Tutoría V: Integrales Impropias y Longitud de Arco

Integrales Impropias en Dominios Acotados

Integral impropia en intervalo semiabierto

Sea $f:(a,b]\to\mathbb{R}$ una función integrable en todo intervalo $[c,b]\subset(a,b]$. Si existe el límite

$$\int_{a}^{b} f(x)dx := \lim_{c \to a^{+}} \int_{c}^{b} f(x)dx,$$

diremos que el valor $\int_a^b f(x)dx$ es la integral impropia de f en [a,b]. Si existe el límite, diremos que la integral $\int_a^b f(x)dx$ converge, y si no, diremos que $\int_a^b f(x)dx$ diverge.

Ejemplo

Calcular $\int_0^1 \frac{1}{\sqrt{x}} dx$.

Solución:

$$\int_0^1 \frac{1}{\sqrt{x}} dx = \lim_{c \to 0^+} \int_c^1 x^{-1/2} dx = \lim_{c \to 0^+} \left[2\sqrt{x} \right]_c^1 = \lim_{c \to 0^+} (2 - 2\sqrt{c}) = 2$$

La integral converge y su valor es 2.

Criterio de comparación para dominios acotados

Sean $f,g:(a,b]\to\mathbb{R}$ funciones integrables en todo intervalo $[c,b]\subset(a,b]$ tales que

$$0 \le f(x) \le g(x)$$
, para toda $x \in (a, b]$.

- 1) Si $\int_a^b g(x)dx$ converge, entonces $\int_a^b f(x)dx$ converge. 2) Si $\int_a^b f(x)dx$ diverge, entonces $\int_a^b g(x)dx$ diverge.

Ejemplo

Estudiar la convergencia de $\int_0^1 \frac{1}{\sqrt{x(1-x)}} dx$.

Solución: Analizamos por separado cerca de los puntos problemáticos x = 0 y x = 1.

Cerca de x = 0: Para $x \in (0, \frac{1}{2}]$, tenemos $1 - x \ge \frac{1}{2}$, luego:

$$x(1-x) \ge x \cdot \frac{1}{2} = \frac{x}{2}$$

Tomando recíprocos (y raíces, que preservan desigualdades para números positivos):

$$\frac{1}{\sqrt{x(1-x)}} \le \frac{1}{\sqrt{\frac{x}{2}}} = \frac{\sqrt{2}}{\sqrt{x}}$$

Como
$$\int_0^{1/2} \frac{\sqrt{2}}{\sqrt{x}} dx$$
 converge, entonces $\int_0^{1/2} \frac{1}{\sqrt{x(1-x)}} dx$ converge.

Cerca de x = 1: Para $x \in [\frac{1}{2}, 1)$, tenemos $x \ge \frac{1}{2}$, luego:

$$x(1-x) \ge \frac{1}{2}(1-x)$$

Tomando recíprocos:

$$\frac{1}{\sqrt{x(1-x)}} \le \frac{1}{\sqrt{\frac{1}{2}(1-x)}} = \frac{\sqrt{2}}{\sqrt{1-x}}$$

Como
$$\int_{1/2}^{1} \frac{\sqrt{2}}{\sqrt{1-x}} dx$$
 converge, entonces $\int_{1/2}^{1} \frac{1}{\sqrt{x(1-x)}} dx$ converge.

Por tanto, la integral original converge.

Integrales Impropias en Dominios No Acotados

Integral en intervalo no acotado

Sea $f:[a,+\infty)\to\mathbb{R}$ una función integrable en todo intervalo $[a,b]\subset[a,+\infty)$. Se define la integral impropia de f sobre $[a, +\infty)$ como el límite

$$\int_{a}^{+\infty} f(x)dx := \lim_{b \to +\infty} \int_{a}^{b} f(x)dx.$$

Si $f:(-\infty,b]\to\mathbb{R}$ es integrable en todo intervalo $[a,b]\subset(-\infty,b]$, entonces se define

$$\int_{-\infty}^{b} f(x)dx := \lim_{a \to -\infty} \int_{a}^{b} f(x)dx.$$

Si el límite existe diremos que la integral impropia converge; si no, diremos que la integral impropia diverge.

Ejemplo

Estudiar
$$\int_{1}^{+\infty} \frac{1}{x^2} dx$$
.

