq= Q (10.151)

The columns of are the modes of free vibration of the undamped system,
whilst A is a diagonal matrix whose elements are the squares of the natural
frequencies. Q is a column matrix of generalised modal forces and C the
modal damping matrix.

When using this method to calculate the maximum response whether it
be displacement, velocity, acceleration or stress, it will be found that only
some of the modes will contribute significantly. It is, therefore, more efficient
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to retain only these significant modes in the solution process. This will
reduce the computational cost of determining the frequencies and modes
of free vibration as well as that of the forced response calculations.

The modes which are to be retained in the analysis are determined by
considering

(1) the spatial distribution and time history of the excitation,
(2) the characteristics of the structure, that is, the mass, damping and

stiffness, and
(3) the response quantity of interest, that is, displacement, velocity,

acceleration or stress.

Some of these factors will be illustrated by means of a simple example.
Figure 10.10 shows a three degree of freedom system which is subject

to a half-sine pulse applied to one of the masses. Solution of the equations
of free vibration gives

1000

A = 7000

and

3112/6 61/2/3 21/2/24,

= 31/2/4 0 -21/2/4
31/2/6 -61/2/6 21/2/2

(a)

(b)

(10.152)

(10.153)

Figure 10.10 (a) Three degree of freedom system, (b) time history of applied force.
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The generalised modal forces are

Q=4,T sin (7rt/to)

(21/2/2) X 103

= 2 x 103 sin (irt/ to)
31/2 x 103

Therefore, equations (10.151) are

q, + 1000q, _ (21/2/2) x 103 sin (7rt/ to)

42+700082 = 2 x 103 sin (?rt/ to)

q3+900083 = 31/2 x 103 sin (1rt/ to)

If the motion is assumed to start from rest, then at t = 0

(10.154)

(10.155)

u=0, 6=0 (10.156)

Now

u=(bq (10.157)

and
,DTM4) =I (10.158)

Premultiplying (10.157) by ATM gives

q = OTMu

Therefore, at 1=0

q=0, q=0

(10.159)

(10.160)

The solutions of equations (10.155) subject to the boundary conditions
(10.160) can be obtained using Table 9.7. The solution for the displacements,
u, are then obtained by substituting into equation (10.150). The response
will be investigated for to = 0.12 and to = 0.07.

When to = 0.12 the maximum displacement response in the excitation era
and free vibration era are of similar magnitude. This is also true for the
displacement u, when to = 0.07. The maximum values of the displacements
u2 and u3 occur in the free vibration era when to = 0.07. Therefore, for
brevity, the expressions for the q, will only be given for the free vibration
era, t to.
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When to = 0. 12, the solution for t , 0.12 is

q, = -1.8607(sin w,(t- to)+sin w,t)

q2 = -0.099107(sin w2(t - to) +sin wet) (10.161)

q3 = -0.057487(sin w3(t - to) + sin w3t)

where

w; = 1000

wZ=7000 (10.162)

w3 = 9000

Equations (10.161) may be written in the alternative form

q, = 1.1938 sin (w, t - a,)

q2 = -0.060007 sin (wet - a2) (10.163)

q3 = -0.095467 sin (wit - a3)

where a,= w,to/2.
The response is dominated by the first mode and so the contributions

from modes 2 and 3 can be neglected. If, however, acceleration is the
response quantity of interest, then

4i=-1193.8 sin (w,t-a,)

42 = 420.05 sin ((1)2t - a2) (10.164)

q3 = 859.20 sin (w3t - a3)

and the contributions from modes 2 and 3 cannot be neglected.
When to = 0.07, the solution for t > 0.07 is

q, = 0.88565 sin (w, t - a,)

q2 = 0.42060 sin (wet - a2) (10.165)

q3 = 0.23085 sin (wit - a3)

In this case the contributions from all three modes are of comparable
magnitude.

The reason why one mode is dominant when to = 0.12 and why all three
contribute to the response when to = 0.07 can be seen by examining the
frequency content of the excitation. If

f(t) = sin (at/to) (10.166)
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1.0

t7rI F(w)I
0

0.5

0
1 2 3 3.5

wto/2 a

Figure 10.11 Modulus of the Fourier transform of a half-sine pulse.

then the modulus of its Fourier transform is [10.15]

to cos (&)t,/2)
for w 96 or toIF(w)l _ irZ 1-4(wto/2ar)2 /

and (10.167)

IF(w)I=to/41r forty=Ir/to

The variation of 2irIF(w)l/to with wto/27r is shown in Figure 10.11.
Evaluating 2,7rlF(w)I at the natural frequencies of the system gives 0.05,
0.003, 0.005 for to=0.12 and 0.04, 0.02, 0.01 for to=0.07. The second and
third values are less than one tenth of the first value when to = 0.12. However,
when to = 0.07 all three values are of similar magnitude.

Inspection of the modal matrix 1 (equation (10.153)) indicates that the
second mode does not contribute to the response of the central mass, since
its displacement is zero in this mode. Also, if the excitation is applied to
the central mass only, the second mode does not contribute to the response
of any of the masses, since the generalised force in this mode is zero.

10.2.1 Mode acceleration method

When the response is calculated using the first NR low frequency modes,
where NR is less than the total number of modes N, then equation (10.150)
becomes

U - 4DRqR (10.168)



480 Forced response II

where 4)R and qR are of order (N-NR) and (NRx 1) respectively. qR is
given by the solution of

qR+CRQR+ARgR= QR (10.169)

where CR and AR are both of order (NRx NR) and QR is of order (NRx 1).
Rearranging (10.169) gives

qR = AR-'QR - AR-'[CRQR+qRI (10.170)

Substituting (10.170) into (10.168) gives

U =
4RAR-IQR-4DRAR-WRgR+4R]

(10.171)

If the external forces are static instead of dynamic, the second and third
terms on the right-hand side of equation (10.171) will be zero. In order to
get an accurate solution for the displacements, all the modes will have to
be retained in the first term which becomes

(DA-'Q = 4,A-'4,Tf (10.172)

where f is the column matrix of externally applied forces.
The product

to-'(DT
can be expressed in an alternative form. From

Section 9.1

,TK4D = A (10.173)

Premultiplying by A-' gives

A-'4,TK41 = I (10.174)

Postmultiplying by M4 T gives

A-'4TK,M(DT = MbT (10.175)

Now
4)MOT= I (10.176)

and so (10.175) becomes

A-'4TK=M,T (10.177)

Premultiplying by F gives

(PA-' bTK=I (10.178)

Finally, postmultiplying by K-' gives

(bA-1,bT = K-1
(10.179)
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Substituting (10.179) into (10.172) gives

4)A-'Q = K-'f (10.180)

as would be expected for a static force.
A more accurate expression for the dynamic response is obtained by

including all the modes in the first term on the right-hand side of equation
(10.171). Using the form (10.180) in (10.171) gives

(10.181)

This is the expression used in the mode acceleration method. Increased
convergence is obtained because of the presence of AR' in the second and
third terms. This means that fewer modes are required for a given accuracy.
This is particularly important when calculating stresses, since accurate stress
solutions usually require more modes than do accurate displacement sol-
utions. The convergence of the mode acceleration method is investigated
in reference [10.15].

To illustrate the use of the method, consider the determination of the
response of the third mass within the interval t , to, when to = 0.12, for the
example in Figure 10.10. Using three modes gives

u3 = 0.66681 sin wt - 0.53714 sin w, t

+0.04046 sin wet -0.04065 sin wit (10.182)

where w = ?T/ to.
Using only one mode gives

u3 = 0.64881 sin wt - 0.53714 sin w, t (10.183)

Now if one mode is used in the mode acceleration method, the result is

u3 = 0.66825 sin wt - 0.53714 sin w, t (10.184)

The first term in (10.183) is in error by -2.7% whilst the same term in
(10.184) is in error by +0.22%.

10.2.2 Residual flexibility

Equation (10.181) can be expressed in an alternative form as follows. From
equation (10.169)

[CRQR+ 4R] = 4)RTf - ARgR

Premultiply (10.185) by FRAR-' gives

(10.185)

'bRAR-'[CRQR+qR]=
PRAR_,DRTf-'bRQR

Substituting (10.186) into (10.181) gives

(10.186)

U=4DAR+K-'f-(bRAR-140RTf (10.187)
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The second term has been shown to represent the static contributions from
all the modes. Similarly, the third term represents the static contributions
from the retained modes. Combining these two terms gives the static contri-
butions from the omitted modes and is referred to as the residual flexibility.
The inclusion of the residual flexibility of the omitted modes increases the
accuracy of the solution. Note that equation (10.187) only involves the
retained modes. The static effect of the omitted modes is obtained without
the need to determine them. An alternative way of deriving equation (10.187)
is to include all the modes in the solution and then approximate the
contributions from the high frequency modes, which are to be omitted, by
their values at zero frequency [10.17].

Reference [10.18] presents an analysis of the response of a simple
off-shore platform model to harmonic wave loading. Three analyses are
carried out, namely:

(1) a solution using all the modes,
(2) a solution using a reduced number of modes and
(3) a solution using the same number of modes as in (2), but including

the residual flexibility of the omitted modes.

It is shown that while solution (2) gives good results for displacements,
bending moments are not as well predicted. However, when residual flexibil-
ity effects are included, there is a marked improvement in the accuracy of
the bending moments.

10.3 Response to imposed displacements

Previous sections deal with the response of structures to externally applied
forces. In some cases the excitation is caused by prescribed displacements
at the supports or boundaries of the structure. Examples of this are the
response of buildings to earthquakes and the response of vehicles travelling
over rough ground surfaces. Methods of analysing this type of problem are
presented in this section.

10.3.1 Direct response

The equation of motion of a structure is given by equation (9.1), namely

Ma+Cu+Ku=f (10.188)

The column matrix of displacements, u, can be partitioned into prescribed
boundary displacements, UB, and the remaining internal displacements, u,,
giving

u=I u'
I

(10.189)
Lug
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Partitioning equation (10.188) in a similar manner gives

I

Mn
MBI

MIB 6,

MBBJ LuBJ + LCBI CBBJ 16BJ + LKBI KBBJ LuBJ - LfB

(10.190)

Note that the applied forces corresponding to internal node points are zero.
The forces fB are unknown support forces at the nodes where the motion
is prescribed.

Separating out the equations of motion corresponding to the internal
node points gives

[0][Mil MIB][aju+[C11 CIB][u'+[KII KIB]1UU1B1=

91)(10.1

Now the total displacement at the internal nodes can be considered to
be made up of two separate parts. The first, u;, is due to the prescribed
boundary motions and can be calculated using static relationships. Static
equilibrium at the internal nodes is given by

Solving this equation gives

u1- -KII IKIBUB

(10.192)

(10.193)

u; are referred to as quasi-static displacements. The second part consists of
dynamic displacements, u', relative to fixed boundary nodes. Therefore

du,=u,+U,

Substituting (10.194) into (10.191) gives, after some manipulation

I =fell

where feff is an effective force which is given by

feff = -MII61- MIBUB - CII61- CIBUB

Substituting (10.193) into (10.196) gives

feff = [MIIKII-'KIB - MIB]UB+[CIIKII_'KIB - CIB]UB

(10.194)

(10.195)

(10.196)

(10.197)

Since uB and dB are given, feff can be calculated. Once the time history of
the effective force has been calculated using (10.197), the dynamic response
relative to the fixed boundary nodes can be determined using equation
(10.195). The total displacement is then given by equation (10.194).

In general, the damping terms in (10.197) are much smaller than the
inertia terms and can be neglected. Also, if a lumped mass representation
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Figure 10.12 Mass-spring system subject to imposed displacemeents.

is used M1B is zero. The expression for the effective force reduces to

fell= M11K11-'K1Bii6 (10.198)

Consider the system shown in Figure 10.12 which is subject to the
prescribed displacement u3. The inertia and stiffness matrices are

1 0 0 2 -2 0

M= 0 1 0 K= 103 -2 5 -3 (10.199)

0 0 0 0 -3 3

The required partitions are

_ 1 0 3 2 2
M11

0 1],
K11=10 -2 5

K1B = 1031 -0]

Substituting into (10.198) gives the effective force

5
fea-[0

0]61[2
2][-3]U3

That is

fell_ - 1
1 ] U3

Equation (10.195) is, therefore,

2
u2J+10'L-2

5][UZ] [-1]u3

(10.200)

(10.201)

(10.202)

(10.203)

(10.204)

The quasi-static displacements are given by

[]=[2
][3°]u3=[']u3 (10.205)

If the time variation of u3 is harmonic with frequency w, then equation
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(10.204) becomes

(2000-W2) -2000 U'_ 1 W2

[ -2000 (5000-W2) U2] 1
U3

The solution of this equation is

(10.206)

Lud = (1000- WZ) (6000- ('02)-l (47000 -

000-

WW 2)

2)]W2U3
(10.207)

U2

Substituting (10.205) and (10.207) into (10.194) gives

6 x 106
UI =

U2 (1000 - (02)(6000 - W2)
U3

(1000-(02)(6000-W2)
U3

3000(2000- W 2)
(10.208)

10.3.2 Modal response

A modal solution can be carried out using the modes of free vibration of
the structure with the constraints uB = 0 applied. These are obtained by
solving the equation

[K - 0 (10.209)

to give the matrix of eigenvalues, A., and eigenvectors 4). such that

I, 4,.TK110. = A, (10.210)

These modes can be used to transform either equation (10.190) or (10.195).
Equation (10.190) is transformed using the relationship

LuBJ - L 0 IJ L BJ
(10.211)

Substituting (10.211) into (10.190) and premultiplying by

1'bcT 0]
0 I

gives

r I
4,cTM16]

J+
L

VcTCIb.

b.TCIB1 f p l
MBIIC MBB J L CBI1c CBB Add

+
A. TKlB Q =

0
(10.212)

KB,Ic KBB UB fB
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Separating out the equations of motion corresponding to the degrees of
freedom q gives

q +40CTCII4 C4+llcq= (10.213)

The modes of free vibration for the example in Section 10.3.1 are given by

Ac= [1000

6000]'
o`

512[1 -2 (10.214)

C11, CIB and MIB are all zero and KIB is given by (10.201). Equation (10.213)
therefore gives

14q]+ 1000 0][q,]_103 -3]u2

0 6000 6 3
(10.215)

If the time variation of u3 is harmonic with frequency W, then equation
(10.215) becomes

(1000-w2) 0 q, _ 103 3

[ 0 (6000-W2)] 921 F2 6
u3

The solution of this equation is

(10.216)

3q'56
1000- 2) ]u3 (10.217)

Substituting (10.217) into (10.211) gives

6x 106u'_

(1000-W2)(6000-W2)
1!3

(10.218)
3000(2000- W2)

U2 = (1000- W2) (6000- W2)
u3

This solution agrees with the direct solution (10.208).
Equation (10.195) is transformed using the relationship

U1 _ q (10.219)

Substituting (10.219) into (10.195) and premultiplying by 4bT gives
4 +4D oTCl4pc4 +Acq = (FeTfeff (10.220)

Substituting (10.197) into (10.220) gives

9+0CTCu0C9+A.q = qbcT[MI IKII 'KIB - MIB] O a

+[CIIK11-'KIB-CIB]AB (10.221)
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When applied to the above example, this equation gives

[2]
+[1000

6000][gz] 51 z[
1]u3 (10.222)

If the time variation of u3 is harmonic with frequency w, then equation
(10.222) becomes

(1000-w2) 0 q, _ 1 [-'](02U, 223)
0 (6000-wz)] qz] 5175

-1(10.

The solution of this equation is
z

z]
Slz (1000-wz)-'(6000-wz)-'[-(1000

3(6000 _

9 u3-w2)]w2
(10.224)

Substituting (10.224) into (10.219) gives
ui

2)-1 z -, [(7000_w2)
z

ui] =(1000-w(6000-w) (4000-wz) w u3 (10.225)

which agrees with (10.207). This has then to be substituted into (10.194)
together with (10.205) to give the complete solution (10.208).

10.4 Response spectrum methods

In the case of transient excitation, a detailed time history of the response
is not always required. The main quantity of interest is peak response, such
as maximum displacement, velocity, acceleration, strain or stress. These
quantities can be estimated without calculating the time history of the
response by using the response spectrum method.

10.4.1 Single degree of freedom systems

The equation of motion of a single degree of freedom system subject to
force excitation is (see equation (1.6))

mu+cii+ku=Pof(t) (10.226)

where PO is the maximum value of the force Pof(t). Dividing throughout
by m, equation (10.226) can be written in the form

u+2ywoiu+wozu = (Po/m)f(t) (10.227)

where woz = k/ m and 2 ywo = c/ m.
For a shock load, the function f(t) satisfies the following relationships:

f(t)>0 for0<t<to
f(t)=0 fort--0and t-- to (10.228)
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and

maxf(t)=f(tm)=1 for0<t<to
where t, is the rise time and to the duration of the load. Note that in the
case of step-type functions to will be infinite. Some examples of shock loads
are shown in Figure 10.13.

