

EXAMEN - Matemáticas I Profesores: Carrasco - Contreras - Da Silva

Fecha: Martes 9 de Julio 2024

Indicaciones

- Ingrese sus datos personales en todas las hojas.
- Esta evaluación está diseñada para ser respondida en x minutos.
- Utilice sólo lápiz pasta. Si utiliza lápiz a mina pierde el derecho a re-corrección, las que pueden alterar el puntaje ya sea aumentándolo o reduciéndolo.
- Todas las respuestas deben ser justificadas paso a paso. Preguntas incompletas o sin justificación serán evaluadas con menor puntaje.
- Todos los dispositivos electrónicos (teléfono celular, Tablet, reloj inteligente, etc.) deben estar apagados y guardados en su mochila.
- Se considerará una actitud deshonesta ser sorprendido mirando la evaluación de otra persona, interactuando con otra persona (conversando, gesticulando, etc.) o en posesión de una fuente de información no autorizada
- El ESTUCHE no debe estar sobre la mesa de trabajo. Sólo los útiles necesarios para desarrollar la evaluación.

Nombre Completo:	
Rut:	
Tener Presente: Todo acto realizado por un estudiante durante una evaluación, a viciarla, será sancionado con la suspensión inmediata de la actividad evaluativa calificación mínima (1.0) en ella.	
Firma:	

Pregunta	1	2	3	4	5	6	Total
Puntos	12	8	15	4	12	9	60
Puntos extra	2	0	0	0	0	4	6
Puntos obtenidos							

 $1.\,$ Ecuaciones lineales y cuadráticas

Encuentre las soluciones, si las tienen, de las siguientes ecuaciones:

(a) (3 puntos) 7x - 3 = 2x + 5

Solution:

$$7x - 3 = 2x + 5$$
$$7x - 2x = 5 + 3$$
$$5x = 8$$
$$x = \frac{8}{5}$$

x = 1.6

(b) (3 puntos) 5x + 10 = 3x - 4

Solution:

$$5x + 10 = 3x - 4$$
$$5x - 3x = -4 - 10$$
$$2x = -14$$
$$x = \frac{-14}{2}$$
$$x = -7$$

(c) (3 puntos) $x^2 + 6x + 9 = 0$

Solution:

$$x^{2} + 6x + 9 = 0$$
$$(x+3)^{2} = 0$$
$$x+3 = 0$$
$$x = -3$$

(d) (3 puntos) $x^2 - 25 = 0$

Solution:

$$x^{2} - 25 = 0$$

 $(x - 5)(x + 5) = 0$
 $x - 5 = 0$ or $x + 5$ = 0
 $x = 5$ or x = -5

(e) (2 puntos extra) $3x^2 - 7x + 2 = 0$

Solution: Usamos la fórmula general para resolver ecuaciones cuadráticas, $ax^2 + bx + c = 0$:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Aquí, $a=3,\,b=-7$ y c=2.

$$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4 \cdot 3 \cdot 2}}{2 \cdot 3}$$

$$x = \frac{7 \pm \sqrt{49 - 24}}{6}$$

$$x = \frac{7 \pm \sqrt{25}}{6}$$

$$x = \frac{7 \pm 5}{6}$$

Entonces, las soluciones son:

$$x = \frac{7+5}{6} = \frac{12}{6} = 2$$
$$x = \frac{7-5}{6} = \frac{2}{6} = \frac{1}{3}$$

2. Trigonometría

(a) (4 puntos) Un árbol proyecta una sombra de 30 metros cuando el ángulo de elevación del sol es de 45°. ¿Cuál es la altura del árbol?

Solution:

Para encontrar la altura del árbol, utilizamos la relación trigonométrica de la tangente en un triángulo rectángulo:

$$\tan(\theta) = \frac{\text{opuesto}}{\text{adyacente}}$$

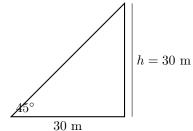
En este caso, $\theta=45^{\circ}$, la longitud de la sombra es la longitud del lado adyacente (30 metros) y la altura del árbol es la longitud del lado opuesto. Entonces:

$$\tan(45^\circ) = \frac{h}{30}$$

Sabemos que $tan(45^{\circ}) = 1$, por lo tanto:

$$1 = \frac{h}{30} \implies h = 30 \text{ metros}$$

La altura del árbol es de 30 metros.



(b) (4 puntos) Un agricultor quiere medir la altura de un silo utilizando un teodolito. Desde un punto a 50 metros del silo, el ángulo de elevación al tope del silo es de 30°. ¿Cuál es la altura del silo?