Solución:

$$\int_{1}^{+\infty} \frac{1}{x^2} dx = \lim_{b \to +\infty} \int_{1}^{b} x^{-2} dx = \lim_{b \to +\infty} \left[-\frac{1}{x} \right]_{1}^{b} = \lim_{b \to +\infty} \left(1 - \frac{1}{b} \right) = 1$$

La integral converge.

Criterio de comparación para dominios no acotados

Sean $f, g: [a, +\infty) \to \mathbb{R}$ funciones integrales sobre todo intervalo $[a, b] \subset [a, +\infty)$, tales que $0 \le f(x) \le g(x)$ para todo $x \in [a, +\infty)$. 1) Si $\int_a^{+\infty} g(x) dx$ converge, entonces $\int_a^{+\infty} f(x) dx$ converge.

2) Si $\int_a^{+\infty} f(x)dx$ diverge, entonces $\int_a^{+\infty} g(x)dx$ diverge.

Ejemplo

Estudiar la convergencia de $\int_1^{+\infty} \frac{1}{x^2 + \sqrt{x}} dx$.

Solución: Para $x \ge 1$:

$$0 \le \frac{1}{x^2 + \sqrt{x}} \le \frac{1}{x^2}$$

Como $\int_1^{+\infty} \frac{1}{x^2} dx$ converge, por el criterio de comparación nuestra integral también converge.

Convergencia Absoluta y Condicional

Convergencia absoluta

Sea $f:[a,b]\to\mathbb{R}$ una función. Diremos que la integral de f en [a,b] es absolutamente convergente si la integral (impropia)

$$\int_{a}^{b} |f(x)| dx$$

es convergente.

Si la integral de f en [a, b] es absolutamente convergente, entonces es convergente.

Ejemplo

La integral $\int_{1}^{+\infty} \frac{\sin x}{x^2} dx$ es absolutamente convergente porque:

$$\left| \frac{\sin x}{x^2} \right| \le \frac{1}{x^2}$$
 y $\int_1^{+\infty} \frac{1}{x^2} dx$ converge

Convergencia condicional

Diremos que la integral impropia de una función real f es condicionalmente convergente si es convergente, pero la integral de |f| no es convergente.

Ejemplo

La integral $\int_{1}^{+\infty} \frac{\sin x}{x} dx$ es condicionalmente convergente.

Justificación:

1. La integral converge: Usamos integración por partes. Sea:

$$u = \frac{1}{x}, \quad dv = \sin x dx$$

$$du = -\frac{1}{x^2}dx, \quad v = -\cos x$$

Entonces:

$$\int_{1}^{b} \frac{\sin x}{x} dx = \left[-\frac{\cos x}{x} \right]_{1}^{b} - \int_{1}^{b} \frac{\cos x}{x^{2}} dx$$
$$= \left(-\frac{\cos b}{b} + \cos 1 \right) - \int_{1}^{b} \frac{\cos x}{x^{2}} dx$$

Tomando límite cuando $b \to \infty$:

$$\lim_{b\to\infty}\left(-\frac{\cos b}{b}\right)=0,\quad \text{y}\quad \int_1^\infty\frac{\cos x}{x^2}dx \text{ converge (pues }\left|\frac{\cos x}{x^2}\right|\leq \frac{1}{x^2})$$

Por tanto, $\int_{1}^{+\infty} \frac{\sin x}{x} dx$ converge.

2. No converge absolutamente: Usamos la identidad:

$$\left| \frac{\sin x}{x} \right| \ge \frac{\sin^2 x}{x} = \frac{1 - \cos(2x)}{2x}$$

Entonces:

$$\int_{1}^{b} \left| \frac{\sin x}{x} \right| dx \ge \frac{1}{2} \int_{1}^{b} \frac{1}{x} dx - \frac{1}{2} \int_{1}^{b} \frac{\cos(2x)}{x} dx$$

Para la primera integral:

$$\int_{1}^{b} \frac{1}{x} dx = \ln b \to +\infty \quad \text{cuando } b \to +\infty$$

Para la segunda integral, por integración por partes (similar al ítem 1):

$$\int_{1}^{b} \frac{\cos(2x)}{x} dx = \left[\frac{\sin(2x)}{2x} \right]_{1}^{b} + \int_{1}^{b} \frac{\sin(2x)}{2x^{2}} dx$$

que converge cuando $b \to +\infty$.