The solution to equation (10.227) can be obtained using the Duhamel
integral, equation (9.80), giving

u(t)= k°wa2 Jf(r)h(t_r)dr (10.229)

where

h(t) = 1 exp (-ywot) sin wdt (10.230)

and

wd

wd = wo(1- y2)I/2 (10.231)

If t, is the time at which the response reaches a maximum or minimum
peak, then

max u(t) = u(tt) (10.232)

The quantity

Hf=P-u(t,)

f(t)

to
t

t 0
tm

(10.233)

Figure 10.13 Examples of shock loads.
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is dependent upon wo and y as well as the characteristics of the shock load.
A plot of Hf against either motor/21r or woto/2zr for a given value of y is
called a displacement spectrum or shock response spectrum. If t,, < to, it is
termed a primary spectrum, but if tp > to it is known as a residual spectrum.
The spectra for simple shocks have been evaluated analytically [10.15]. The
response spectra for a half-sine pulse is shown in Figure 10.14.

For more complicated shock loads numerical techniques, such as those
presented in Section 9.5, are used. Once the response spectrum for a given
forcing function has been constructed in this way, no single degree of
freedom system need be analysed any more for this function, irrespective
of its mass, stiffness or damping, as long as these fall within the frequency
and damping ranges covered by the spectrum.

Reference [10.19] refers to Hf, as defined in (10.233), as the shock

amplification/ factor. The shock transmissibility is defined as

Tf= «T)max
P

(10.234)
0

where

fT=cii+ku (10.235)

is the force transmitted to the foundation.

1 2 3 4 5

mo to/2ir

Figure 10.14 Response spectra for a half-sine force pulse.
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The equation of motion of a single degree of freedom system subject to
support motion is (see equation (10.191))

mu, + cti, + ku, = ctiB + kuB (10.236)

where uB is the imposed displacement of the base and u, the absolute
displacement of the mass. Dividing this equation by m gives

ii, +2ywoti, +w02u, = 2ywoUB+wo2UB (10.237)

If the system is subject to an acceleration shock and the maximum
acceleration, u, (tt), determined, then the shock transmissibility is defined as

Tb = u,(tP)
(10.238)

uo

where uo is the maximum value of the base acceleration iiB. This expression
also represents the ratio of appropriate response and excitation parameters
for velocity or displacement shock excitation.

The equation of motion in terms of the displacement of the mass relative
to the base, u;, is (see equation (10.195))

mu;+ciu;+ku;=-muB (10.239)

Dividing by m gives

u1+2yw0u1+waud=-uB (10.240)

If the maximum relative displacement is u;(tn), then the shock amplification
factor is

Hb= w02u1(tP)
(10.241)

iio

Certain equalities exist among these dimensionless quantities, namely

Tb = Tf (10.242)

and

Hb = Hf (10.243)

For systems with zero damping, it is also true that

Tb = Hb (10.244)

Although this equality is not strictly true for systems with damping, it is
approximately true provided y < 0.2. This fact is illustrated by the response
spectra presented in reference [10.20].

When analysing the response of structures to ground motion such as is
produced by earthquakes, it is usual to plot the response spectra as a
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function of either wo/21r or 21r/wo. It is also convenient to use pseudo-
velocity or pseudo-acceleration spectra. These are defined in reference [ 10.6]
as follows.

The solution to equation (10.240) is, from (9.80)
r

ud(t)=- UB(T)h(t-T)dT (10.245)
0

where h (t) is defined by (10.230). Provided y < 20, wd in (10.230) is approxi-
mately equal to wo. Introducing this and also noting that the negative sign
in (10.245) has no significance in earthquake excitation, this equation
becomes

r

ud(t) = 1 uB(T) exp {-ywo(t -T)} sin wo(t -T) dT (10.246)
wo o

The maximum displacement response is, therefore, given by
r

Ua(tl) =_!-[J ug(T) exp {-yw0(t -T)} sin wo(t -T) dT]
w0 0 max

(10.247)

The quantity woud(t0) is referred to as the pseudo-velocity. Similarly,
w02ud(t0) is known as the pseudo-acceleration. An example of a pseudo-
velocity spectrum is shown in Figure 10.15. In seismic design it is usual to
determine the response spectra for several earthquakes. These are then
plotted on the same figure and a smooth envelope drawn around them. This

U0
a)

0
Q

0
4w
00

1.0 3.0 10.0 30.0

wo/ 2 it

Figure 10.15 Pseudo-velocity spectra for El Centro earthquake [10.15].



492 Forced response II

is then used as the design spectrum. Further information on response spectra
can be obtained from references [10.6, 10.15, 10.19 to 10.23].

10.4.2 Multi-degree of freedom systems

Using a modal type solution the response u of a multi-degree of freedom
system, which is subject to the set of forces f, is

u = 4bq (10.248)

where 1 is the modal matrix and the elements, qi, of q are given by the
solution of (see Section 9.1)

9i + 2Yiwi4i + w i2gi = di iTf (10.249)

where 4bi is the ith column of c.
For degree of freedom k, the displacement is given by

N

Uk = Y_ (Dkigi
i=1

(10.250)

where 1 ki is element (k, i) of the matrix 1 which has N columns (the
number of modes).

The maximum value of Uk can be estimated by first determining the
maximum values of the qi using the response spectrum technique described
in Section 10.4.1. The maximum contribution of mode i to the total response
is, therefore

Uki = (Dki(gi)max (10.251)

These quantities are them combined in one of the following ways.

(1) Absolute sum of modal maxima method (ABS)

N

uk(max)= E IUkil
i=1

(2) Square root of the sum of the squares method (SRSS)

uk(max)
=

i 1 Uk12/

l/2

=

(3) Complete quadratic combination method (CQC)

(10.252)

(10.253)

1/2N N
(10.254)uk(max) _ I I UkipiiUki

i=1 i=1
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where

__ 8(Yiyj)"2(Yi+ryj)r1/2 (10.255)p.' (1-r2)2+4yiyjr(1+r2)+4(y?+yj)r2

with r = wj/wi.

Combination rules such as these introduce errors in predicting the
maximum response because the relative times at which each peak modal
response occurs are unknown. The ABS method assumes the maximum
modal responses occur at the same time and ignores the sign of the response.
It, therefore, tends to overestimate the maximum response.

The SRSS and CQC rules are based upon the theory of random vibrations.
The simple form of the SRSS rule compared to the CQC rule is a consequence
of the assumption, that the modal vibrations are statistically independent.
That is, the response of any one mode is not correlated with that of any
other mode. For systems with closely spaced frequencies, the SRSS may be
a poor estimator of the actual maximum response. By introducing a modal
cross-correlation coefficient p j, the CQC rule accounts for the mutual
reinforcement and/or cancellation of modes with closely spaced frequencies.
The coefficients p;j vary between zero and one, depending primarily upon
the relative proximity of the natural frequencies. If the frequencies are well
separated, the cross-modal terms pij (i 0j) become small and the CQC
method reduces to the SRSS method.

The method of estimating the maximum response when a structure is
subject to base excitation is exactly the same, except that equations (10.248)
and (10.249) are replaced by (see Section 10.3.2)

ua = +cq (10.256)

and

9,+2Y;wi9,+(t)i
2 9i=-fig;TMlluls (10.257)

where 4 . is the modal matrix for the structure when UB = 0, M11 is the inertia
matrix referred to internal node points and u; the quasi-static displacements
of the internal nodes due to the boundary motion. The form of equation
(10.257) assumes that the coupling inertia matrix MIB is zero and the terms
involving damping in (10.196) are negligible.

In the case of earthquake excitation the following combination rule is
also used

(4) Double sum combination method (DSC)
N N \ 1/2

Uk(max) = (Y_ Y_ ukipijUkj I (10.258)
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where

( w; - Wj l z -1
P,;=S 1+(

\Y'wr+Yiw /l

in which

wj = w;{1 - (Y!)111/2

and

Y;=Y +
22

tdw,

(10.259)

(10.260)

(10.261)

where td is the time duration of the white noise segment of the
earthquake excitation. This may be represented by extremely irregular
accelerations of roughly equal intensity.

Reference [10.24] has analysed the response of two fifteen-storey frame
buildings to earthquake excitation using both response spectrum and time
history methods. All four combination rules presented here were used. One
building was a `regular' building with uncoupled modes having well separ-
ated frequencies. The other was an `irregular' building having coupled
modes with close natural frequencies. The natural frequencies of the two
buildings are given in Tables 10.1 and 10.2.

Each building was subjected to three earthquakes in the E-W direction.
The average errors for the displacements, shears and overturning moments,
given by the four combination rules when compared with the time history
solution, are summarised in Tables 10.3 and 10.4.

In the case of the regular building the SRSS, CQC and DSC methods
give almost identical results. The reason for this is that the natural frequen-
cies are well separated resulting in very small modal cross-correlation
coefficients. The ABS method overestimates the maximum responses
appreciably.

The response predictions using both the ABS and SRSS methods are
grossly inaccurate for the irregular building, especially in the N-S direction.
On the other hand, the predictions made using the CQC and DSC methods
are much more accurate. This illustrates the importance of including the
cross-correlation between closely spaced modes.

One fact that the summary Tables 10.3 and 10.4 do not indicate, is that
the SRSS, CQC and DSC methods can sometimes underestimate the
maximum response as well as overestimate it. Details can be found in
reference [10.24].
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Table 10.1. Natural frequencies of regular building [10.24]

Mode no. Frequency (Hz) Direction

1 0.898 E-W translational
2 2.59 (all modes)
3 4.50
4 6.49

Table 10.2. Natural frequencies of irregular building [10.24]

Mode no. Frequency (Hz) Predominant direction

1 0.857 First E-W
2 0.892 First N-S
3 1.29 First torsional
4 2.44 Second E-W
5 2.56 Second N-S
6 3.60 Second torsional
7 4.20 Third E-W
8 4.44 Third N-S
9 6.02 Fourth E-W

10 6.06 Third torsional
11 6.41 Fourth N-S
12 8.06 Fifth E-W

Table 10.3. Regular building error results [10.24]

Average % error

Response quantity ABS SRSS CQC DSC

Displacements 24 6 6 6
Shears 41 7 8 8

Overturning moments 33 6 6 6

Other combination rules have been suggested in addition to the ones
presented here. Details can be found in reference [10.25]. This reference
also gives details of similar combination rules which are used when struc-
tures are subjected to earthquake components in three orthogonal directions.
Further references can be obtained from references [10.26, 10.27].
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Table 10.4. Irregular building error results [10.24]

Average % error

Response quantity ABS SRSS CQC DSC

E- W response
Displacements 27 18 6 7
Shears 49 22 8 8

Overturning moments 39 25 7 6

N-S response
Displacements 491 251 32 18
Shears 528 217 24 17

Overturning moments 520 218 25 16

Torsional response
Torques 137 13 7 9

P

1 12 3 4 5

Figure 10.16 Idealisation of a simply supported beam subject to a point force.

10.5 Reducing the number of degrees of freedom

Section 8.8 describes various techniques for reducing the number of degrees
of freedom in the case of free vibration. This section indicates how these
same techniques can be applied when determining the forced response of
the structure.

10.5.1 Making use of symmetry
If a structure and its boundary conditions exhibit either an axis or plane
of symmetry, then the response can be calculated by idealising only half
the structure, even when the applied loads are non-symmetric. To illustrate
this, consider the simply supported beam shown in Figure 8.5 with a single
force at node 2. This configuration is shown in Figure 10.16.

Figure 10.17 shows how the load P at node 2 in Figure 10.16 can be
represented by the sum of symmetric and antisymmetric loads P/2 at nodes
2 and 4. The solution of configuration 10.17(a) can be obtained by consider-
ing half the structure (nodes 1 to 3) subject to the load P/2 at node 2 with
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P12 P12

1

1 2 3 4 5

(a)

P/2 P/2

t 1

1 2 3 4 5

(b)

Figure 10.17 Representation of a non-symmetric load by the sum of (a) a symmetric
loading and (b) an antisymmetric loading.

symmetric boundary conditions applied at node 3. Similarly the solution
of configuration 10.17(b) can be obtained by repeating the analysis with
antisymmetric boundary conditions applied at node 3.

If us and UA are the responses for configurations 10.16(a) and (b)
respectively, then the total response for the half structure I to 3 will be

U= us+uA (10.262)

To obtain the total response for the half structure 3 to 5 the responses us
and UA are first reflected in the axis of symmetry through node 3, to give
us and uA. If the nodal degrees of freedom are (v, 9z) then this operation
consists of putting

V(6_i) = Vi
i=1,2 (10.263)

The total response is given by
u=us-uA (10.264)

If the loading extends across the axis of symmetry, then the loading over
each half structure is treated in the above manner and the responses added.
If the modal method of solution is used then equation (9.8) is solved twice,
once with the symmetric modes and once with the antisymmetric modes.
The techniques to be used when there are two and three planes of symmetry
are presented in reference [10.28].

10.5.2 Rotationally periodic structures

The response of a rotationally periodic structure to a distribution of har-
monic forces can be obtained by carrying out a series of response calculations
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for just one component. To this end the force distribution is expressed in
terms of a number of propagating waves. Thus the equivalent nodal forces
due to the external loading on the component r are expressed in the form

N
{f }' exp (iwt) = Y, {A}P exp [i{wt -27r(r-1)p/N}] (10.265)

P=t

where N is the number of components. This expression indicates that the
forces on the first component are

N

{fe}' exp
(i(ot)

= Y_ {A}P exp (iwt)
P=1

(10.266)

Also, the forces on adjacent components have the same magnitude but with
a phase difference of 2irp/N.

In order to determine the {A}P, equation (10.265) is written for all the
components in a single matrix expression

[fe] = [A][4] (10.267)

where the rth column of [f] is {f}', the pth column of [A] is {A}P and
element (p, r) of [4] is exp[-i2ir(r-1)p/N]. [+] is a square matrix of
order N and so (10.267) can be solved for [A] giving

[A] = [fe][4 ]-' (10.268)

Reference [10.29] shows that

[4]-' = [4,]H (10.269)

and so element (p, r) of [4]-' is exp {i21rr(p -1)/ N}.
The response of the structure to each of the propagating waves in (10.265)

is determined separately. As one of the force waves propagates round the
structure, it will induce a similar displacement wave in the structure having
the same frequency and phase variation.

The equation of motion for component r is, on omitting the factor
exp (i(ot)

[K' - wzM'+iwC']{u}' = {f}' (10.270)

The nodal displacements and forces are partitioned into those corresponding
to nodes on the left- and right-hand boundaries and all other nodes as in
(8.125) and (8.127). The nodal forces consist of forces due to the externally
applied loading and also boundary forces due to the motion of adjacent
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components. They may, therefore, be written in the form
'j, b rfe

L

{f}' = f; +
f
0

fe
fR

(10.271)

where the superscripts e and b denotes external and boundary loading.
Equation (10.265) indicates that

e r r
fL AL

f; = A, (10.272)

fR exp (-iE)AL

where e = 2,7rp/ N. Following the analysis given in Section 8.8.2 shows that
b r b
fL fL

0 = 0

fR -exp (-is)fL

Ir

(10.273)

and

{u}r=WLu' Ir (10.274)

where w is defined by (8.130) with µ replaced by E.
When expressions (10.271) to (10.274) are substituted into (10.270), the

unknown boundary forces {f L}' can be eliminated by premultiplying by wH
(see equation (8.132)). This results in the equation

[K'(e)-w2Mr(e)+iWCr(E)]I
uL]r=[2AL]r

(10.275)
L u, A, ,,

where Kr(e) and Mr(E) are defined in (8.134). Also

C'(E) = WHCrW (10.276)

Equation (10.275) is solved N times corresponding to the N values of
E = 2Trp/ N and forces {A}p (p = 1, 2, ... , N). Each time the complete set
of displacements on the component is obtained using (10.274). If this
analysis is carried out for the first component and the N solutions assembled
into a matrix [u] having N columns, then the displacements on the whole
structure due to the complete loading are given by

[U] = [u][4] (10.277)

where the rth column of [U] gives the displacements of component r. Further
details can be found in reference [10.29].
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10.5.3 Elimination of unwanted degrees of freedom

In Section 8.8.3 it is shown that the full set of degrees of freedom can be
related to a reduced set of master degrees of freedom by means of the relation

u=RUm

where R is defined by (8.151).
Substituting (10.278) into the energy expressions (9.3)

Lagrange's equations gives

MRUm + CRUm +KRUm=fR

where MR and KR are defined in (8.154) and

CR = RTCR, fR = RTf (10.280)

Reference [10.30] investigates the effect of the use of this technique on the
response of plates.

10.5.4 Component mode synthesis

In Section 8.8.4 three methods of component mode synthesis for free
vibration are presented. The first uses fixed interface modes, whilst the other
two use free interface modes. The application of these techniques to forced
response is illustrated in this section by considering the second of the two
methods which use free interface modes. The configuration considered is
illustrated in Figure 8.13.