Solution:

Para encontrar la altura del silo, utilizamos la relación trigonométrica de la tangente en un triángulo rectángulo:

$$\tan(\theta) = \frac{\text{opuesto}}{\text{advacente}}$$

En este caso, $\theta=30^\circ$, la distancia desde el punto de observación hasta el silo es la longitud del lado adyacente (50 metros) y la altura del silo es la longitud del lado opuesto. Entonces:

$$\tan(30^\circ) = \frac{h}{50}$$

Sabemos que $\tan(30^{\circ}) = \frac{1}{\sqrt{3}}$, por lo tanto:

$$\frac{1}{\sqrt{3}} = \frac{h}{50} \implies h = 50 \cdot \frac{1}{\sqrt{3}}$$

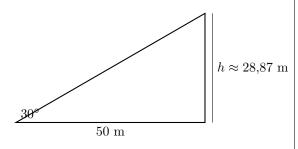
$$\implies h = \frac{50}{\sqrt{3}} \implies h = \frac{50\sqrt{3}}{3}$$

Lo que sigue no es necesario, pues es sin calculadora.

Aproximando, $\sqrt{3} \approx 1,732$, entonces:

$$h \approx \frac{50 \cdot 1,732}{3} \approx 28,87 \text{ metros}$$

La altura del silo es aproximadamente 28.87 metros.



3. Límites

(a)
$$\lim_{x \to 1} \frac{x-1}{x^2-1}$$

I. (1 punto) ¿Es una forma indeterminada?. ¿Por qué?

Solution: Sí, es una forma indeterminada. Al evaluar directamente el límite en x=1, obtenemos:

$$\frac{1-1}{1^2-1} = \frac{0}{0}$$

La expresión $\frac{0}{0}$ es una forma indeterminada.

II. (1 punto) Qué método usará para resolverlo.

Solution: Usaremos el método de factorización y simplificación para resolver el límite.

III. (3 puntos) Calcule.

Solution: Primero, factorizamos el denominador $x^2 - 1$:

$$x^2 - 1 = (x - 1)(x + 1)$$

Entonces, el límite se convierte en:

$$\lim_{x \to 1} \frac{x - 1}{(x - 1)(x + 1)}$$

Podemos simplificar $\frac{x-1}{x-1} = 1$ (para $x \neq 1$):

$$\lim_{x \to 1} \frac{1}{x+1}$$

Ahora evaluamos el límite:

$$\frac{1}{1+1} = \frac{1}{2}$$

Por lo tanto,

$$\lim_{x\to 1}\frac{x-1}{x^2-1}=\frac{1}{2}$$

(b) $\lim_{x \to 2} \frac{x - 2}{\sqrt{x} - \sqrt{2}}$

I. (1 punto) ¿Es una forma indeterminada?. ¿Por qué?

Solution: Sí, es una forma indeterminada. Al evaluar directamente el límite en x=2, obtenemos:

$$\frac{2-2}{\sqrt{2}-\sqrt{2}} = \frac{0}{0}$$

La expresión $\frac{0}{0}$ es una forma indeterminada.

II. (1 punto) ¿Qué método usará para resolverlo?

Solution: Usaremos la racionalización para resolver el límite.

III. (3 puntos) Calcule.

Solution: Racionalizamos el denominador multiplicando el numerador y el denominador por el conjugado del denominador:

$$\lim_{x \to 2} \frac{x - 2}{\sqrt{x} - \sqrt{2}} \cdot \frac{\sqrt{x} + \sqrt{2}}{\sqrt{x} + \sqrt{2}} = \lim_{x \to 2} \frac{(x - 2)(\sqrt{x} + \sqrt{2})}{(\sqrt{x} - \sqrt{2})(\sqrt{x} + \sqrt{2})}$$

Simplificamos el denominador utilizando la identidad de la diferencia de cuadrados:

$$= \lim_{x \to 2} \frac{(x-2)(\sqrt{x} + \sqrt{2})}{x-2}$$

Simplificamos el factor común x-2:

$$= \lim_{x \to 2} \sqrt{x} + \sqrt{2}$$

Evaluamos el límite:

$$\sqrt{2} + \sqrt{2} = 2\sqrt{2}$$

Por lo tanto,

$$\lim_{x \to 2} \frac{x - 2}{\sqrt{x} - \sqrt{2}} = 2\sqrt{2}$$

(c) $\lim_{x \to 1} \frac{\ln(x)}{x - 1}$

I. (1 punto) ¿Es una forma indeterminada?. ¿Por qué?

Solution: Sí, es una forma indeterminada. Al evaluar directamente el límite en x=1, obtenemos:

$$\frac{\ln(1)}{1-1} = \frac{0}{0}$$

La expresión $\frac{0}{0}$ es una forma indeterminada.