Por tanto:

$$\int_{1}^{+\infty} \left| \frac{\sin x}{x} \right| dx \ge \frac{1}{2}(\infty) - \frac{1}{2}(\text{valor finito}) = \infty$$

es decir, la integral diverge.

Longitud de arco de una curva

Longitud de Arco

La longitud de arco de una curva suave y = f(x) en el intervalo [a, b] se define como el límite de la suma de las longitudes de segmentos de recta que aproximan la curva, cuando el número de segmentos tiende a infinito.

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{(\Delta x_i)^2 + (\Delta y_i)^2}$$

Nota: Una curva es suave si f'(x) es continua en [a,b].

Teorema: Longitud de Arco para y = f(x)

Sea f(x) una función suave en [a,b]. La longitud de arco de f desde a hasta b es:

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} \, dx$$

Nota: Podemos pensar en la longitud de arco como la distancia que recorreríamos si camináramos por la trayectoria de la curva.

Deducción de la Fórmula

Partimos de la aproximación de la curva por segmentos de recta, con la noción de Sumas de Riemann. Cuando $n \to \infty$, la suma se convierte en una integral:

$$L = \int_a^b \sqrt{(dx)^2 + (dy)^2}$$

Factorizando dx:

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx$$

Y como $\frac{dy}{dx} = f'(x)$, obtenemos la fórmula final:

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} \, dx$$

Ejemplo

Calcular la longitud de arco de $f(x) = 2x^{3/2}$ en el intervalo [0, 1].

Solución:

Paso 1: Calcular la derivada

$$f'(x) = \frac{d}{dx}(2x^{3/2}) = 3x^{1/2}$$

Paso 2: Elevar al cuadrado la derivada

$$[f'(x)]^2 = (3x^{1/2})^2 = 9x$$

Paso 3: Aplicar la fórmula de longitud de arco

$$L = \int_0^1 \sqrt{1 + 9x} \, dx$$

Paso 4: Resolver la integral por sustitución

Sea u = 1 + 9x, entonces du = 9dx y $dx = \frac{du}{9}$. Cambio de límites:

- Cuando x = 0: u = 1 + 9(0) = 1
- Cuando x = 1: u = 1 + 9(1) = 10

$$L = \int_{1}^{10} \sqrt{u} \cdot \frac{du}{9} = \frac{1}{9} \int_{1}^{10} u^{1/2} du$$

Paso 5: Evaluar la integral

$$L = \frac{1}{9} \cdot \frac{2}{3} u^{3/2} \Big|_{1}^{10} = \frac{2}{27} \left(10^{3/2} - 1^{3/2} \right)$$

$$L = \frac{2}{27}(10\sqrt{10} - 1)$$

Respuesta: $L = \frac{2}{27}(10\sqrt{10} - 1)$

Ejercicios Resueltos

Ejercicio 1 (Dominio acotado - cálculo directo)

Calcular $\int_0^1 \frac{1}{x^p} dx$ y determinar para qué valores de p converge.

Solución:

$$\int_0^1 \frac{1}{x^p} dx = \lim_{c \to 0^+} \int_0^1 x^{-p} dx$$

Caso 1: $p \neq 1$

$$\int_{c}^{1} x^{-p} dx = \left[\frac{x^{1-p}}{1-p} \right]_{c}^{1} = \frac{1}{1-p} - \frac{c^{1-p}}{1-p}$$

El límite cuando $c \to 0^+$ existe si 1 - p > 0, es decir, p < 1.

Caso 2: p = 1

$$\int_{c}^{1} \frac{1}{x} dx = [\ln x]_{c}^{1} = -\ln c \to +\infty \quad \text{cuando } c \to 0^{+}$$

Conclusión: La integral converge si p < 1 y diverge si $p \ge 1$.

Ejercicio 2 (Dominio acotado - criterio de comparación)

Estudiar la convergencia de $\int_0^1 \frac{\ln(1+x)}{x^{3/2}} dx$.

Solución: Cerca de x=0, usando desarrollo de Taylor: $\ln(1+x) \sim x$, por tanto:

$$\frac{\ln(1+x)}{x^{3/2}} \sim \frac{x}{x^{3/2}} = \frac{1}{x^{1/2}}$$

Más precisamente, para $x \in (0, \frac{1}{2}]$:

$$0 \le \frac{\ln(1+x)}{x^{3/2}} \le \frac{x}{x^{3/2}} = \frac{1}{x^{1/2}}$$

Como $\int_0^{1/2} \frac{1}{x^{1/2}} dx$ converge, por el criterio de comparación nuestra integral también converge.