The kinetic and strain energies of the two substructures are given by
equations (8.170), (8.181), (8.182) and (8.183). The strain energy of the
connectors is given by (8.199). The dissipation function for a single substruc-
ture is of the form

Ds = 2till sT[C]s{u}s (10.281)

where [C]s is the damping matrix for the substructure. Introducing the
transformation (8.175) gives

Ds = 2{9N}sT[C]s{9N}s (10.282)

where

[C]s=[4 .]T[C]s[4N] (10.283)

Adding the contributions from the two substructures gives

D = 2{q}T[C]{q} (10.284)
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where

[C] [
0,

Cn]

and {q} is defined by (8.181).
The dissipation 1function for the connectors is

Dc=2[ug JT[Cc]1rill

Introducing the transformation (8.198) into (10.286) gives

Dc = 2{4}T[(DB]T[Cc][4lB1{q}

The dissipation function for the complete system is, therefore,

DT = 2{q}T[[C] +
[DB]T[Co][.OB]]{q}

(10.285)

(10.286)

(10.287)

(10.288)

The virtual work done by the forces, {f}5, applied to a single substructure
is

S W. = {Su}ST{f}5 (10.289)

Introducing the transformation (8.175) gives

SWs={5qN}ST{Q}5 (10.290)

where

{Q}s = [4N]T{f}5 (10.291)

The virtual work done by the applied forces for the complete system is

SWT={Sq}T[ Qr
Qu

(10.292)

The equation of motion of the complete structure is, therefore

{4}+[[C]+[4B]T[Cc][PB]]{9}+[[K]+[ t B]T[Ko][4'B]]{q}= IQll1

(10.293)

Although the matrix [C] can be made to be a diagonal matrix by an
appropriate choice for the matrices [C]s, as described in Section 9.2, the
product [4)13]T[Cc][4B] will not be diagonal.

As well as reducing the number of degrees of freedom, this method has
the advantage that components having widely differing damping characteris-
tics can easily be represented.
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Computer analysis techniques

A new user of finite element analysis is unlikely to start writing a computer
program. The reason for this is that there is a large number of general
purpose finite element programs which can be obtained commercially. All
are available on a wide range of mainframe and mini computers. There is
also an increasing number available for running on personal computers.
These tend to be a subset of the mainframe version. They can be used to
analyse small scale structures and also prepare the input data for large scale
structures which are to be analysed on a mainframe.

This chapter assumes that the reader intends to use one of these commer-
cial programs. Details of programming aspects can be found in references
[11.1-11.6]. Some of the problems at the ends of earlier chapters require
the use of a finite element program as indicated. Those readers who do not
have such a program available can use the program DLEARN presented
in reference [11.7]. DLEARN is an educational, linear static and dynamic
finite element analysis program. Although it does not have a free vibration
analysis capability, reference [11.7] presents an eigenproblem solution
routine, LANSEL, which can be incorporated into DLEARN.

Different programs can give different solutions to the same problem. This
is illustrated in Figure 11.1, which shows the variation of the frequency of
the first bending mode of a twisted cantilever plate, as a function of the
angle of twist. Analyses were carried out by sixteen different establishments
using both finite element and analytical methods. Figure 11.1 represents a
subset of the results presented in reference [11.8]. Plots 1 and 2 were
obtained using a triangular facet-shell element, the first with a consistent
mass matrix and the second with a lumped mass matrix. Plots 3 and 4 were
both computed with quadrilateral elements, the first being a facet shell and
the second a doubly curved shell. Both used a lumped mass representation.
Plot 5 was obtained using a super-parametric thick shell element with a
consistent mass matrix. Plots 6 and 7 were computed using eight and sixteen
node isoparametric solid elements, having lumped and consistent mass
matrices respectively.

The various analyses are in good agreement for zero angle of twist and
the predicted non-dimensional frequency is close to the measured one.

502
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Figure 11.1 Frequencies of a twisted plate, as a function of twist angle for first
bending mode alb = 3, b/h = 20. - finite element, - - - experimental.

However, as the angle of twist increases, the predicted results diverge and
only three of them are reasonably close to the measured values.

References [11.9, 11.10] present the results of a separate survey. In this
case the structure consisted of a cylinder and an I-section beam with variable
cross-section, which were connected by two relatively soft springs. The
twelve participants were asked to predict various quantities which included
all natural frequencies below 2500 Hz, direct and transfer frequency
response functions within the frequency range 1-2500 Hz, and the transient
response to two separate impulses.

The number of modes predicted having frequencies less than 2500 Hz
varied from 8 to 42. However, comparison of the lowest nine non-zero
frequencies showed that the mean predicted values compared reasonably
closely with measured values.

There was a certain amount of agreement between the frequency response
functions in the range 1-150 Hz. However, there was considerable disagree-
ment at higher frequencies. Some of this is due to the disagreement in the
number of modes in the range considered. The transient response calcula-
tions produced even greater scatter. Not only did the time histories disagree,
the maximum responses differed by several orders of magnitude.

Both surveys showed that not only did different programs produce
different results, but also different analysts using the same program for the
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same problem can produce different results. Possible causes of this are
different choices of idealisation and/or element types and incorrect data.
The accuracy of computed results is, therefore, a function of the experience
of the user as well as the accuracy of the program. It is essential that users
of finite element programs be well trained in both the finite element method
and the use of the program to be used.

11.1 Program format

A typical finite element analysis consists of three phases, as indicated in
Figure 11.2. The pre-processing phase consists of specifying and checking
the input data. This is followed by the solution phase in which the analysis
is carried out. The final phase, which is known as the post-processing phase,
is concerned with the interpretation and presentation of the results of the
analysis.

11.1.1 Pre-processing

In the pre-processing phase the following input data is prepared for a free
vibration analysis:

(1) Element types
(2) Element geometric properties
(3) Element material properties

Pre-processing

Solution

Post-processing

Figure 11.2 The three phases of analysis.
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(4) Nodal coordinates
(5) Element definition
(6) Boundary conditions
(7) Multi-point constraints
(8) Master degrees of freedom
(9) Analysis options

Items (1) to (6) are required to define the idealisation. This information
is used to calculate the element inertia and stiffness matrices and the
assembly of these into the inertia and stiffness matrices for the complete
structure.

The specification of the element types consists of defining which elements
in the program element library are to be used in the idealisation. These
may be beams, plates, shells or solids or a combination of them. The element
definition consists of specifying the node numbers for each element in the
mesh. This information, together with the nodal coordinates, is used to
calculate the area or volume of each element and the orientation of its local
axes, if required. Certain geometric properties of elements, such as the area
and second moment of area of the cross-section of a beam and the thickness
of a plate, cannot be calculated from the nodal coordinates and so have to
be input separately. These are referred to as element geometric properties.
The material properties, such as Young's modulus and density, are also
required for each element. Sufficient information has now been defined for
the calculation of the element inertia and stiffness matrices and their
assembly into the inertia and stiffness matrices for the complete structure.

There are various ways of inputting the nodal coordinates. These include:

(1) Direct definition
(2) Automatic mesh generation
(3) Input from an external CAD (computer aided design) system
(4) Digitising tablet
(5) Crosshairs on a terminal screen
(6) A combination of (1) to (5).

Methods (1) to (3) and a combination of these can also be used to define
the elements.

Direct definition consists of specifying the coordinates, in an appropriate
coordinate system, of each node in turn. This process can be quite tedious,
especially for large meshes. But it may be the only way in irregular regions
of an idealisation. Regular regions of a mesh can be generated using an
automatic mesh generation routine. In this case areas or volumes are defined
together with the element type and mesh division. The nodal coordinates
and element definition are then generated automatically. It may be that the
geometry has been defined using an external CAD system. In this case it
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Figure 11.3 Node numbering schemes.
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may be possible to transfer this information directly to the finite element
preprocessor. Other useful techniques, especially for irregular regions and
the modification of existing nodes, are the use of a digitising tablet or
crosshairs on a terminal screen. For complicated idealisations a combination
of these techniques is the most efficient means of generating the data.

The numbering of the nodes and elements depends upon the solution
method incorporated into the program to be used. In some, the node
numbering is important and the element numbering unimportant, whilst in
others the reverse situation holds.

Node numbering is important if the symmetric half of the inertia and
stiffness matrices are stored in one-dimensional arrays. In order to minimise
storage only the non-zero terms beneath a skyline are included in these
arrays [11.7]. It is, therefore, important that the nodes be numbered such
that the non-zero terms are as close as possible to the main diagonal. Some
programs contain node renumbering facilities [11.3]. If these are not avail-
able, then the nodes should be numbered along the topologically shortest
path. For example, the numbering scheme shown in Figure 11.3(a) is
preferred to that in Figure 11.3(b).

Element numbering is important if a front solution method is used [ 11.11].
In this method the slave degrees of freedom at a node are eliminated as
soon as all the elements connected to that node have been assembled. The
order of assembling the elements is, therefore, important. Some programs
contain element reordering facilities.

Having defined the nodes and elements, it is advisable to check these to
ensure that they are correct, before proceeding with the analysis. This
checking is best done graphically. This means that a high resolution graphics
terminal, possibly capable of colour shading, and a hard copy facility are
required.

Two-dimensional idealisations can be checked relatively easily, as only
two-dimensional plots are required. The program should be capable of
plotting nodes or elements and including node and/or element numbers on
request. Outline drawing will emphasise the overall shape of the idealisation
without internal details. Also element shrinking will indicate if any element
is missing from the idealisation. Figure 11.4 shows an idealisation without
and with shrinking. It will also be useful if the distribution of element
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(a)

00D
(b)

Figure 11.4 Idealisation of a tapered cantilever. (a) Without shrinking, (b) with
shrinking.

Figure 11.5 Idealisation of an open box with two internal webs.
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geometric or material properties can be indicated on the element plot. This
can be done by means of colour shading.

Additional features required for three-dimensional idealisations are plot-
ting of the mesh from any viewpoint, selective plotting of elements and
hidden line plots. Figures 11.5 to 11.9 show various plots of an open box
with two internal partitions. Figure 11.5 is a see-through plot of the idealisa-
tion. With such a plot it is difficult to check all the details. Figure 11.6
shows a hidden line plot of the same structure. It is now easy to check all
the elements which are immediately in view. Other elements can be checked
by hidden line plots from different viewpoints. This is illustrated in Figure
11.7 which shows a view from underneath. Another useful technique is to

Figure 11.6 Hidden line plot of structure shown in Figure 11.5.

Figure 11.7 Internal view of structure shown in Figure 11.5 with hidden lines.
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(a)

(b)

Figure 11.9 Section plots of the structure shown in Figure 11.5.

Figure 11.10 Indication of boundary conditions using arrows.

plot sub-components of the structure, as shown in Figure 11.8. Figure 11.9
shows section plots through the two vertical planes of symmetry of the
structure.

Boundary conditions are of two types: those that occur on a true boundary
and the symmetric or antisymmetric conditions at a plane of symmetry. It
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Figure 11.11 Indication of master degrees of freedom.

is helpful if these conditions can be indicated on an element plot. In Figure
11.10 zero values of two components of in-plane displacements at each
node point on the left hand boundary are indicated by means of arrows.

Multi-point constraints are used to represent rigid off-sets, which are
discussed in more detail in Section 3.11. This type of constraint is difficult
to indicate graphically.

Master degrees of freedom can be chosen manually, automatically or by
a combination of the two. An indication of manually selected masters on
an element plot is helpful. This is illustrated in Figure 11.11. The component
of displacement normal to the plane of the cantilever at each node has been
selected as a master degree of freedom and is indicated by means of an
arrow. Automatically selected masters cannot be indicated as they are
selected during the element assembly procedure.

Most finite element programs will give the user a choice of more than
one eigenproblem solution technique. It is, therefore, necessary to specify
which one is to be used and any information the chosen method requires.
This may be the number of frequencies and modes required to be calculated.

The additional input data required for forced response analysis consists
of specifying the applied forces or imposed displacements and the damping.
The excitation will be either in the frequency or time domain. Precise details
of the form of the input and the additional information required for the
solution procedure to be used, can be obtained from Chapters 9 and 10.
The spatial distribution should be checked by indications on an element
plot. The time history and/or the frequency distribution of the excitations
should also be plotted for visual checking.
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Figure 11.12 Flow chart of the solution process.
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11.1.2 Solution phase

Once the input data has been prepared and checked, the solution can
be carried out. Figure 11.12 shows the various types of analysis and the
order in which they are carried out. For forced response the first choice is
between a modal solution (M) or a direct solution (D). For a modal solution
the frequencies and modes of free vibration have to be calculated first. In
either case, the next choice is between a frequency or time domain solution.
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In the frequency domain, harmonic response is a prerequisite to both
periodic (P) and random response (R) as well as being an important solution
procedure itself. In the time domain the choice is between a time history
of the response (TH) or predicting the peak response using the response
spectrum method (RS).

The solution can be carried out in either interactive or batch mode,
depending on the estimated run time. Good finite element programs will
carry out further checks on the data during the solution phase. Fatal errors
will cause the execution to be terminated. Non-fatal errors will be indicated
by warning messages, but execution will continue.

11.1.3 Post-processing

The post-processing phase is concerned with interrogating the results of
the analysis. In the case of free vibration this will be the natural frequencies
and modes of free vibration. The distorted mode shapes should be plotted
from a specified viewpoint. It is useful if the undistorted idealisation, either
in full or in outline, can be superimposed for comparison. This is illustrated
in Figure 11.13 which shows a distorted mode shape of a square cantilever
plate, superimposed upon an undistorted outline. A better understanding
of the motion can be obtained if the mode shape can be animated.

When analysing response in the frequency domain, response quantities
are plotted against frequency of excitation. A choice of linear or logarithmic
scales on both axes is required. For time domain solutions response quan-
tities are plotted against time.

Figure 11.13 Free vibration mode of a square cantilever plate.
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11.2 Modelling

Modelling is a two stage process. To start with, the actual structure is
replaced by a simplified one which retains the essential features to be
investigated. The reason for this is that it would be too costly and time-
consuming to try and model every small detail of the structure. Expertise
in carrying out this simplification is usually gained by working in conjunction
with experienced engineers and designers. The second stage is to represent
the simplified model by a finite element model.

Before a finite element mesh can be specified, the following information
is required:

(1) The geometry of the simplified model
(2) The boundary conditions
(3) The applied loads
(4) The required results

Note that both the boundary conditions and applied loadings need to be
adequately represented and, therefore, will affect the choice of mesh as well
as the geometry. Previous chapters have indicated that the size of mesh
affects the accuracy of the results. This means that the size of the mesh
should be chosen to ensure that the quantities of interest are predicted
accurately.

It is a simple matter to represent uniform regions of a structure by means
of a uniform mesh. Several examples are given in earlier chapters. When
using triangular elements, the arrangement of the triangles influences the
results. If the region to be modelled has two axes of symmetry, then
arrangements (a) and (b) of Figure 11.14 are preferable to (c) and (d),
which cannot predict symmetric responses. Arrangement (c) can, however,
predict a symmetric response in one direction. If the boundaries are all
fully fixed, then arrangements (b) to (d) have elements which are completely
inactive (I), since all the degrees of freedom at all three nodes will be
zero.

Quadrilateral elements should be used in preference to triangles as
they tend to give more accurate results for the same arrangement of node
points. Triangular elements should only be used where the structural shape
requires it.

When modelling irregular geometries, the shape of the element should
be controlled. The basic shape of a triangle is an equilateral triangle, and
that of a quadrilateral is a square. Accuracy tends to deteriorate as elements
are distorted from their basic shape. Various types of distortion for a
quadrilateral are shown in Figure 11.15. The first (a) indicates a change in
aspect ratio, whilst (b) and (c) show two types of angular distortion. Both
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Figure 11.14 Arrangements of triangular elements

(a)

(b)

I

(c)

Figure 11.15 Distortion of quadrilaterals: (a) aspect ratio, (b) angular (skew),
(c) angular (taper).
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of these can be controlled by requiring the included angle between two
adjacent sides to be close to 90°.

Elements with mid-side nodes tend to give more accurate solutions than
those without. However, several precautions should be observed when using
such elements. They should have straight sides, except when modelling
curved boundaries. In such cases the curve should not be excessive. Also
a `mid-side' node should be located close to the point lying midway between
the corner nodes. Adjacent elements should have the same number of nodes
along the common side. A corner node should only be connected to a corner
node of the adjacent element and not a mid-side node. Therefore arrange-
ment (a) in Figure 11.16 is preferable to (b). When mixing element types
it may be necessary to remove the mid-side node using constraint equations.
This is illustrated in Figure 11.17 where node 7 should be removed from
element A before connecting to element B to ensure they have common
interpolations along the interface. Distributed edge loads and surface press-
ures are not always allocated to the element nodes according to com-
monsense. Figure 11.18 indicates the distribution of unit loads [11.12].
Reaction forces tend to be similarly distributed. The mass at mid-side nodes
is also greater than at the corner nodes. This should be kept in mind when
selecting master degrees of freedom.

Difficulties arise when two neighbouring regions, which are to be rep-
resented by different mesh densities, are connected together. Two ways of
doing this are illustrated in Figure 11.19. Both methods use triangular

C

(a) (b)

Figure 11.16 Connecting elements with mid-side nodes.