II. (1 punto) ¿Qué método usará para resolverlo?

Solution: Usaremos la regla de L'Hôpital para resolver el límite, ya que se trata de una forma indeterminada $\frac{0}{0}$.

III. (3 puntos) Calcule.

Solution: Aplicamos la regla de L'Hôpital, que nos dice que si tenemos una forma indeterminada $\frac{0}{0}$, podemos derivar el numerador y el denominador:

$$\lim_{x \to 1} \frac{\ln(x)}{x - 1} = \lim_{x \to 1} \frac{\frac{d}{dx}[\ln(x)]}{\frac{d}{dx}[x - 1]} = \lim_{x \to 1} \frac{\frac{1}{x}}{1}$$

Evaluamos el límite:

$$\frac{1}{1} = 1$$

Por lo tanto,

$$\lim_{x \to 1} \frac{\ln(x)}{x - 1} = 1$$

4. Derivadas

Calcule las derivadas de las siguientes funciones:

(a) (1 punto)
$$f_1(x) = \frac{5}{x^5}$$

Solution: Reescribimos la función como una potencia:

$$f_1(x) = 5x^{-5}$$

Aplicamos la regla de la potencia para derivar:

$$f_1'(x) = 5 \cdot (-5)x^{-6} = -25x^{-6} = -\frac{25}{x^6}$$

(b) (1 punto) $f_2(x) = \sin(x) \cdot \cos(x)$

Solution: Utilizamos la regla del producto para derivar:

$$f_2'(x) = \sin(x) \cdot \frac{d}{dx} [\cos(x)] + \cos(x) \cdot \frac{d}{dx} [\sin(x)]$$

Sabemos que $\frac{d}{dx}[\cos(x)] = -\sin(x)$ y $\frac{d}{dx}[\sin(x)] = \cos(x)$, por lo tanto:

$$f_2'(x) = \sin(x) \cdot (-\sin(x)) + \cos(x) \cdot \cos(x) = -\sin^2(x) + \cos^2(x)$$

(c) (1 punto) $f_3(x) = \frac{x+1}{x-1}$

Solution: Utilizamos la regla del cociente para derivar:

$$f_3'(x) = \frac{(x-1) \cdot \frac{d}{dx}[x+1] - (x+1) \cdot \frac{d}{dx}[x-1]}{(x-1)^2}$$

Sabemos que $\frac{d}{dx}[x+1] = 1$ y $\frac{d}{dx}[x-1] = 1$, por lo tanto:

$$f_3'(x) = \frac{(x-1)\cdot 1 - (x+1)\cdot 1}{(x-1)^2} = \frac{x-1-x-1}{(x-1)^2} = \frac{-2}{(x-1)^2}$$

(d) (1 punto) $f_4(x) = \sin(\cos(x))$

Solution: Utilizamos la regla de la cadena para derivar:

$$f'_4(x) = \cos(\cos(x)) \cdot \frac{d}{dx}[\cos(x)]$$

Sabemos que $\frac{d}{dx}[\cos(x)] = -\sin(x)$, por lo tanto:

$$f_4'(x) = \cos(\cos(x)) \cdot (-\sin(x)) = -\sin(x)\cos(\cos(x))$$

5. Rectas tangentes

- (a) A la curva $f(x) = x^2$ en el punto x = 1
 - I. (4 puntos) Encontrar la ecuación de la recta tangente.

Solution: Primero, encontramos la derivada de f(x):

$$f'(x) = 2x$$

Evaluamos la derivada en x = 1:

$$f'(1) = 2 \cdot 1 = 2$$

La pendiente de la recta tangente es 2. El punto de tangencia es $(1, f(1)) = (1, 1^2) = (1, 1)$. Utilizamos la ecuación punto-pendiente para encontrar la ecuación de la recta tangente:

$$y - y_1 = m(x - x_1)$$

Sustituimos m = 2, $x_1 = 1$, y $y_1 = 1$:

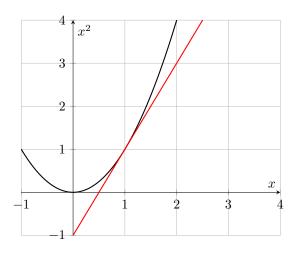
$$y-1 = 2(x-1) \implies y = 2x-2+1 \implies y = 2x-1$$