Ejercicio 3 (Dominio no acotado - cálculo directo)

Calcular $\int_{1}^{+\infty} \frac{1}{x^{p}} dx$ y determinar para qué valores de p converge.

Solución:

$$\int_{1}^{+\infty} \frac{1}{x^{p}} dx = \lim_{b \to +\infty} \int_{1}^{b} x^{-p} dx$$

Caso 1: $p \neq 1$

$$\int_{1}^{b} x^{-p} dx = \left[\frac{x^{1-p}}{1-p} \right]_{1}^{b} = \frac{b^{1-p}}{1-p} - \frac{1}{1-p}$$

El límite cuando $b \to +\infty$ existe si 1 - p < 0, es decir, p > 1.

Caso 2: p = 1

$$\int_{1}^{b} \frac{1}{x} dx = [\ln x]_{1}^{b} = \ln b \to +\infty \quad \text{cuando } b \to +\infty$$

Conclusión: La integral converge si p > 1 y diverge si $p \le 1$.

Ejercicio 4 (Dominio no acotado - criterio de comparación)

Estudiar la convergencia de $\int_{1}^{+\infty} \frac{x + \sin x}{x^3 + 1} dx$.

Solución: Para x > 1:

$$0 \le \frac{x + \sin x}{x^3 + 1} \le \frac{x + 1}{x^3} \le \frac{2x}{x^3} = \frac{2}{x^2}$$

Como $\int_1^{+\infty} \frac{2}{x^2} dx$ converge, por el criterio de comparación nuestra integral también converge.

Ejercicio 5 (Longitud de arco de una curva)

Calcular la longitud de arco de $f(x) = \ln(\cos x)$ en $\left[0, \frac{\pi}{4}\right]$.

Solución:

$$f'(x) = -\tan x, \quad [f'(x)]^2 = \tan^2 x$$

$$L = \int_0^{\pi/4} \sqrt{1 + \tan^2 x} \, dx = \int_0^{\pi/4} \sec x \, dx$$

$$L = \ln|\sec x + \tan x| \Big|_0^{\pi/4} = \ln(\sqrt{2} + 1) - \ln(1) = \ln(\sqrt{2} + 1)$$

Ejercicio 5 (Longitud de arco de una curva)

Calcular la longitud de arco de $f(x) = \frac{x^2}{2}$ en [0,1].

Solución:

$$f'(x) = x, \quad [f'(x)]^2 = x^2$$

$$L = \int_0^1 \sqrt{1 + x^2} \, dx$$

Usando sustitución trigonométrica $x = \tan \theta$, $dx = \sec^2 \theta d\theta$:

$$L = \int_0^{\pi/4} \sec^3 \theta \, d\theta = \frac{1}{2} [\sec \theta \tan \theta + \ln |\sec \theta + \tan \theta|]_0^{\pi/4}$$
$$L = \frac{1}{2} [\sqrt{2} + \ln(\sqrt{2} + 1)]$$

Ejercicios Propuestos

Dominios Acotados

- 1. Determine si converge $\int_0^{\pi/2} \frac{1}{\sqrt{\sin x}} dx$
- 2. Estudie la convergencia de $\int_0^1 \frac{e^x 1}{x^{3/2}} dx$

Dominios No Acotados

- 1. Calcule $\int_0^{+\infty} \frac{1}{1+x^2} dx$
- 2. Estudie la convergencia de $\int_{1}^{+\infty} \frac{\ln x}{x^2} dx$

Convergencia Absoluta y Condicional

- 1. Determine si $\int_{1}^{+\infty} \frac{\cos x}{x} dx$ es absolutamente convergente, condicionalmente convergente, o divergente
- 2. Estudie la convergencia de $\int_0^{+\infty} e^{-x} \sin x dx$

Longitud de arco de una curva

- 1. Calcular la longitud de arco de $f(x) = x^{3/2}$ en [0, 4]
- 2. Calcular la longitud de arco de $f(x) = \frac{e^x + e^{-x}}{2}$ en [0,1]
- 3. Calcular la longitud de arco de $f(x) = \ln(\sec x)$ en $\left[0, \frac{\pi}{3}\right]$
- 4. Calcular la longitud de arco de $f(x) = \sqrt{4-x^2}$ en [-2,2]