5
3 8 10

2 A `7 B

1 6 9
4

Figure 11.17 Connection of different element types.
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1
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2

3

1

6

1

12

(a) (b)

Figure 11.18 Distribution of unit loads: (a) along an edge, (b) on a surface.

(a)

(b)

Figure 11.19 Mesh grading using compatible elements.
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A
B2

B1

Figure 11.20 Mesh grading using non-compatible elements.
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Figure 11.21 Mesh grading using the same element type.

elements to connect meshes of rectangular elements. This is acceptable
provided they have common interpolations along the interfaces. Figure
11.20 illustrates a case where dissimilar element types do not have common
interpolations along the interface. Element A has a quadratic variation of
displacement, whilst each of elements BI and B2 has a linear variation.
Multi-point constraints can be used to enforce compatibility in the case
illustrated in Figure 11.21. The displacements at nodes 7 and 9 of elements
B 1 and B2 are constrained to be defined by the displacements at nodes
6, 8 and 10 using the interpolation function for element A.

Problems often arise in modelling physical discontinuities in structures
such as joints and other connections. Such a problem occurs with bolted
joints or joints that are spot welded. To model such details will require a
very fine mesh. Such refinement is rarely used. Instead, a coarse mesh is
defined, which means that the details of the connection are smeared out.
This fact should be borne in mind when interpreting the results. The joining
of beams in frameworks and plates in folded plate structures can also cause
modelling problems. The reason for this is that very often beam and plate
elements are assumed to be thin. But in practice the thickness of the structure
can be significant. This is illustrated in Figure 11.22 where two beam elements
are connected at right angles. If the off-sets of the node from the ends of
the beam elements are significant, then rigid off-sets, as described in Section
3.11, should be used.

Care should be taken in modelling support conditions, as often there
are alternate ways of defining them. Figure 11.23 shows a beam which is
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I Offset

Node
Offset

Figure 11.22 Off-set connection of beam elements.

4I

P

V
(a) (b)

Figure 11.23 Types of fixed support: (a) fully fixed, (b) Engineer's theory of bending.

It

(a)

Figure 11.24 Modelling of a simple support.

(b)

modelled using membrane elements. Two methods of defining fixed boun-
dary conditions are illustrated. Similarly, Figure 11.24 shows two ways of
defining a simple support. In each case the analyst should decide which is
the more relevant one for the particular case under consideration.

There are many occasions when the structure has one or more planes of
symmetry. These can be used to reduce the cost and simplify the analysis.
In the case of free vibration, the mode shapes are either symmetric or
antisymmetric about a plane of symmetry. In practice the symmetric and
antisymmetric modes are calculated separately using an idealisation of a
portion of the structure and appropriate boundary conditions along the
plane of symmetry. Details are given in Section 8.8.1. Symmetry can also

V
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be exploited in forced response analysis as described in Section 10.5.1. Two
other types of symmetry exist, axisymmetry and cyclic symmetry. Analysis
of axisymmetric structures is presented in Sections 5.1 to 5.6. Cyclic sym-
metric, or rotationally periodic structures, are considered in Sections 8.8.2
and 10.5.2.

Problems arise when modelling semi-infinite regions. Such a situation
occurs when considering soil-structure interaction problems. One type of
problem is concerned with modelling a finite portion of the semi-infinite
media. Another problem is to do with the representation of the boundary
conditions on this finite portion. Figure 11.25 shows half of a symmetric
model of a finite portion which is subject to a single load. In order to ensure
that wave speeds are predicted accurately, the size of the largest element
should be less than one-twelfth of the smallest wavelength [11.13, 11.14].
Uniform meshes are preferable to non-uniform ones. Sudden changes of
element size cause spurious reflection of the elastic waves. If it is necessary
to have two regions with different mesh densities, then they should be joined
by means of a transition zone of graded elements [11.15]. Mid-side node
elements are not recommended because of the non-uniform mass distri-
bution.

In Figure 11.25 symmetric boundary conditions are used along the
boundary AB. The boundary conditions along BD and CD should be
selected to ensure that waves impinging on them are transmitted without
reflection. Two types of boundary conditions are used on the bottom
boundary BD, namely:

(1) a fixed boundary corresponding to the case of a soil stratum resting
on bedrock, which can be assumed rigid; and

A C

D

Figure 11.25 Modelling semi-infinite media.



Modelling 521

(2) a viscous boundary with constant dashpots to reproduce a half-space
[11.13].

Two types of boundary conditions are also used for the vertical boundary
CD, these are:

(3) a viscous boundary with either constant or variable properties [11.13];
and

(4) a consistent boundary where a frequency dependent boundary stiffness
matrix is obtained, by solving the wave propagation problem in a
layered stratum using semi-infinite elements [11.16].

Reference [11.13] indicates that taking an array of equal dashpots, most of
the energy in compression and shear waves is absorbed. However, in order
to absorb Rayleigh waves, the magnitudes of the dashpots should vary with
depth. However, at depths greater than one-half wavelength, the dashpots
approach a constant value. It has been shown [11.17] that 67% of the energy
radiating from a vertically vibrating footing is transmitted in the form of a
Rayleigh wave. In this situation the distribution of dashpots which vary
with depth is appropriate. Because the wave absorption is imperfect, the
accuracy also depends upon the distance from the excitation to the viscous
boundary. The error decreases with an increasing ratio between this distance
and the shortest wavelength. Reference [11.18] shows that a viscous boun-
dary with variable properties can give accurate solutions for half-space
problems, but the consistent boundary representation should be used on
CD when BD is fixed. The reason for this is that a Rayleigh wave is not
the only type of wave that can be transmitted in this case. At any frequency,
several standing waves can occur between the fixed base BD and the free
surface AC. These waves can propagate in a horizontal direction
[11. 19, 11.20]. There is a need for a frequency dependent boundary condition
along CD which will absorb all these waves. This is provided by the
consistent boundary method.

Guidelines for the use of solid elements follow a similar pattern to those
for two-dimensional elements. Hexahedra should be used in preference to
pentahedra and tetrahedra, the latter two being only used where the struc-
tural shape requires it. Elements behave best when they are least distorted.
The basic shape of a hexahedra is a square cube. The performance of higher
order elements deteriorates as the curvature of the edges increases. Mid-edge
nodes should be as near to the half-way point as possible.

Further hints on modelling can be found in reference [ 11.21 ]. These and
the ones presented here, should be considered to be suggestions rather than
rules, as important exceptions may exist. There is no substitute for knowl-
edge and experience.
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11.3 Using commercial codes

The choice of which commercial program to use depends upon many
factors. If several types of analyses are required, then the choice is between
the general purpose programs. However, if only one type is required, then
a special purpose program might prove more efficient computationally. The
available programs tend to have particular strengths depending upon the
interests of the developers, so it would be wise to determine these by talking
to experienced users.

The chosen program should be capable of providing accurate solutions.
More and more developers are subjecting their programs to stringent quality
assurance tests [11.22, 11.23]. However, it is very difficult for a developer
to envisage every possible use a customer might make of his software. The
quality assurance tests may, therefore, concentrate more on checking the
accuracy of the code.

Having chosen the program, the next step is familiarisation with its use.
Most program developers provide Verification and/or Examples Manuals
with their product. Running some of these examples will provide some
experience of its use.

The next stage is to build up confidence in the accuracy of the elements
selected for the idealisation and the solution procedures to be used. The
accuracy of the elements depends upon the representation of the stiffness,
inertia and applied forces. The accuracy of stiffness and spatial distribution
of the applied forces can be checked by applying a set of static validation
tests. A number of papers have been published on this topic, many of which
are listed in reference [ 11.24], which represents the current state of the art
for membrane and plate bending elements. Reference [11.25] discusses the
problems involved in setting up a similar procedure for shell elements.

Reference [ 11.24] proposes the following set of tests:

Single element completeness tests
Completeness tests for a patch of elements
False zero energy mode tests
Invariance tests
Single element, shape sensitivity tests
Benchmark tests

The single element tests have been applied to the elements of a number
of commercial finite element systems in references [ 11.26-11.28]. Benchmark
tests for membrane, plate bending, shell and folded plate structures are
proposed in references [11.29-11.34]. Some of these have been applied to
some major finite element systems. The results are given in references
[11.35, 11.36].
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The single element completeness tests consist of showing that the element
displacement assumptions contain zero strain (rigid body) modes and
constant strain modes. If each element in a model passes these tests, and
the model is a conforming one, the results will converge monotonically as
the number of elements is increased. If the model is a non-conforming
one, then constant strain states should be applied to an assemblage, or
patch, of elements. All elements should contain the same constant strains.
If this is so, then the results will converge, though not necessarily mono-
tonically.

The false zero energy mode tests consist of determining whether an
element contains deformation modes, other than rigid body modes, which
have zero strain energy. This information can be determined by calculating
the eigenvalues of the element stiffness matrix. The number of false zero
energy modes is then equal to the number of zero eigenvalues minus the
number of rigid body modes. If an element does contain false modes, then
the test should be applied to a patch of elements. In many cases it will be
found that the patch does not exhibit false modes.

In developing a finite element model, the assumed displacement functions
are very often related to a local set of axes. These are defined by the order
of the element specifying nodes. The invariance test consists of taking a
finite element model and analysing it for a given set of element input
nodes. The problem is re-analysed after specifying the element nodes
differently, by taking another corner node as the first specifying node for
each element. If the results are the same in both cases, then the element
is invariant.

Single element, shape sensitivity tests consist of determining the sensitiv-
ity of elements to variations in aspect ratio, skew, taper and a combination
of these. The element to be examined is cut out of a rectangular continuum
and loaded using specified nodal displacements and forces and analysed.
The resulting displacements and/or stresses are compared with the exact
ones. This process is repeated after introducing further distortions. This
will indicate limits on the allowable variations. As an illustration of this,
Figure 11.26 shows the effect of aspect ratio on the solution for displacement,
for various elements which are subject to a twisting moment. As these results
were published in 1978, the commercial codes containing these elements
are not indicated. It does illustrate though, that the aspect ratio of many
elements should be limited in order to preserve accuracy.

Benchmarks are fully specified standard problems which are used for
evaluating the performance of element assemblies. They resemble instances
found in industrial applications wherever possible. Reference values for the
assessment of benchmarks are, as far as possible, obtained from known
analytical results.
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Figure 11.26 Effect of aspect ratio on accuracy of plate bending elements [11.37].

Benchmarks can also be used for convergence studies and checking
elements for locking effects. Beams, membranes and plates, which are based
upon theories requiring continuity of displacements only (often referred to
as C° theory), suffer from shear locking. This has been discussed in Sections
3.10, 4.2 and 6.3. Curved shells which are based upon CO theory suffer from
both shear and membrane locking [11.7]. Three-dimensional elements are
subject to volumetric locking when applied to incompressible, or nearly
incompressible materials [11.7].

The accuracy of element inertia matrices can be checked by carrying out
benchmark tests for free vibration. Such a set has been proposed in referen-
ces [11.38, 11.39]. These tests are also designed to test the following aspects
of eigenproblem solution techniques:

(1) The prediction of zero frequency rigid body modes
(2) The calculation of closely spaced and coincident eigenvalues and

associated eigenvectors
(3) The extraction of all eigenvalues in a given frequency range (i.e., none

are missed)
(4) The ability to choose universally satisfactory starting vectors for itera-

tive schemes
(5) The ability to calculate eigenvalues and eigenvectors irrespective of

the conditioning of the stiffness and inertia matrices
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(6) The reliability and robustness of automatic master selection schemes
when reduction techniques are employed

The ability of programs to calculate forced response can be checked by
means of suitable benchmarks. At the time of writing such a set does not
exist. A limited number can, however, be found in the Verification or
Examples Manuals of the major finite element systems.

At this stage the user should have sufficient confidence to analyse a
practical structure. As a final check it may be advantageous to represent
the structure initially by means of a very coarse mesh. Analysing this will
highlight any potential problems in running the analysis before the fine
mesh is used. By this means, long wasted computer runs are avoided. Finally,
always disbelieve the output of a computer run until you can prove that it
is satisfactory. Comprehensive checks should always be made to verify the
validity of the results.



Appendix

Equations of motion of multi-degree of freedom systems

In Chapter 1 the equations of motion of single degree of freedom systems
were derived in various forms. In this appendix the analogous derivations
for multi-degree of freedom systems are presented.

Al Hamilton's principle

Consider a system of N masses, mi, which undergo displacements u";,
when subject to forces f . Applying the principle of virtual displacments gives

N

Y_ (f Su"i -
i=1

"ui Su"i) = 0

where the Su; are virtual displacements.
Now

N
Y_ (f Sui)=SW

j=1

where SW is the virtual work done by the forces; also

u; -5u";

=d (ai Sa";)-S(iu; u;)

Therefore

N d
JY1 mia;. SNi=,Y1 mi- (ui Sui)-Sj`1zmu, 11'i== dt

N d
_ Y_ mi - (ui 84j) - ST

i=1 dt

where T is the kinetic energy of the system.

(A2)

(A3)

(A4)
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Substituting equations (A2) and (A4) into equation (Al) gives
N

SW- Y m;
d
-(u; Su;)+ST=O

;_, dt

or, on rearranging,
N d

3 T+5W= Y_ m;-(u; Su";)
=1 dt

(A5)

(A6)

To determine the true path between two instants of time t, and t2 where
8u"; = 0, equation (A6) is integrated with respect to time between these limits,
giving J"2

(3T+5W)dt=
f"2 m;at(u; Sd;)dt

;_1

N ( `Z di=I

r dt
N

_ =0

This gives

2

(A7)

(ST+SW) dt = 0 (A8)

Separating the forces into conservative and non-conservative forces gives

SW = (A9)

where 8V is the change in potential energy of the conservative forces (see
Chapter 1). Substituting equation (A9) into equation (A8) gives

t

f {S(T-V)+SWJdt=0

Taking the potential energy V to be strain energy U gives

f '2{S(T-U)+SWjdt=0

(AlO)

(All)

A2 Lagrange's equations

For a system of N masses which are free to move in three dimensions the
kinetic energy is

N
2 mu; u; (A12)T (A12)

2
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Since each vector displacement aj can be resolved into three scalar

components, then the kinetic energy can be expressed as follows

T= T(41, 4z, ... , 4n) (A13)

where the qj are n = 3 N independent displacements. Therefore

ST= Y
a--64j

j=1 aq;

Similarly the strain energy of the system can be expressed as

(A14)

U = U(ql, 92, , 9n) (A15)

and so

SU= Y,
aUS9j

j=1 aq;

Also, the virtual work done by the non-conservative forces is
N N

5 Wnc = Y_ fk ' Suk - Y_ Ckuk ' Sak
k=1 k=1

(A16)

(A17)

where Jk and ckuk are the applied force and viscous damping force acting
on the mass Mk-

Since 11k = uk(91, q2, , qn), the first term of equation (A17) becomes

E fk ' Suk = L fk ' E auk Sqj
k=1 k=1 j=//1 aqj

Jk
auk)Sgj

j=1 k=1 aqj

n

Y_ Qjggj (A18)
j=1

where

N _ auk
Qj = Y fk ' (A19)

k=1 aqj

The second term of equation (A17) becomes

auk
Ckuk ' Sak = Y_ CA ' Y_ Sq,

k=1 k=1 j=1 aq;

N aukl..
(A20)

j=1 k=1 aqj
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Now
N auk

uk=Y qi

j=1a
Therefore

auk auk

a4i aqj

Using equation (A21) in (A20) gives
N n / N

a
Y- C1! ' Nk = Y (\ Ek k Sqjuk/k=1 jCC=1 k=1

CkUk '
aqj

4 - 4L
a

Y Ckuk uk)sgiJ=1 ayj \k=1
Defining

D = 2 Y- ckiik ' uk
k=1

equation (A22) becomes
OD

Y- Ckuk . suk = E Sq,
k=1 j=1 aq;

Substituting equations (A18) and (A24) into (A17) gives

(A21)

(A22)

(A23)

(A24)

"( aDl
SWnc=

Applying Hamilton's principle (equation (All)) and using equations
(A14), (A16) and (A25) gives

r J12 (ITS4-1USgl+Qsg3-aD5q,) dt=0 (A26)
j=1 ,, act, aqj a9j 11

Now

sq; = s(dq) = dt
(sq,) (A27)

Hence, integrating the first term by parts gives

J1r2aT Sq,dt= V1'
sq,]12-f1dtI4 T,l, I ,

,

- f1'2dt( IT )sgjdt (A28)
Tqj

since the Sq; = 0 at t = t1 and t2.
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Substituting (A28) into (A26) gives

f"2

;,
(_ddt(aT)

aq aU+Q I8q;do=0 (A29)

Since the virtual displacements Sq; are arbitrary and independent, then

d (ST) +-D+--- QJ
2, ... , n (A30)

do -a4; aq; aq;



Answers to problems

1.2

1.3

M2

0

0 0 u, (k,+k2) -k2 0 u,

m2 0 u2 + -k2 (k2+k3)
/

-k3 u2

0 m3 U3 0 -k3 (k3+k4) u3

m2J Lu2J+L 2k1 1u2J
0

0 0 u, (c, + c2) -C2 0 u,

m2 0 U2 + -c2 (c2+c3) -c3 U2

0 m3 U3 0 -C3 C3 U3

(k1+kz) -k2
+ -k2 (k2+k3)

0 -k3

0 u,

k3 U2

k3 fl U3

1.4 fm 0 u

+
(c1 +cz) (-c1L1+c2L2) u

0 IP 8 (-c,L,+c2L2) (c,L;+c2LZ) ] [B]

(k1+k2) (-k,L,+k2L2)l u
+ (-k1L,+k2L2) (k1Li+k2L2) J L91 =0

1.5 [M]{4}+[C]{q}+[K]{q}=0

where

{q}'= [w
m 0 0

9x Br]1 [M]= 0 Ix 0

0 0 I,
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1.6

4c 2(b, - b2)c
[C]= 2(b,-b2)c 2(b2I +b22)c

-2(a,-a2)c (-a,b,+a2b,-a2b2+a,b2)c

-2(a,-a2)c
(-a,b,+a2b, -a2b2+a,b2)c

2(a;+a2)c

4k 2(b,-b2)k
[K]= 2(b,-b2)k 2(b2I +b2)k

-2(a,-a2)k (-a,b,+a2b,-a2b2+a,b2)k

-2(a,-a2)k
(-alb, +a2b, -a2b2+a,b2)k

2(a,+az)k

ii, (k,+k2) -k2 0m, 0 0 Fu, f,
0 m2 0 u2 + -k2 (k2+k3) -k3 u2 = fz
0 0 m3 U3 0 -k3 k3 LU3 f3

1.7 (I,+2n212)4,+(k,+2n2k2)01=0

where n = R,/R2

1.8 I, 0 0 0 0,

0 (12+413+914) 0 0 e2

0 0 1 0 03

0 0 0 I6 e4

k, -k, 0 0 0,

+ -k, (k,+4k2+9k3) 2k2 3k3 02 _0
0 2k2 k2 0 03

0 3k3 0 k3 04

Chapter 3

In Problems 3.1-3.9, 3.20 the percentage difference between the approximate
solution and analytical solution is given.