Por lo tanto, la ecuación de la recta tangente es:

$$y = 2x - 1$$

II. (2 puntos) Graficar la recta tangente.

Solution:



(b) A la curva $f(x) = \frac{1}{x}$ en x = 1

I. (4 puntos) Encontrar la ecuación de la recta tangente.

Solution: Primero, encontramos la derivada de f(x):

$$f'(x) = -\frac{1}{x^2}$$

Evaluamos la derivada en x = 1:

$$f'(1) = -\frac{1}{1^2} = -1$$

La pendiente de la recta tangente es -1. El punto de tangencia es $(1, f(1)) = (1, \frac{1}{1}) = (1, 1)$. Utilizamos la ecuación punto-pendiente para encontrar la ecuación de la recta tangente:

$$y - y_1 = m(x - x_1)$$

Sustituimos m = -1, $x_1 = 1$, y $y_1 = 1$:

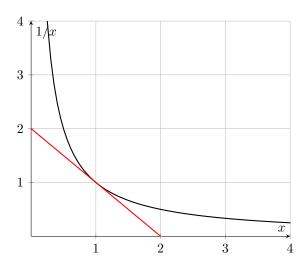
$$y - 1 = -1(x - 1) \implies y = -x + 1 + 1 \implies y = -x + 2$$

Por lo tanto, la ecuación de la recta tangente es:

$$y = -x + 2$$

II. (2 puntos) Graficar la recta tangente.

Solution:



6. Analiza la función $f(x) = x^3 - 3x^2 + 4$ en el intervalo [-1,3]. Determina:

I. (3 puntos) Los Puntos críticos

Solution: Primero, encontramos la derivada de f(x):

$$f'(x) = 3x^2 - 6x$$

Para encontrar los puntos críticos, resolvemos f'(x) = 0:

$$3x^{2} - 6x = 0 \implies 3x(x - 2) = 0 \implies x = 0$$
 o $x = 2$

Evaluamos la función en estos puntos:

$$f(0) = 0^3 - 3(0)^2 + 4 = 4$$

$$f(2) = 2^3 - 3(2)^2 + 4 = 8 - 12 + 4 = 0$$

Por lo tanto, los puntos críticos son 0 y 2.

II. (3 puntos) Los intervalos crecientes y decrecientes (tabla de signos)

Solution:

Tabla de signos de f'(x) = 3x(x-2):

$x \in$	[-1,0[0]0, 2[2]2, 3]
x	_	0	+	2	+
(x-2)	_	-2	_	0	+
3x(x-2)	+	0	_	0	+
f'(x)	7	0	>	0	7

Intervalos crecientes: $(-1,0) \cup (2,3)$

Intervalo decreciente: (0,2)

III. (3 puntos) Los máximos y mínimos absolutos y locales

Solution: Evaluamos la función en los extremos del intervalo [-1,3] y en los puntos críticos:

$$f(-1) = (-1)^3 - 3(-1)^2 + 4 = -1 - 3 + 4 = 0$$

$$f(3) = 3^3 - 3(3)^2 + 4 = 27 - 27 + 4 = 4$$

Ya hemos calculado:

$$f(0) = 4$$
 y $f(2) = 0$

Comparando los valores de f(x) en estos puntos:

$$f(-1) = 0$$
, $f(0) = 4$, $f(2) = 0$, $f(3) = 4$

El máximo relativo es 4 (en x = 0 y x = 3) y el mínimo local es 0 (en x = -1 y x = 2).

IV. (2 puntos extra) Concavidad y puntos de inflexión.

Solution: Para determinar la concavidad, calculamos la segunda derivada de f(x):

$$f''(x) = 6x - 6$$

Resolvemos f''(x) = 0 para encontrar los puntos de inflexión:

$$6x - 6 = 0 \implies x = 1$$

Evaluamos la segunda derivada en intervalos determinados por x = 1:

$$f''(x) = 6(x-1)$$

$$\begin{array}{c|cccc} \text{Intervalo} & (-\infty, 1) & (1, \infty) \\ \hline \text{Signo de } f''(x) & - & + \\ \hline \end{array}$$

La función es cóncava hacia abajo en $(-\infty,1)$ y cóncava hacia arriba en $(1,\infty)$. El punto de inflexión es (1,f(1)):

$$f(1) = 1^3 - 3(1)^2 + 4 = 1 - 3 + 4 = 2$$

Por lo tanto, el punto de inflexión es (1, 2).

V. (2 puntos extra) Usando la información obtenida, grafique la función

