TUTORÍA VII: SERIES DE NÚMEROS

14.1 Definición, ejemplos y propiedades básicas

Definición 14.1: Suma parcial y serie

Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión de números reales.

- La *n*-ésima suma parcial es $S_n := \sum_{i=1}^n a_i$.
- Una serie numérica es el límite de las sumas parciales:

$$S = \lim_{n \to \infty} S_n = \sum_{i=1}^{\infty} a_i.$$

- La serie es convergente si el límite existe y es finito; si no existe, la serie es divergente.
- El término a_n se denomina **término general** de la serie.

Ejemplo

Ejemplo: Serie geométrica.

La serie $\sum_{n=0}^{\infty} r^n$ converge si y sólo si |r| < 1. En ese caso:

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}.$$

Si $|r| \ge 1$, la serie diverge.

Ejemplo

Ejemplo: Serie armónica.

La serie
$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots$$
 diverge a $+\infty$.

Ejemplo

Ejemplo: p-serie.

La serie $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converge si y sólo si p>1 (y diverge si $p\leq 1$).

Teorema 14.6: Criterio del término n-ésimo

Si la serie $\sum a_n$ converge, entonces $\lim_{n\to\infty} a_n = 0$.

Ejemplo

Corolario (criterio de divergencia).

Si lím $_{n\to\infty} a_n \neq 0$ o el límite no existe, la serie $\sum a_n$ diverge.

Propiedades básicas

- Linealidad: si $\sum a_n = S$ y $\sum b_n = T$ convergen, entonces para todo $\lambda \in \mathbb{R}$, $\sum (a_n + \lambda b_n) = S + \lambda T$.
- Series de términos no negativos: si $a_n \ge 0$ para todo n, entonces $\sum a_n$ converge si y sólo si la sucesión de sumas parciales (S_n) está acotada.

Proposición 14.2: Criterio de Cauchy para series

La serie $\sum a_n$ converge si y sólo si para todo $\varepsilon > 0$, existe N tal que para todo $m \ge n \ge N$:

$$\left| \sum_{i=n+1}^{m} a_i \right| < \varepsilon.$$

14.2 Series alternantes y convergencia absoluta

Definición 14.9: Convergencia absoluta y condicional

- $\sum a_n$ es absolutamente convergente si $\sum |a_n|$ converge.
- $\sum a_n$ es condicionalmente convergente si $\sum a_n$ converge pero $\sum |a_n|$ diverge.

Proposición 14.10

Toda serie absolutamente convergente es convergente.

Teorema 14.7: Criterio de Leibniz (series alternantes)

Sea (a_n) tal que $a_n \ge 0$, $a_{n+1} \le a_n$ (decreciente) y $\lim_{n\to\infty} a_n = 0$. Entonces la serie alternante

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

converge.

Ejemplo

Ejemplo:
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}.$$

Por Leibniz, converge. Como $\sum \frac{1}{n}$ (serie de valores absolutos) diverge, la serie es **condicional-**mente convergente.

14.3 Criterios de convergencia

Criterios de comparación (términos no negativos)

Teorema 14.4: Criterio de comparación directa

Sean $\sum a_n$ y $\sum b_n$ con $a_n \ge 0$ y $b_n \ge 0$. Si existe c > 0 y n_0 tales que $0 \le a_n \le c b_n$ para $n \ge n_0$, entonces:

- si $\sum b_n$ converge, $\sum a_n$ converge;
- si $\sum a_n$ diverge, $\sum b_n$ diverge.

Proposición 14.12: Criterio de comparación en el límite

Sean $\sum a_n, \sum b_n$ con $a_n, b_n \ge 0$ y $L = \lim_{n \to \infty} \frac{a_n}{b_n}$.

- Si $0 < L < \infty$, ambas series convergen o ambas divergen.
- Si L=0 y $\sum b_n$ converge, entonces $\sum a_n$ converge.
- Si $L = +\infty$ y $\sum b_n$ diverge, entonces $\sum a_n$ diverge.

Ejemplo

Ejemplo:
$$\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}.$$

Comparando con $b_n = \frac{1}{n}$:

$$L = \lim_{n \to \infty} \frac{n/(n^2 + 1)}{1/n} = \lim_{n \to \infty} \frac{n^2}{n^2 + 1} = 1.$$

Como $\sum 1/n$ diverge, $\sum \frac{n}{n^2+1}$ diverge.

Criterio de la razón y de la raíz

Corolario 14.12.2: Criterio de la razón

Sea
$$\sum a_n$$
 y $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$.

• Si L < 1, la serie converge absolutamente.

- Si L > 1 (o $+\infty$), la serie diverge.
- Si L=1, el criterio es inconcluso.

Corolario 14.15.1: Criterio de la raíz

Sea $\sum a_n$ y $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$.

- Si L < 1, la serie converge absolutamente.
- Si L > 1, la serie diverge.
- Si L=1, el criterio es inconcluso.

Ejemplo

Ejemplo: $\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}.$

Sea $a_n = \frac{2^n n!}{n^n}$. Entonces

$$\frac{a_{n+1}}{a_n} = 2\left(\frac{n}{n+1}\right)^n \quad \Rightarrow \quad L = \lim_{n \to \infty} 2\left(\frac{n}{n+1}\right)^n = \frac{2}{e} < 1.$$

Por tanto la serie converge absolutamente.

Criterio integral

Teorema 14.18: Criterio integral

Si $f:[1,+\infty)\to\mathbb{R}$ es positiva, continua y decreciente, entonces la serie $\sum_{n=1}^{\infty}f(n)$ y la integral impropia $\int_{1}^{\infty}f(x)\,dx$ tienen el mismo carácter (ambas convergen o ambas divergen).

Ejemplo

Ejemplo (p-serie). Tomando $f(x) = x^{-p}$:

$$\int_{1}^{\infty} x^{-p} dx = \begin{cases} \frac{1}{p-1}, & p > 1, \\ +\infty, & p \le 1. \end{cases}$$

Por tanto $\sum 1/n^p$ converge si p>1 y diverge si $p\leq 1$.

14.5 Ejercicios propuestos

1. Demuestre que si $\sum a_n^2$ y $\sum b_n^2$ convergen, entonces $\sum a_n b_n$ converge absolutamente. (Sugerencia: use la desigualdad $2|a_nb_n| \leq a_n^2 + b_n^2$.)

2. Estudiar la convergencia de:

2.a)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{n}$$
.

2.b)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$
.

$$2.c) \sum_{n=1}^{\infty} \left(\frac{n+1}{2n+1}\right)^n.$$

2.d)
$$\sum_{n=1}^{\infty} \frac{e^{2n}}{n^n}$$
.

3. Determine si las siguientes series son absolutamente convergentes, condicionalmente convergentes o divergentes:

3.a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n}+1}$$
.

3.b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^3 - 1}$$
.

3.c)
$$\sum_{n=1}^{\infty} \frac{\text{sen}(n)}{2n^2 - n}$$
.

4. Si $\sum a_n$ es una serie divergente de términos positivos $a_n > 0$, demuestre:

4.a)
$$\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$$
 es divergente.

4.b)
$$\sum_{n=1}^{\infty} \frac{a_n}{1 + n^2 a_n}$$
 es convergente.