3.1 0.64, 3.12
3.2 0.55, 18.6
3.3 11.0, 27.2
3.4 0.34, 1.61
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3.5 0.88, 5.76
3.6 4.58, 16.9
3.7 10.2. Rigid body mode
3.8 11.0, 27.2
3.9 1.63, 32.4
3.11 Te=z(pAx2a)i62, Ue=0

(2)(2) Te = 2(3pAa3)e2, Ue - 0
pA x 2a = mass, 3pAa3 = moment of inertia

3.15 16.06,44.26 Hz

3.16
Modes IT, 2T
Eigenvector 10 1 0.7068] T
Stress varies linearly from 1.827E/L to 0.173E/L
Gauss point stresses in error by -0.50 and +2.07%

3.20 2.4, 18.6

Chapter 4

4.1 Gives mass due to rigid body translation in the x-direction
4.2 No forces are required for arigid body translation in the x-direction
4.9 (2 x 2) for both inertia and stiffness matrices
4.10 (3x3),(2x2)

Chapter 5

pO °O 2p sin n¢

IT n=1 1T n

P P
5.2 Pr- 21ra+n_1 ira cos 9

5.10 Inertia (4 x 3), stiffness (3 x 2)

Chapter 6

6.4 (4 x 4), (4 x 4)

Chapter 8

8.1 1,2,3rad/s: (3, 1, 1),(1,0,-3s, 1,-5)
8.3 2
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8.5 4 - 31/2 0 0

4/3 21/2/3 0

14/3 0

Sym 4

8.7 1.5550
8.8 [1.0 0.4 45 - 0.802]
8.9 0.2087,4, 4,4.79 13
8.10 Symmetri c (u, 9 z) = 0

Antisymm etric v = 0
8.11 (1) 0.40, 11.0; ( 2) 0.72, 2 7.2

Chapter 9

9.1 a21(w)=19[2(1000-co2)-'+2(4000-w2)-'-4(7000-w2)-1 ]

Resonances at 5.03, 10.07, 13.32 Hz
Anti-resonance at 8.72 Hz

9.2 u, = 10-3(-0.4290 - iO.6630)
U2 =10-3(0.1249+i1.198)
u3 =10-3(0.0615 - iO.5950)

9.3 25.78 x 10-5 exp i(wt - 1.5633)

p iTt 2 27rt
9.4 f (t) _ 1+ 2 sin T- 3 cos

T

2 4at 2 61Tt
15cos T 35cos

T
-

1

9.5 Maximum response underestimated by 0.82%
9.6 watt<2(1-C2)112

9.7 ui+1=u;+
At

(iii + ail I)
(At)2

uj+,=uj+Otilj+ 4 (k+Ui+,)



Bibliography

Chapter 1

A. R. Collar and A. Simpson (1987) Matrices and Engineering Dynamics. Chichester:
Ellis Horwood.

R. W. Clough and J. Penzien (1975) Dynamics of Structures. New York: McGraw-Hill.
C. L. Dym and J. H. Shames (1973) Solid Mechanics: A Variational Approach. New

York: McGraw-Hill.
M. J. Forray (1968) Variational Calculus in Science and Engineering. New York:

McGraw-Hill.
C. Fox (1950) Calculus of Variations. Oxford University Press.
L. Meirovitch (1967) Analytical Methods in Vibrations. New York: Macmillan.
L. Meitrovitch (1975) Elements of Vibration Analysis. New York: McGraw-Hill.
W. T. Thomson (1972) Theory of Vibrations with Applications. New Jersey: Prentice-

Hall.
G. B. Warburton (1976) The Dynamical Behaviour of Structures, 2nd edn. Oxford:

Pergamon.

Chapter 2

A. D. Barr (1962) Torsional waves in uniform rods of non-circular cross-section.
J. Mech. Eng. Sci. 4, 127-35.

C. L. Dym and J. H. Shames (1973) Solid Mechanics: A Variational Approach. New
York: McGraw-Hill.

R. F. Hearmon (1961) An Introduction to Applied Anisotropic Elasticity. Oxford:
Oxford University Press.

H. Kolsky (1963) Stress Waves in Solids. New York: Dover Publications.
S. G. Lekhnitskii (1963) Theory of Elasticity ofan Anisotropic Elastic Body. Translation

from Russian by P. Fern. San Francisco: Holden Day.
R. D. Mindlin (1951) Influence of rotatory inertia and shear on flexural motions of

isotropic, elastic plates. J. Appl. Mech., Trans. ASME 18, 31-8.
S. Timoshenko and J. N. Goodier (1970) Theory of Elasticity, 3rd end. New York:

McGraw-Hill.
S. Timoshenko and S. Woinowsky-Krieger (1959) Theory of Plates and Shells, 2nd

edn. New York: McGraw-Hill.
G. B. Warburton (1976) The Dynamical Behavior of Structures, 2nd edn. Oxford:

Pergamon.

Chapter 5

J. H. Argyris, K. E. Buck, I. Grieger and G. Maraczek (1970) Application of the
matrix displacement method to the analysis of pressure vessels. J. Eng. Ind.,
Trans. ASME 92, 317-29.

537



538 Bibliography

M. A. J. Bossak and 0. C. Zienkiewicz (1973) Free vibration of initially stressed
solids, with particular reference to centrifugal-force effects in rotating
machinery. J. Strain Anal. 8, 245-52.

H. E. Ermutlu (1968) Dynamic Analysis of Arch Dams Subject to Seismic Disturb-
ances. Ph.D. thesis, University of Southampton.

S. Ghosh and E. L. Wilson (1969) Dynamic stress analysis of axisymmetric structures
under arbitrary loading. Report EERC 69-10, College of Engineering, Univer-
sity of California, Berkeley.

P. Kelen (1985) A Finite Element Analysis of the Vibration Characteristics of
Rotating Turbine Blade Assemblies. Ph.D. thesis, University of Surrey.

M. Langballe, E. Aasen and T. Mellem (1974) Application of the finite element
method to machinery. Computers and Structures 4, 149-92.

F. E. Sagendorph (1976) Natural frequencies of mid-span shrouded fan blades. In
Structural Dynamic Aspects of Bladed Disc Assemblies, ed. A. V. Srinivasan, 93-9.
New York: The American Society of Mechanical Engineers.

G. Waas (1972) Linear Two-dimensional Analysis of Soil Dynamics Problems in
Semi-infinite Layered Media. Ph.D. thesis, University of California, Berkeley.

E. L. Wilson (1965) Structural analysis of axisymmetric solids. AIAA J. 3, 2269-74.
E. L. Wilson, R. L. Taylor, W. P. Doherty and J. Ghaboussi (1973) Incompatible

displacement models. In Numerical and Computer Methods in Structural
Mechanics, ed. S. J. Fenves, N. Perrone, A. R. Robinson and W. C. Schnbrich,
43-57. New York: Academic.

Chapter 6

D. J. Dawe (1965) A finite element approach to plate vibration problems. J. Mech.
Eng. Sci. 7, 28-32.

R. J. Guyan (1965) Distributed mass matrix for plate element bending. AIAA J. 3,
567-8.

J. S. Przemieniecki (1966) Equivalent mass matrices for rectangular plates in bending.
AIAA J. 4, 949-50.

B. M. Irons and K. J. Draper (1965) Inadequacy of nodal connections in a stiffness
solution for plate bending. AIAA J. 3, 961.

J. L. Tocher and K. K. Kapur (1965) Comment on `Basis for derivation of matrices
for the direct stiffness'. AIAA J. 3, 1215.



References

Chapter 2

2.1 J. T. Oden (1967) Mechanics of Elastic Structures. New York: McGraw-Hill.
2.2 G. R. Cowper (1966) The shear coefficient in Timoshenko's beam theory.

J. Appl. Mech., Trans. ASME 88, 335-40.

Chapter 3

3.1 E. Kreysziz (1972) Advanced Engineering Mathematics, 3rd edn. New York:
Wiley.

3.2 R. Courant and D. Hilbert (1953) Methods of Mathematical Physics, Vol. I.
New York: Interscience.

3.3 L. V. Kanotorovich and V. I. Krylov (1958) Approximate Methods of Higher
Analysis. Groningen: Noordhoff.

3.4 S. G. Mikhlin (1964) Variational Methods in Mathematical Physics. New York:
Macmillan.

3.5 S. G. Mikhlin (1965) The Problem of the Minimum of a Quadratic Functional.
San Francisco: Holden-Day.

3.6 R. E. D. Bishop, G. M. L. Gladwell and S. Michaelson (1965) The Matrix
Analysis of Vibration. Cambridge: Cambridge University Press.

3.7 C. L. Dym and I. H. Shames (1973) Solid Mechanics: A Variational Approach.
New York: McGraw-Hill.

3.8 G. B. Warburton (1976) The Dynamical Behaviour of Structures. 2nd edn.
Oxford: Pergamon.

3.9 J. T. Oden (1972) Finite Elements of Nonlinear Continua. New York: McGraw-
Hill.

3.10 J. S. Przemieniecki (1968) Theory of Matrix Structural Analysis. New York:
McGraw-Hill.

3.11 S. Timoshenko and J. N. Goodier (1970) Theory of Elasticity. 3rd edn. New
York: McGraw-Hill.

3.12 A. E. H. Love (1944) Mathematical Theory of Elasticity. New York: Dover.
3.13 R. Courant (1943) Variational methods for the solution of problems of equili-

brium and vibrations. Bull. Amer. Math. Soc. 49, 1-29.
3.14 F. A. Leckie and G. M. Lindberg (1963) The effect of lumped parameters on

beam frequencies. Aeronaut. Quart. 14, 224-40.
3.15 F. F. Rudder (1970) Effect of stringer eccentricity on the normal mode stress

response of stiffened flat panel arrays. Conference on Current Developments
in Sonic Fatigue, Southampton University. Paper J. Available from ISVR,
University of Southampton.

3.16 J. T. Oden (1967) Mechanics of Elastic Structures. New York: McGraw-Hill.
3.17 T. Y. Yang and C. T. Sun (1973) Axial-flexural vibration of frameworks using

finite element approach. J. Acoust. Soc. Amer. 53, 137-46.

539



540 References

3.18 G. M. L. Gladwell (1964) The vibration of frames. J. Sound and Vibration 1,
402-25.

3.19 W. Carnegie, J. Thomas and E. Dokumaci (1969) An improved method of
matrix displacement analysis in vibration problems. Aeronaut. Quart. 20, 321-
32.

3.20 Z. Kopal (1961) Numerical Analysis. London: Chapman and Hall.
3.21 F. Scheid (1968) Numerical Analysis. Schaum's Outline Series. New York:

McGraw-Hill.
3.22 D. L. Thomas, J. M. Wilson and R. R. Wilson (1973) Timoshenko beam finite

elements. J. Sound and Vibration 31, 315-30.
3.23 T. C. Huang (1961) The effect of rotary inertia and of shear deformation on

the frequency and normal mode equations of uniform beams with simple end
conditions. J. AppL Mech., Trans. ASME 28, 579-84.

3.24 T. C. Huang and C. S. Kung (1963) New tables of eigenfunctions representing
normal modes of vibration of Timoshenko beams. Developments in Theoretical
and Applied Mechanics I. New York: Plenum Press, 59-71.

3.25 D. J. Dawe (1978) A finite element for the vibration analysis of Timoshenko
beams. J. Sound and Vibration 60, 11-20.

3.26 T. Moan (1973) On the local distribution of errors by finite element approxi-
mations. In Theory and Practice in Finite Element Structural Analysis, ed.
Y. Yamada and R. H. Gallagher. Tokyo: University of Tokyo Press,
43-60.

3.27 E. Hinton and J. S. Campbell (1974) Local and global smoothing of discon-
tinuous finite element functions using a least squares method. Int. J. Num.
Meth. Eng. 8, 461-80.

3.28 E. Hinton, F. C. Scott and R. E. Ricketts (1975) Least squares stress smoothing
for parabolic isoparametric elements. Int. J. Num. Meth. Eng. 9, 235-56.

3.29 J. Barlow (1976) Optimal stress locations in finite element models. Int. J. Num.
Meth. Eng. 10, 243-51.

3.30 T. J. R. Hughes (1977) A simple and efficient finite element for plate bending.
Int. J. Num. Meth. Eng. 11, 1529-43.

3.31 G. R. Bhashyam and G. Prathap (1981) The second frequency spectrum of
Timoshenko beams. J. Sound and Vibration 76, 407-20.

3.32 M. D. Olson (1975) Compatibility of finite elements in structural mechanics.
Proc. World Cong. on Finite Element Methods in Structural Mechanics,
Bournemouth, England. Okehampton: Robinson and Associates. H1-H33.

3.33 C. A. Mota Soares and J. E. Barradas Cardoso (1979) Finite element dynamic
analysis of structures based on the Vlasov beam theory. In Numerical Analysis
of the Dynamics of Ship Structures, Euromech 122, Paris.

3.34 G. M. Lindberg (1963) Vibration of non-uniform beams. Aeronaut. Quart. 14,
387-95.

3.35 J. Thomas and E. Dokumaci (1974) Simple finite elements for pre-twisted
blading vibration. Aeronaut. Quart. 25, 109-18.

3.36 R. Davis, R. D. Henshall and G. B. Warburton (1972) Constant curvature
beam finite elements for in-plane vibration. J. Sound and Vibration 25, 561-76.

3.37 R. Davis, R. D. Henshall and G. B. Warburton (1972) Curved beam finite
elements for coupled bending and torsional vibration. Int. J. Earthquake
Engineering and Structural Dynamics 1, 165-71.



References 541

3.38 D. L. Thomas and R. R. Wilson (1973) The use of straight beam finite elements
for analysis of vibrations of curved beams. J. Sound and Vibration 26, 155-8.

Chapter 4

4.1 P. C. Dunne (1968) Complete polynomial displacement fields for finite element
method. Aeronaut. J. 72, 245-6.

4.2 B. M. Irons, J. Ergatoudis and O. C. Zienkiewicz (1968) Comment on `Complete
polynomial displacement fields for finite element method'. Aeronaut. J. 72,
709-11.

4.3 J. B. 'Carr (1970) The effect of shear flexibility and rotatory inertia on the
natural frequencies of uniform beams. Aeronaut. Quart. 21, 79-90.

4.4 J. Barlow (1976) Optimal stress locations in finite element models. Int. J. Num.
Meth. Eng. 10, 243-51.

4.5 M. A. Eisenberg and L. E. Malvern (1973) On finite element integration in
natural co-ordinates. Int. J. Num. Meth. Eng. 7, 574-5.

4.6 K-J. Bathe and E. L. Wilson (1976) Numerical Methods in Finite Element
Analysis. Englewood Cliffs, New Jersey: Prentice-Hall.

4.7 O. C. Zienkiewicz (1977) The Finite Element Method, 3rd edn. London:
McGraw-Hill.

4.8 T. K. Hellen (1976) Numerical Integration considerations in two and three
dimensional isoparametric finite elements. In The Mathematics of Finite Ele-
ments and Applications 11 ed. J. R. Whiteman, London: Academic Press, 511-24.

4.9 T. Krauthammer (1979) Accuracy of the finite element method near a curved
boundary. Computers and Structures 10, 921-9.

4.10 R. D. Cook (1981) Concepts and Applications of Finite Element Analysis. New
York: Wiley.

4.11 R. D. Cook (1975) Avoidance of parasitic shear in plane element. J. Struct.
Div., Proc. ASCE 101, 1239-53.

4.12 R. W. Clough and A. K. Chopra (1966) Earthquake stress analysis in earth
dams. J. Eng. Mech., Proc. ASCE 92, 197-211.

Chapter 5

5.1 P. C. Hammer, O. J. Marlowe and A. H. Stroud (1956) Numerical integration
over simplexes and cones. Mathematical Tables and other Aids to Computation
10, 130-6.

5.2 M. E. Laursen and M. Gellert (1978) Some criteria for numerically integrated
matrices and quadrature formulas for triangles. Int. J. Num. Meth. Eng. 12,
67-76.

5.3 T. Belytschko (1972) Finite elements for axisymmetric solids under arbitrary
loadings with nodes on origin. AIAA J. 10, 1532-3.

5.4 K. E. Buck (1973) Comment on `Finite elements for axisymmetric solids under
arbitrary loadings with nodes on origin'. AIAA J. 11, 1357-8.

5.5 T. Belytschko (1973) Reply by Author to K. E. Buck. AIAA J. 11, 1358.
5.6 H. Deresiewicz and R. D. Mindlin (1955) Axially symmetric flexural vibrations

of a circular disc. J. Appl. Mech., Trans. ASME 22, 86-8.



542 References

5.7 R. L. Sharma (1957) Dependence of frequency spectrum of a circular disc on
Poisson's ratio. J. Appl. Mech., Trans. ASME 24, 641-2.

5.8 D. C. Gazis and R. D. Mindlin (1960) Extensional vibrations and waves in a
circular disc and a semi-infinite plate. J. Appl. Mech., Trans. ASME 27, 541-7.

5.9 W. E. Baker and J. M. Daly (1967) Dynamic analysis of continuum bodies by
direct stiffness method. Shock and Vibration Bull. 36, Part 5, 55-68.

5.10 S. S. Rao and A. S. Prasad (1975) Vibrations of annular plates including the
effects of rotary inertia and transverse shear deformation. J. Sound and Vibration
42, 305-24.

5.11 A. E. Armenakas, D. C. Gazis and G. Herrmann (1969) Free Vibrations of
Circular Cylinder Shells. Oxford: Pergamon Press.

5.12 K. K. Gupta (1984) STARS - A general purpose finite element computer
program for analysis of engineering structures. NASA Reference Publication
1129.

5.13 B. M. Irons (1971) Quadrature rules for brick based finite elements. Int. J.
Num. Meth. Eng. 3, 293-4.

5.14 M. A. Eisenberg and L. E. Malvern (1973) On finite element integration in
natural coordinates. Int. J. Num. Meth. Eng. 7, 574-5.

5.15 D. P. Gao and M. Petyt (1983) Prediction of frequencies of a practical turbine
disc. ISVR Memorandum No. 636, University of Southampton.

5.16 K-J. Bathe and E. L. Wilson (1976) Numerical Methods in Finite Element
Analysis. Englewood Cliffs, New Jersey: Prentice-Hall.

5.17 O. C. Zienkiewicz (1977) The Finite Element Method, 3rd edn. London:
McGraw-Hill.

5.18 S. E. Johnson and E. I. Field (1973) Three isoparametric solid elements for
NASTRAN. NASA TM X-2893 NASTRAN: Users' Experiences, 423-37.

5.19 C. W. S. To (1982) Application of the finite element method for the evaluation
of velocity response of anvils. J. Sound and Vibration 84, 529-48.

5.20 T. K. Hellen (1976) Numerical integration considerations in two and three
dimensional isoparametric finite elements. In The Mathematics of Finite Ele-
ments and Applications II ed. J. R. Whiteman, London: Academic Press, 511-24.

5.21 T. K. Hellen (1972) Effective quadrature rules for quadratic solid isoparametric
finite elements. Int. J. Num. Meth. Eng. 4, 597-600.

5.22 A. M. Salama (1976) Finite Element Dynamic Analysis of Blade Packets and
Bladed Disc Assemblies. Ph.D. Thesis, University of Southampton.

Chapter 6

6.1 A. Adini and R. W. Clough (1961) Analysis of Plate Bending by the Finite
Element Method. Report submitted to the National Science Foundation,
G7337.

6.2 R. J. Melosh (1963) Basis for derivation of matrices for the direct stiffness
method. AIAA J. 1, 1631-7.

6.3 C. V. Smith (1970) Finite Element Model, with Applications to Buildings and
K-33 and K-31. Union Carbide Corporation Report Number CTC-29.

6.4 R. A. Tinawi (1972) Anisotropic tapered elements using displacement models.
Int. J. Num. Meth. Eng. 4, 475-89.



References 543

6.5 G. M. Lindberg, M. D. Olson and H. A. Tulloch (1969) Closed Form Finite
Element Solutions for Plate Vibrations. National Research Council of Canada,
Aeronautical Report, LR-518.

6.6 G. M. Lindberg and M. D. Olson (1970) Convergence studies of eigenvalue
solutions using two finite plate bending elements. Int. J. Num. Meth. Eng. 2,
99-116.

6.7 R. W. Claassen and C. J. Thorne (1961) Vibrations of thin rectangular isotropic
plates. J. Appl. Mech., Trans ASME 28, 304-5.

6.8 R. E. Reid (1965) Comparison of Methods in Calculating Frequencies of
Corner Supported Rectangular Plates. NASA TN D-3030.

6.9 D. J. Gorman (1981) An analytical solution for the free vibration analysis of
rectangular plates resting on symmetrically distributed point supports. J. Sound
and Vibration 79, 561-74.

6.10 M. Petyt and W. H. Mirza (1972) Vibration of column supported floor slabs.
J. Sound and Vibration 21, 355-64.

6.11 T. Wah (1964) Vibration of stiffened plates. Aeronaut. Quart. 15, 285-98.
6.12 N. J. Huffington (1956) Theoretical determination of rigidity properties of

orthogonally stiffened plates. J. Appl. Mech., Trans. ASME 23, 15-20.
6.13 G. M. Lindberg (1967) The Vibration of Stepped Cantilever Plates. National

Research Council of Canada, Aeronautical Report, LR-494.
6.14 R. Plunkett (1963) Natural frequencies of uniform and non-uniform rectangular

cantilever plates. J. Mech. Eng. Sci. 5, 146-56.
6.15 F. K. Bogner, R. L. Fox and L. A. Schmit (1966) The generation of inter-element-

compatible stiffness and mass matrices by the use of interpolation formulas.
In Matrix Methods in Structural Mechanics, AFFDL-TR-66-80, 397-443.

6.16 G. A. Butlin and F. A. Leckie (1966) A study of finite elements applied to
plate flexure. Symposium on Numerical Methods for Vibration Problems,
University of Southampton, 3, 26-37. Availabe from ISVR, Southampton.

6.17 V. Mason (1967) On the use of rectangular finite elements. ISVR Report No.
161, University of Southampton.

6.18 V. Mason (1968) Rectangular finite elements for analysis of plate vibrations.
J. Sound and Vibration 7, 437-48.

6.19 R. R. Wilson and C. A. Brebbia (1971) Dynamic behaviour of steel foundations
for turbo-alternators. J. Sound and Vibration 18, 405-16.

6.20 T. J. R. Hughes, R. L. Taylor and W. Kanoknukulcha (1977) A simple efficient
finite element for plate bending. Int. J. Num. Meth. Eng. 11, 1529-43.

6.21 E. D. L. Pugh, E. Hinton and O. C. Zienkiewicz (1978) A study of quadrilateral
plate bending elements with reduced integration. Int. J. Num. Meth. Eng. 12,
1059-79.

6.22 E. Hinton and N. Bicanic (1979) A comparison of Lagrangian and Serendipity
Mindlin plate elements for free vibration analysis. Computers and Structures
10, 483-93.

6.23 S. Srinivas, C. V. Joga Rao and A. K. Rao (1970) An exact analysis for vibration
of simply supported homogeneous and laminated thick rectangular plates.
J. Sound and Vibration 12, 187-99.

6.24 J. Robinson (1978) Element evaluation - a set of assessment points and standard
tests. In Finite Element Methods in the Commercial Environment, ed. J.
Robinson. Okehampton: Robinson and Associates, 218-47.



544 References

6.25 R. H. Macneal (1978) A simple quadrilateral shell element. Computers and
Structures 8, 175-83.

6.26 K-J. Bathe and E. N. Dvorkin (1985) A four-node plate bending element based
on Mindlin/Reissner plate theory and a mixed interpolation. Int. J. Num.
Meth. Eng. 21, 367-83.

6.27 J. L. Tocher (1962) Analysis of Plate Bending using Triangular Elements. Ph.D.
dissertation, California University, Berkeley.

6.28 M. Petyt (1967) Finite Element Vibration Analysis of Cracked Plates in Tension.
Ph.D. thesis, University of Southampton.

6.29 M. Petyt (1966) Structural vibration analysis using triangular finite elements.
Symposium on Numerical Methods for Vibration Problems, Southampton
University, 3, 55-64. Available from ISVR, Southampton.

6.30 P. N. Gustafson, W. F. Stokey and C. F. Zorowski (1953) An experimental
study of natural vibrations of cantilevered triangular plates. J. Aeronaut. Sci.
20, 331-7.

6.31 R. W. Clough and J. L. Tocher (1966) Finite element stiffness matrices for
plate bending. In Matrix Methods in Stuctural Mechanics, AFFDL-TR-66-80,
515-45.

6.32 R. W. Clough and C. A. Felippa (1968) A refined quadrilateral element for
analysis of plate bending. In Matrix Methods in Structural Mechanics, AFFDL-
TR-68-150, 399-440.

6.33 S. M. Dickinson and R. D. Henshell (1969) Clough-Tocher triangular plate
bending element in vibration. AIAA J. 7, 560-1.

6.34 J-L. Batoz, K-J. Bathe and L-W. Ho (1980) A study of three-node triangular
plate bending elements. Int. J. Num. Meth. Eng. 15, 1771-812.

6.35 P. P. Lynn and B. S. Dhillon (1971) Triangular thick plate bending elements.
Proc. 1st Int. Conf. on Structural Mechanics in Reactor Technology, Berlin,
6, 365-89.

6.36 A. L. Deak and T. H. H. Pian (1967) Application of the smooth surface
interpolation to the finite element analysis. AIAA J. 5, 187-9.

6.37 G. Birkhoff and H. L. Garabedian (1960) Smooth surface interpolation. J. Math.
Phys. 39, 258-68.

6.38 B. Fraeijs De Veubeke (1968) A conforming finite element for plate bending.
Int. J. Solids and Structures 4, 95-108.

6.39 R. M. Orris and M. Petyt (1973) A finite element study of the vibration of
trapezoidal plates. J. Sound and Vibration 27, 325-44.

6.40 T. Rock and E. Hinton (1974) Free vibration and transient response of thick
and thin plates using the finite element method. Int. J. Earthquake Eng. Struct.
Dyn. 3, 51-63.

6.41 A. Razzaque (1984) On the four noded discrete Kirchhoff shell elements. In
Accuracy, Reliability and Training in FEM Technology, ed. J. Robinson.
Okehampton: Robinson and Associates, 473-83.

6.42 G. P. Bazeley, Y. K. Cheung, B. M. Irons and O. C. Zienkiewicz (1966)
Triangular elements in plate bending - conforming and non-conforming
solutions. In Matrix Methods in Structural Mechanics, AFFDL-TR-66-80,
547-76.

6.43 R. G. Anderson, B. M. Irons and O. C. Zienkiewicz (1968) Vibration and
stability of plates using finite elements. Int. J. solids and Structtures 4, 1031-55.



References 545

6.44 G. R. Cowper, E. Kosko, G. M. Lindberg and M. D. Olson (1968) A High
Precision Triangular Plate Bending Element. National Research Council of
Canada, Aeronautical Report LR-514.

6.45 N. Popplewell and D. McDonald (1971) Conforming rectangular and triangular
plate bending elements. J. Sound and Vibration 19, 333-47.

Chapter 7

7.1 M. D. Olson and G. M. Lindberg (1970) Free Vibrations and Random Response
of an Integrally Stiffened Panel. National Research Council of Canada, Aero-
nautical Report, LR-544.

7.2 R. N. Yurkovich, J. H. Schmidt and A. R. Zak (1971) Dynamic analysis of
stiffened panel structures. J. Aircraft 8, 149-55.

7.3 R. P. McBean (1968) Analysis of Stiffened Plates by the Finite Element Method.
Ph.D. Thesis, Stanford University.

7.4 M. D. Olson and C. R. Hazell (1977) Vibration studies on some integral
rib-stiffened plates. J. Sound and Vibration 50, 43-61.

7.5 M. Petyt (1977) Finite strip analysis of flat skin-stringer structures. J. Sound
and Vibration 54, 537-47.

7.6 M. N. Bapu Rao, P. Guruswamy, M. Venkateshwara Rao and S. Pavithran
(1978) Studies on vibration of some rib-stiffened cantilever plates. J. Sound
and Vibration 57, 389-402.

7.7 C. K. Ramesh and R. M. Belkune (1973) Free vibrations of plate-beam systems.
In Theory and Practice in Finite Element Structural Analysis, ed. Y. Yamada
and R. H. Gallagher. Tokyo: University of Tokyo Press, 357-70.

7.8 R. E. Miller (1980) Dynamic aspects of the error in eccentric beam modelling.
Int. J. Num. Meth. Eng. 15, 1447-55.

7.9 R. E. Grandle and C. E. Rucker (1971) Modal analysis of a nine-bay skin-
stringer panel. In NASA TM X-2378 NASTRAN: Users' Experiences, 343-61.

7.10 E. A. Thornton (1972) A NASTRAN Correlation Study for Vibrations of a
Cross-stiffened Ship's Deck. NASA TM X-2637 NASTRAN: Users' Experien-
ces, 145-59.

7.11 R. R. Wilson and C. A. Brebbia (1971) Dynamic behaviour of steel foundations
for turbo-alternators. J. Sound and Vibration 18, 405-16.

7.12 P. S. Nair and M. S. Rao (1984) On vibration of plates with varying stiffener
length. J. Sound and Vibration 95, 19-29.

7.13 M. S. Rao, P. S. Nair and S. Durvasula (1985) On vibration of eccentrically
stiffened plates with varying stiffener length. J. Sound and Vibration 99, 568-71.

7.14 N. Popplewell (1971) The vibration of a box-type structure I. Natural frequen-
cies and normal modes. J. Sound and Vibration 14, 357-65.

7.15 S. M. Dickinson and G. B. Warburton (1967) Vibration of box-type structures.
J. Mech. Eng. Sci. 9, 325-35.

7.16 N. Popplewell, N. A. N. Youssef and D. McDonald (1976) Economical evalu-
ation of the vibration characteristics of rectangular structures with sloping
roofs. J. Sound and Vibration 44, 493-7.

7.17 T. C. Huang and C. S. Kung (1963) New tables of eigenfunctions representing
normal modes of vibration of Timoshenko beams. Developments in Theoretical
and Applied Mechanics I. New York: Plenum Press, 59-71.



546 References

7.18 A. W. Lees, D. L. Thomas and R. R. Wilson (1976) Analysis of the vibration
of box beams. J. Sound and Vibration 45, 559-68.

7.19 N. Lalor and M. Petyt (1982) Noise assessment of engine structure designs by
finite element techniques. In Reference [7.20], 211-44.

7.20 R. Hickling and M. M. Kamal (Eds) (1982) Engine Noise: Excitation, Vibration
and Radiation. New York: Plenum Press.

7.21 O. C. Zienkiewicz (1977) The Finite Element Method. 3rd edn. London:
McGraw-Hill.

7.22 M. D. Olson and T. W. Bearden (1979) A simple flat triangular shell element
revisited. Int. J. Num. Meth. Eng. 14, 51-68.

7.23 C. T. F. Ross (1975) Free vibration of thin shells. J. Sound and Vibration 39,
337-44.

7.24 J. J. Webster (1968) Free vibration of rectangular curved panels. Int. J. Mech.
Sci. 10, 571-82.

7.25 M. Petyt (1971) Vibration of curved plates. J. Sound and Vibration 15, 381-95.
7.26 T. Irie, G. Yamada and Y. Kobayashi (1984) Free vibration of a cantilever

folded plate. J. Acoust. Soc. Amer. 76, 1743-8.

Chapter 8

8.1 J. H. Wilkinson (1965) The Algebraic Eigenvalue Problem. Oxford: Clarendon
Press.

8.2 R. E. D. Bishop, G. M. L. Gladwell and S. Michaelson (1965) The Matrix
Analysis is of Vibration. Cambridge: Cambridge University Press.

8.3 A. R. Gourlay and G. A. Watson (1973) Computational Methods for Matrix
Eigenproblems. Chichester: Wiley.

8.4 K-J. Bathe and E. L. Wilson (1976) Numerical Methods in Finite Element
Analysis. Englewood Cliffs: Prentice-Hall.

8.5 A. Jennings (1977) Matrix Computation for Engineers and Scientists. Chichester:
Wiley.

8.6 G. M. L. Gladwell (1961) Vibrating systems with equal natural frequencies.
J. Mech. Eng. Sci. 3, 178-81.

8.7 W. Barth, R. S. Martin and J. H. Wilkinson (1967) Calculation of the eigenvalues
of a symmetric tridiagonal matrix by the method of bisection. Numerische
Mathematik 9, 386-93.

8.8 G. Peters and J. H. Wilkinson (1969) Eigenvalues of Ax = ABx with band
symmetric A and B. Computer J. 12, 398-404.

8.9 S. Hammarling (1974) A note on modifications to the Givens plane rotation.
J. Institute Mathematics and its Applications 13, 215-18.

8.10 G. W. Stewart (1976) The economical storage of plane rotations. Numerische
Mathematik 25, 137-8.

8.11 J. H. Wilkinson (1962) Calculation of eigenvectors of a symmetric tridiagonal
matrix by inverse iteration. Numerische Mathematik 4, 368-76.

8.12 J. H. Wilkinson (1962) Calculation of the eigenvalues of a symmetric tridiagonal
matrix by the method of bisection. Numerische Mathematik 4, 362-7.

8.13 H. Rutishauser (1958) Solution of eigenvalue problems with the LR transforma-
tion. National Bureau of Standards Applied Mathematics Series 49, 47-81.



References 547

8.14 J. G. F. Francis (1961) and (1962) The QR transformation, parts I and II.
Computer J. 4, 265-71, 322-45.

8.15 H. Bowdler, R. S. Martin, C. Reinsch and J. H. Wilkinson (1968) The QR and
QL algorithms for symmetric matrices. Numerische Mathematik 11, 293-306.

8.16 D. L. Thomas (1979) Dynamics of rotationally periodic structures. Int. J. Num.
Meth. Eng. 14, 81-102.

8.17 A. V. Srinivasan (ed.) (1976) Structural Dynamic Aspects of Bladed Disk Assem-
blies. New York: The American Society of Mechanical Engineers.

8.18 C. A. Mota Soares, M. Petyt and A. M. Salama (1976) Finite element analysis
of bladed discs. In Reference [8.17], 73-91.

8.19 A. M. Salama, M. Petyt and C. A. Mota Soares (1976) Dynamic analysis of
bladed disks by wave propagation and matrix difference techniques. In Refer-
ence [8.17], 45-56.

8.20 A. W. Leissa (1969) Vibration of Plates. NASA SP-160.
8.21 C. A. Mota Soares and M. Petyt (1978) Finite element analysis of practical

bladed discs. J. Sound and Vibration 61, 561-70.
8.22 R. L. Nelson and D. L. Thomas (1978) Free vibration analysis of cooling towers

with column supports. J. Sound and Vibration 57, 149-53.
8.23 R. J. Guyan (1965) Reduction of stiffness and mass matrices. AIAA J. 3, 380.
8.24 B. M. Irons (1965) Structural eigenvalue problems: elimination of unwanted

variables. AIAA J. 3, 961-2.
8.25 G. C. Wright and G. A. Miles (1971) An economical method for determining

the smallest eigenvalues of large linear systems. Int. J. Num. Meth. Eng. 3,
25-34.

8.26 M. Geradin (1971) Error bounds for eigenvalue analysis by elimination of
variables. J. Sound and Vibration 19, 111-32.

8.27 R. D. Henshall and J. H. Ong (1975) Automatic masters for eigenvalue
economization. Int. J. Earthquake Engineering and Structural Dynamics 3,
375-83.

8.28 V. N. Shah and M. Raymund (1982) Analytical selection of masters for the
reduced eigenvalue problem. Int. J. Num. Meth. Eng. 18, 89-98.

8.29 R. G. Anderson, B. M. Irons and O. C. Zienkiewicz (1968) Vibration
and stability of plates using finite elements. Int. J. Solids and Structures 4,
1031-55.

8.30 R. Levy (1971) Guyan reduction solutions recycled for improved accuracy. In
NASTRAN: Users' Experiences, NASA TM X-2378, 201-20.

8.31 N. Popplewell, A. W. M. Bertels and B. Arya (1973) A critical appraisal of
the elimination technique. J. Sound and Vibration 31, 213-33.

8.32 D. L. Thomas (1982) Errors in natural frequency calculations using eigenvalue
economization. Int. J. Num. Meth. Eng. 18, 1521-27.

8.33 R. R. Craig and M. C. C. Bampton (1968) Coupling of substructures for
dynamic analysis. AIAA J. 6, 1313-19.

8.34 A. K. Singh (1978) Dynamic analysis using modal synthesis. J. Power Division
P02, Proc. ASCE 131-40.

8.35 S-N. Hou (1969), Review of modal synthesis techniques and a new approach.
Shock and Vibration Bull. 40(4), 25-39.

8.36 A. L. Klosterman (1976) Modal survey of weakly coupled systems. SAE Paper
760876.



548 References

8.37 K. H. Ghlaim and K. F. Martin (1984) Reduced component modes in damped
systems. In Proc. Int. Conf on Modal Analysis. Schenectady, NY: Union
College, 683-9.

8.38 D. J. Ewins (1984) Modal Testing: Theory and Practice. Letchworth: Research
Studies Press.

8.39 Y. Yamada and R. H. Gallagher (eds) (1973) Theory and Practice in Finite
Element Structural Analysis. Tokyo: University of Tokyo Press.

8.40 A. L. Klosterman and W. A. McClelland (1973) Combining experimental and
analytical techniques for dynamic system analysis. In Reference [8.39], 339-56.

8.41 J. C. Cromer and M. Lalanne (1976) Dynamic behaviour of complex structures
using part experiment, part theory. Shock and Vibration Bull. 46(5), 177-85.

8.42 J. C. Cromer, M. Lalanne, D. Bonnecase and L. Gaudriot (1978) A building
block approach to the dynamic behaviour of complex structures using experi-
mental and analytical modal modelling techniques. Shock and Vibration Bull.
48(1), 77-91.

8.43 S. Rubin (1975) Improved component-mode representation for structural
dynamic analysis. AIAA J. 13, 995-1006.

8.44 R. R. Craig Jr and C-J. Chang (1976) Free-interface methods of substructure
coupling for dynamic analysis. AIAA J. 14, 1633-5.

8.45 W. C. Hurty, J. D. Collins and G. C. Hart (1971) Dynamic analysis of large
structures by modal synthesis techniques. Computers and Structures 1, 535-63.

8.46 R. H. MacNeal (1971) A hybrid method of component mode synthesis. Com-
puters and Structures 1, 581-601.

8.47 R. M. Hintz (1975) Analytical methods in component mode synthesis. AIAA
J. 13, 1007-16.

8.48 J. Robinson (ed.) (1978) Finite Element Methods in the Commercial Environment.
Okehampton: Robinson and Associates.

8.49 C. Stavrinidis (1978) Theory and practice of modal synthesis techniques. In
Reference [8.48], 307-31.

8.50 J. F. Imbert (1978) A survey of current capability for dynamic analysis of
complex structures. In Reference [8.48], 421-64.

8.51 R. R. Craig, Jr (1981) Structural Dynamics. An Introduction to Computer
Methods. New York: Wiley.

8.52 K. K. Gupta (1970) Vibration of frames and other structures with banded
stiffness matrix. Int. J. Num. Meth. Eng. 2, 221-8.

8.53 K. K. Gupta (1972) Solution of eigenvalue problems by Sturm sequence method.
Int. J. Num. Meth. Eng. 4, 379-404.

8.54 K. K. Gupta (1973) Eigenproblem solution by a combined Sturm sequence
and inverse iteration technique. Int. J. Num. Meth. Eng. 7, 17-42.

8.55 K. J. Bathe and E. L. Wilson (1972) Large eigenvalue problems in dynamic
analysis. J. Eng. Mech., Proc. ASCE 98, 1471-85.

8.56 E. L. Wilson and T. Itoh (1983) An eigensolution strategy for large systems.
Computers and Structures 16, 259-65.

8.57 A. Jennings (1967) A direct iteration method of obtaining latent roots and
vectors of a symmetric matrix. Proc. Camb. Phil. Soc. 63, 755-65.

8.58 R. B. Corr and A. Jennings (1976) A simultaneous iteration algorithm for
symmetric eigenvalue problems. Int. J. Num. Meth. Eng. 10, 647-63.

8.59 M. Clint and A. Jennings (1970) Evaluation of eigenvalues and eigenvectors
of real symmetric matrices by simultaneous iteration. Computer J. 13, 76-80.



References 549

8.60 R. B. Corr and A. Jennings (1973) Implementation of simultaneous iteration
for vibration analysis. Computers and Structures 3, 497-507.

8.61 A. Jennings and D. L. Orr (1971) Application of the simultaneous iteration
method to undamped vibration problems. Int. J. Num. Meth. Eng. 3, 13-24.

8.62 K. Kawamo and K. Taketo (1973) A test on convergence of eigensolutions by
simultaneous iteration method. In Reference [8.39], 273-88.

8.63 V. I. Weingarten, R. K. Ramanathan and C. N. Chen (1983) Lanczos eigenvalue
algorithm for large structures on a minicomputer. Computers and Structures
16, 253-7.

8.64 I. U. Ojalvo and M. Newman (1970) Vibration modes of large structures by
an automatic matrix reduction method. AIAA J. 8, 1234-9.

8.65 A. Jennings (1980) Eigenvalue methods for vibration analysis. Shock and
Vibration Digest 12(2), 3-16.

8.66 A. Jennings (1984) Eigenvalue methods for vibration analysis II. Shock and
Vibration Digest 16(1), 25-33.

Chapter 9

9.1 L. Meritovitch (1967) Analytical Methods in Vibration. New York: Macmillan.
9.2 S. H. Crandall (1970) The role of damping in vibration theory. J. Sound and

Vibration 11, 3-18.
9.3 C. F. Beards (1983) Structural Vibration Analysis. Chichester: Ellis Horwood.
9.4 Lord Rayleigh (1945) The Theory of Sound, vol. I. New York: Dover.
9.5 J. C. Snowdon (1963) Representation of the mechanical damping possessed

by rubberlike materials and structures. J. Acoust. Soc. Amer. 35, 821-9.
9.6 J. C. Snowdon (1968) Vibration and Shock in Damped Mechanical Systems.

New York: Wiley.
9.7 B. Lazan (1968) Damping of Materials and Members in Structural Mechanics.

New York: Pergamon.
9.8 E. E. Ungar (1973) The status of engineering knowledge concerning the

damping of built-up structures. J. Sound and Vibration 26, 141-54.
9.9 C. W. Bert (1973) Material damping: an introductory review of mathematical

models, measures and experimental techniques. J. Sound and Vibration 29,
129-53.

9.10 D. J. Ewins (1984) Modal Testing: Theory and Practice. Letchworth: Research
Studies Press.

9.11 H. J. Bowdler, R. S. Martin, G. Peters and J. H. Wilkinson (1966) Solution of
real and complex systems of linear equations. Numerische Mathematik 8,
217-34.

9.12 J. S. Bendat and A. G. Piersol (1971) Random Data: Analysis and Measurement
Procedures. New York: Wiley-Interscience.

9.13 G. B. Warburton (1976) The Dynamical Behaviour of Structures, 2nd edn.
Oxford: Pergamon Press.

9.14 J. S. Przemieniecki (1968) Theory of Matrix Structural Analysis. New York:
McGraw-Hill.

9.15 R. W. Clough and J. Penzien (1975) Dynamics of Structures. New York:
McGraw-Hill.



550 References

9.16 J. E. Grant (1971) Response computation using truncated Taylor series. J. Eng.
Mech., Proc. ASME 97 EM2, 295-304.

9.17 S. Levy and J. P. D. Wilkinson (1976) The Component Element Method in
Dynamics. New York: McGraw-Hill.

9.18 J. C. Houbolt (1950) A recurrence matrix solution for the dynamic response
of elastic aircraft. J. Aeronaut. Sci. 17, 540-50.

9.19 K-J. Bathe and E. L. Wilson (1976) Numerical Methods in Finite Element
Analysis. Englewood Cliffs: Prentice-Hall.

9.20 N. M. Newmark (1959) A method of computation for structural dynamics.
J. Eng. Mech., Proc. ASCE 85, 67-94.

9.21 R. H. MacNeal and C. W. McCormick (1971) The NASTRAN computer
program for structural analysis. Computers and Structures 1, 389-412.

9.22 E. L. Wilson, I. Farhoomand and K. J. Bathe (1973) Nonlinear dynamic analysis
of complex structures. Int. J. Earthquake Engineering and Structural Dynamics
1, 241-52.

9.23 E. Hinton, T. Rock and O. C. Zienkiewicz (1976) A note on mass lumping
and related processses in the finite element method. Int. J. Earthquake Engineer-
ing and Structural Dynamics 4, 245-9.

9.24 R. D. Cook (1981) Remarks about diagonal mass matrices. Int. J. Num. Meth.
Eng. 17, 1427-9.

Chapter 10

10.1 J. D. Robson (1963) An Introduction to Random Vibration. Edinburgh:
Edinburgh University Press.

10.2 S. H. Crandall and W. D. Mark (1963) Random Vibration in Mechanical
Systems. New York: Academic Press.

10.3 Y. K. Lin (1967) Probabilistic Theory of Structural Dynamics. New York:
McGraw-Hill.

10.4 J. S. Bendat and A. G. Piersol (1971) Random Data: Analysis and Measurement
Procedures. New York: Wiley-Interscience.

10.5 D. E. Neweland (1975) An Introduction to Random Vibrations and Spectral
Analysis. London: Longman.

10.6 R. W. Clough and J. Penzien (1975) Dynamics of Structures. New York:
McGraw-Hill.

10.7 G. B. Warburton (1976) The Dynamical Behaviour of Structures. 2nd edn.
Oxford: Pergamon Press.

10.8 M. D. Olson and G. M. Lindberg (1970) Free vibrations and random response
of an integrally stiffened panel. Proc. Conf. Current Developments in Sonic
Fatigue, Southampton University. Available from ISVR, Southampton Uni-
versity.

10.9 M. D. Olson (1972) A consistent finite element method for random response
problems. Computers and Structures 2, 163-80.

10.10 M. D. Olson and G. M. Lindberg (1970) Free Vibrations and Random
Response of an Integrally Stiffened Panel. National Research Council of
Canada Aeronautics Report LR-544.

10.11 M. D. Olson and G. M. Lindberg (1971) Jet noise excitation of an integrally
stiffened panel. J. Aircraft 8, 847-55.



References 551

10.12 D. J. Mead and K. K. Pujara (1971) Space harmonic analysis of periodically
supported beams: response to convected random loading. J. Sound and Vibra-
tion 14, 525-41.

10.13 B. Etkin (1972) Dynamics of Atmospheric Flight. New York: Wiley.
10.14 R. E. Davis (1966) Statistical dependence effect of normal mode response.

AIAA J. 4, 2033-4.
10.15 C. M. Harris and C. E. Crede (eds) (1976) Shock and Vibration Handbook.

2nd edn. New York: McGraw-Hill.
10.16 R. E. Cornwell, R. R. Craig and C. P. Johnson (1983) On the application of

the mode-acceleration method to structural engineering problems. Int. J.
Earthquake Engineering and Structural Dynamics 11, 679-88.

10.17 D. J. Ewins (1984) Modal Testing: Theory and Practice. Letchworth: Research
Studies Press.

10.18 O. E. Hansteen and K. Bell (1979) On the accuracy of mode superposition
analysis in structural dynamics. Int. J. Earthquake Engineering and Structural
Dynamics 7, 405-11.

10.19 J. E. Ruzicka (1970) Passive shock isolation: Part I. J. Sound and Vibration
4(8), 14-24.

10.20 J. E. Ruzicka (1970) Passive shock isolation: Part II. J. Sound and Vibration
4(9), 10-22.

10.21 L. S. Jacobsen and R. S. Ayre (1958) Engineering Vibrations. New York:
McGraw-Hill.

10.22 Y. Matsuzaki (1977) A review of shock response spectrum. Shock and Vibration
Digest 9(3), 3-12.

10.23 N. M. Newmark and E. Rosenblueth (1971) Fundamentals of Earthquake
Engineering. Englewood Cliffs, NJ: Prentice-Hall.

10.24 B. F. Maison, C. F. Neuss and K. Kasai (1983) The comparative performance
of seismic response spectrum combination rules in building analysis. Int. J.
Earthquake Engineering and Structural Dynamics 11, 623-47.

10.25 S. A. Anagnostopoulos (1981) Response spectra techniques for three com-
ponent earthquake design. Int. J. Earthquake Engineering and Structural
Dynamics 9, 459-76.

10.26 Y. Matsuzki (1980) Shock response spectrum and maximax response. Shock
and Vibration Digest 12(3), 11-15.

10.27 Y. Matsuzaki and S. Kibe (1983) Shock and seismic response spectra in design
problems. Shock and Vibration Digest 15(10), 3-10.

10.28 T. G. Butler (1982) Using NASTRAN to solve symmetric structures with
nonsymmetric loads. Tenth NASTRAN Users' Colloquium, NASA Conference
Publication 2249, 216-32.

10.29 D. L. Thomas (1979) Dynamics of rotationally periodic structures. Int. J.
Num. Meth. Eng. 14, 81-102.

10.30 N. Popplewell, A. W. M. Bertels and B. Arya (1973) A critical appraisal of
the elimination technique. J. Sound and Vibration 31, 213-33.

Chapter 11

11.1 A. Jennings (1977) Matrix Computation for Engineers and Scientists.
Chichester: Wiley.



552 References

11.2 E. Hinton and D. R. J. Owen (1979) An Introduction to Finite Element
Computations. Swansea: Pineridge Press.

11.3 R. D. Cooke (1981) Concepts and Applications of Finite Element Analysis, 2nd
edn. New York: Wiley.

11.4 E. Hinton and D. R. J. Owen (1984) Finite Element Software for Plates and
Shells. Swansea: Pineridge Press.

11.5 E. Hinton (ed.) (1988) Numerical Methods and Software for Dynamic Analysis
of Plates and Shells. Swansea: Pineridge Press.

11.6 S. S. Rao (1982) The Finite Element Method in Engineering. Oxford: Pergamon
Press.

11.7 T. J. R. Hughes (1987) The Finite Element Method : Linear Static and Dynamic
Finite Element Analysis. Englewood Cliffs: Prentice-Hall.

11.8 R. E. Kielb and A. W. Leissa (1985) Vibrations of twisted cantilever plates -
a comparison of theoretical results. Int. J. Num. Meth. Eng. 21, 1365-80.

11.9 D. J. Ewins and M. Imregun (1986) State-of-the-art assessment of structural
dynamic response analysis methods (DYNAS). Shock and Vibration Bull.
56(1), 59-90.

11.10 D. J. Ewins and M. Imregun (1987) A survey to assess structural dynamic
response prediction capabilities: DYNAS. In Quality Assurance in FEM
Technology (ed. J. Robinson). Okehampton: Robinson and Associates, 604-15.

11.11 B. Irons and S. Ahmad (1980) Techniques of Finite Elements. Chichester: Ellis
Horwood.

11.12 O. C. Zienkiewicz (1977) The Finite Element Method, 3rd edn. London:
McGraw-Hill.

11.13 J. Lysmer and R. L. Kuhlemeyer (1969) Finite dynamic model for infinite
media. J. Eng. Mech., Proc. ASCE 95, 859-76.

11.14 Z. Celep (1985) Plane elastic waves in meshes of bilinear finite elements.
J. Sound and Vibration 101, 23-32.

11.15 Z. Celep and Z. P. Bazant (1983) Spurious reflection of elastic waves due to
gradually changing finite element size. Int. J. Num. Meth. Eng. 19, 631-46.

11.16 G. Waas (1972) Linear Two-dimensional Analysis of Soil-dynamics Problems
in Layered Media. Ph.D. Thesis, University of California, Berkeley.

11.17 G. F. Miller and H. Pursey (1955) On the partition of energy between elastic
waves in a semi-infinite solid. Proc. Roy. Soc. A, 233, 55-9.

11.18 J. M. Roesset and M. M. Ettouney (1977) Transmitting boundaries: a com-
parison. Int. J. Num. Anal. Meth. Geomech. 1, 151-76.

11.19 D. V. Jones (1987) The Surface Propagation of Ground Vibration. Ph.D.
Thesis, University of Southampton.

11.20 M. Petyt and D. V. Jones (1987) Effect of layer depth on the transmission of
ground vibration. Proc. Conf. on Traffic Effects on Structures and Environment,
Czechoslovakia. 2ilina: House of Technology CSVTS, 245-53.

11.21 (1986) A Finite Element Primer. Glasgow: National Engineering Laboratory.
11.22 (1987) Proc. Int. Conf. on Quality Assurance and Standards in Finite Element

Analysis. Glasgow: National Engineering Laboratory.
11.23 J. Robinson (ed.) (1987) Quality Assurance in FEM Technology. Okehampton:

Robinson and Associates.
11.24 J. Robinson (1985) Basic and shape sensitivity tests for membrane and plate

bending finite elements. National Engineering Laboratory Report, NAFEMS
C2.



References 553

11.25 A. J. Morris (1985) Shell finite element evaluation tests. National Engineering
Laboratory Report, NAFEMS C4.

11.26 J. Robinson (1979) An Evaluation of Lower Order Membranes as contained
in the MSC/NASTRAN, ASAS and PAFEC systems. Report to Royal Aircraft
Establishment, Farnborough. MoD Contract No. A93b/494.

11.27 J. Robinson and S. Blackham (1981) An evaluation of lower order membranes
as contained in the ANSYS and SAP4 FEM systems. Finite Element News,
Issue No. 2.

11.28 J. Robinson and S. Blackham (1981) An evaluation of plate bending elements
- MSC/NASTRAN, ASAS, PAFEC, ANSYS, SAP4. Robinson and Associates
report. ISBN 0 9507649 0 6. Okehampton: Robinson and Associates.

11.29 A. Kamoulakos, G. A. O. Davies and D. Hitchings (1985) Benchmark Tests
for Various Finite Element Assemblies. National Engineering Laboratory
Report NAFEMS C1.

11.30 G. A. O. Davies (1986) Proposed NAFEMS Linear Benchmarks. National
Engineering Laboratory Report, NAFEMS LBM REV2.

11.31 J. Barlow and G. A. O. Davies (1986) Selected FE Benchmarks in Structural
and Thermal Analysis. National Engineering Laboratory Report, NAFEMS
FEBSTA.

11.32 A. Kamoulakos, D. Hitchings and G. A. O. Davies (1986) Benchmarks for
various finite element assemblies - thin shells. National Engineering Labora-
tory Report, NAFEMS TSBM.

11.33 D. Hitchings, A. Kamoulakos and G. A. O. Davies (1987) Linear static
benchmarks - Vol. 1. National Engineering Laboratory Report, NAFEMS
LSB1.

11.34 D. Hitchings, A. Kamoulakos and G. A. O. Davies (1987) Linear static
benchmarks - Vol. 2. National Engineering Laboratory Report, NAFEMS
LSB2.

11.35 J. S. Strannigan (1986) Linear Static Benchmarks Applied to MARC. National
Engineering Laboratory Report, NAFEMS MARCBM.

11.36 G. A. O. Davies (1987) Results for selected benchmarks. Benchmark, October
Issue.

11.37 J. Robinson (1978) Element evaluation - a set of assessment points and
standard tests. Finite Element Methods in the Commercial Environment, 217-47.
Okehampton: Robinson and Associates.

11.38 N. Knowles (1987) Selected Benchmarks for Natural Frequency Analysis.
National Engineering Laboratory Report, NAFEMS SBNFA.

11.39 N. Knowles (1987) Free Vibration Benchmarks. National Engineering
Laboratory Report, NAFEMS FVB.



Index

amplitude decay, 428
anisotropic material, 22
anti-resonance, 393
area coordinates, 163
artificial damping, 428
aspect ratio of elements, 514
assembly of element matrices, 71, 90, 98,

108, 148
autocorrelation function, 456
automatic mesh generation, 505
axial symmetry, 39, 176
axisymmetric elements, 182, 192

band limited white noise, 459
beam elements, 86, 92, 101, 114, 128
benchmark tests, 522
bisection method, 343, 377
boundary conditions

antisymmetric, 101, 109, 356, 497
geometric, 47
imposition of, 43
natural, 47
skew, 98
symmetric, 109, 356, 496

building block approach, 369

central difference method, 418, 440
central limit theorem, 453
central moments, 452
Cholesky decomposition, 323
combination rules, 492
complete polynomial, 56
completeness tests, 522
complex stiffness, 42
component mode synthesis, 369, 500
condensation

dynamic, 364
massless degrees of freedom, 366
static, 167, 219, 321

conditional stability, 422
conservative force, 5
consistent inertia matrix, 441
constant acceleration method, 431

constraint conditions, 15, 98
constraint modes, 371
coordinate systems, 93, 101
core elements, 192
correlation coefficient, 454
co-spectrum matrix, 472
covariance, 454
cross-correlation function, 461
crosshairs, 505
cross-spectral density, 461
Crout factorisation, 405

d'Alembert's principle, 2
damping, 2, 41, 387, 388
damping matrix, 13
deterministic forces, 450
digitising tablet, 505
direct analysis, 402, 439, 466
direction cosine array, 96
Dirichlet conditions, 410
discrete Kirchhoff shear elements, 285
dissipation function, 10, 41
Doolittle-Crout factorisation, 405
Duhamel integral, 414, 488
dynamic equilibium, 1, 73

effective force, 483
eigenproblem, 58, 315
eigenvalues, 57, 315
eigenvalue shift, 319
eigenvectors, 57, 315
element displacement functions, 65
element distortion, 514
element geometric properties, 504
element material properties, 504
element reordering, 506
element shrinking, 506
ensemble averages, 456
equations of motion, 2, 10-14, 43
ergodic process, 457
excess of Kurtosis, 452
expected value, 451
explicit integration, 419
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facet shell elements, 299
failure, 472
false zero energy mode tests, 522
Fast Fourier Transform algorithm, 413
fatigue, 472
finite element, 65
finite element method, 63
first moment, 452
flat plate bending elements, 229
folded plates, 304
forced vibration, 386, 450
forward substitution, 323
Fourier integral, 457
Fourier series, 177, 409
Fourier transform, 457
free vibration, 57, 315
front solution method, 506

Gauss elimination, 333
Gaussian probability distribution, 452
Gauss-Legendre integration, 121
generalised coordinates, 167
generalised forces, 11
geometric invariance, 141
Gershgorin bounds, 343
Givens' reduction, 340
Gram-Schmidt orthogonalisation, 349
graphics, 506
Guyan reduction, 365

Hamilton's principle, 5, 8
harmonic response, 391
Hermitian interpolation functions, 114
Hermitian matrix, 361, 471
hexahedral elements, 197, 203, 219
hidden line plot, 508
Houbolt method, 424, 445
Householder reduction, 341

implicit integration, 431
imposed displacements, 482
impulse response function, 414
integration formulae, 121, 153, 186, 200
inertia force, 2
inertia matrix

axisymmetric solid, 184, 190, 191, 194
beam, 89, 116, 132
facet shell, 301
membrane, 146, 152, 159, 164
plate, 234, 250, 259, 261, 270, 275, 278
plate stiffener, 297, 302
rod, 70, 111
shaft, 85
solid, 199, 206, 210, 216
three-dimensional framework, 104
two-dimensional framework, 94, 97

invariance, 141
invariance tests, 522
inverse iteration, 345, 377
isoparametric elements, 157, 171, 203, 222,

226, 284
isotropic material, 22

Jacobian matrix, 159, 205
Jacobi method, 336
joining unlike elements, 516
joint probability density, 453

kinetic energy, 7, 24, 27, 28, 30, 33, 35, 37,
39, 40

Kirchhoff hypothesis, 285

Lagrange's equations, 10
Lagrange interpolation functions, 112
Lanczos method, 381
least squares, 126
Legendre polynomials, 123, 245
linear acceleration method, 430
linear dependency, 54
linear elements

axisymmetrical solid, 182
beam, 129
membrane, 143, 149, 157, 164
plate, 248, 277
rod, 66
shaft, 84
solid, 197, 203, 208, 215

load matrix
axisymmetric solid, 190, 191, 194
beam, 90, 117
membrane, 147, 156, 162
plate, 237, 254, 260, 261, 271, 281
rod, 71, 112
shaft, 85
solid, 201, 208, 212, 217
three-dimensional framework, 105
two-dimensional framework, 95, 97

locking of a mesh, 524
loss factor, 42
lower triangular matrix, 322
LR method, 350
lumped mass matrix, 441

massless degrees of freedom, 366
mass matrix, see inertia matrix, lumped

mass matrix
mass-proportional damping, 389
master degrees of freedom, 364
mean, 451
membrane elements, 141
mid-side nodes, 111, 167
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modal analysis, 386, 391, 414, 471, 485
modal constant, 392
modal damping ratio, 388
mode acceleration method, 479
modelling, 514
mode shape, 57
multiple eigenvalue, 315
multi-point constraints, 505
multivariate probability density, 455

narrow band process, 465
natural coordinates, 165, 189
natural frequencies, 57
natural modes, 57
Newmark method, 430, 446
Newton's second law, 1
nodal degrees of freedom, 63
nodeless degrees of freedom, 166, 219
node point, 63
node renumbering, 506
non-axisymmetric loads, 177
non-conservative forces, 5
normal distribution, 452
normalised eigenvectors, 316
numerical integration, 121, 153, 186, 200

orthogonalisation, see Gram-Schmidt
orthogonalisation

orthogonality of eigenvectors, 321
orthogonal matrix, 336
orthogonal similarity transformation, 335
orthotropic material, 22

Palmgren-Miner hypothesis, 473
parasitic shear, 155
patch test, 522
peakedness, 452
pentahedral elements, 208, 225
period elongation, 428
periodic excitation, 409
periodic structures, 359
plane strain element, 175
plane stress element, 30
plate elements, 229
Poisson's ratio, 32
positive definite matrix, 14
positive semi-definite matrix, 14
potential energy, 5
power spectral density, 459
pre- and post-processors, 504
primary spectrum, 489
principle of virtual displacements, 4
probability, 450
probability density, 451
probability distribution function, 451
proportional damping, 389

pseudo-acceleration spectrum, 491
pseudo-velocity spectrum, 491

QL method, 354
QR method, 352
quadratic elements, 167, 219, 284
quadrilateral elements, 157
quasi-static displacements, 483

random excitation, 450
random process, 455
random process theory, 450
Rayleigh distribution, 473
Rayleigh quotient, 346
Rayleigh-Ritz method, 53
Rayleigh-type damping, 388
receptance, 392
rectangular elements, 149
reduced energy expressions, 181
reduced integration, 129
reduction technique, 365
residual flexibility, 481
residual spectrum, 489
resonance, 393
response spectrum analysis, 487
response time history, 414
rigid body modes, 319
rigid links, 134
rod elements, 66, 111
rotary inertia, 29, 114
rotationally periodic structures, 359, 497
rotation of axes, 96

Saint-Venant theory of torsion, 24
semi-infinite regions, 520
shaft elements, 84
shape functions, 65
shape sensitivity tests, 522
shear deformation, 29
shifting of eigenvalues, 319
shock amplification factor, 489
shock load, 487
shock transmissibility, 489
shrink plot, 506
sign count function, 328
similarity transformation, 335
Simpson's rule, 416
simultaneous iteration, 380
single element test, 522
singular matrix, 258
skew boundary conditions, 98
skewness, 452
skyline, 506
slave degrees of freedom, 364
soil-structure interaction, 520
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solid elements, 176
solids of revolution, 39, 176
space-time correlation function, 461
spectral radius, 426
spread, 452
stability

conditional, 422
unconditional, 428

standard deviation, 452
starting matrix, 378, 380
starting vector, 345, 383
static condensation, 167, 219, 321
stationary process, 455
step-by-step integration methods, 417
stiffened plates, 294
stiffness matrix

axisymmetric solid, 184, 190, 191, 194
beam, 89, 117, 130
facet shell, 301
membrane, 147, 153, 160, 165
plate, 235, 251, 260, 261, 271, 275, 279
plate stiffener, 298, 303
rod, 70, Ill
shaft, 85
solid, 200, 206, 210, 217
three-dimensional framework, 104
two-dimensional framework, 95, 97

stiffness-proportional damping, 389
stochastic process, 455
strain components, 22, 40
strain-displacement relationships, 22, 40
strain energy, 6, 24, 26, 28, 30, 33, 35, 36,

38, 39
stress components, 22, 191
stress computation, 78, 85, 92, 126, 191,

202, 237
stress-strain relationships, 31, 38
structural damping, 41, 387
Sturm sequence, 327
sub-parametric element, 169

subspace iteration, 378
substructure analysis, 369
symmetry, 356, 496

tetrahedral elements, 215
three-dimensional frameworks, 101
time averages, 457
time series, 455
torsion, 24
transformation of generalised eigenproblem,

322
transient response, 414
trapezium rule, 416
triangular decomposition, 322, 346
triangular elements, 143, 164
tri-diagonal matrix, 327
truncation of modes, 475
two-dimensional frameworks, 92

unconditional stability, 428
upper triangular matrix, 346

variance, 452
virtual displacement, 4
virtual work, 24, 29, 33, 35, 39, 40
viscous damping, 2, 41, 388
volume coordinates, 212

warping, 24
wavenumber, 470
wavenumber/frequency spectrum, 470
wavenumber vector, 470
wave propagation, 359
wave receptance function, 470
weakly stationary process, 455
Wilson 0 method, 436, 447

zero energy modes, 522
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