Universidad de Chile

Facultad de Agronomía Matemáticas 1

Curso: BBO-01C-001

Profesores: Carrasco, Contreras, Da Silva

Compendio - #11 Tema: Asíntotas Semestre Otoño 2024

La matemática es como un faro que guía nuestra comprensión del mundo.

1. Derivadas

Problema 1. Calcule los siguientes límites

1.
$$\lim_{x \to \infty} \frac{4x^5 - 6x^2 + 100}{-12x^5 + x^4 - x^3 + 6x}$$

2.
$$\lim_{x \to \infty} \frac{x^{100} - 2000x^{99}}{x^{90} + x^{89} + \dots + x^2 + x}$$

3.
$$\lim_{x \to \infty} \frac{3x^9 - 4x^8}{x^{10} + 20}$$

4.
$$\lim_{x \to \infty} \frac{x^+ 6x + 5}{x^2 - 6x + 5}$$

5.
$$\lim_{x \to +\infty} \frac{e^x - 3x^2}{5e^x + 2x^2}$$

6.
$$\lim_{x \to -\infty} \frac{e^x - 3x^2}{5e^x + 2x^2}$$

7.
$$\lim_{x \to +\infty} \frac{-e^{2x} + x}{3e^{4x} - x^2}$$

8.
$$\lim_{x \to -\infty} \frac{-e^{2x} + x}{3e^{4x} - x^2}$$

9.
$$\lim_{x \to +\infty} \frac{-e^{2x} + x}{3e^{4x} - x^2}$$

10.
$$\lim_{x \to -\infty} \frac{-e^{2x} + x}{3e^{4x} - x^2}$$

Problema 2. Para las siguientes funciones encuentre:

- Asíntotas
- Puntos críticos
- Puntos máximos y mínimos
- Intervalos de monotonía
- Intervalos de concavidad

1.
$$f_1(x) = \frac{-3x+1}{x-2}$$

2.
$$f_2(x) = \frac{x^2}{x^2 - 4}$$

3.
$$f_3(x) = \frac{2}{e^x + e^{-x}}$$

Problema 3. Para las funciones del problema anterior. Use la información encontrada para graficarlas.

1. Soluciones Derivadas

Solución 1. Calcule los siguientes límites

5.
$$\frac{1}{5}$$
6. $\frac{-3}{2}$

1.
$$\frac{-1}{3}$$

7. 0

$$2. \infty$$

0 0

8. 0

9. ∞

10. 0

Solución 2. Estudie las siguientes funciones

1.
$$f_1(x) = \frac{-3x+1}{x-2}$$

■ Asíntotas.

• Vertical: x = 2

• Horizontal: y = -3

■ Puntos críticos

$$\bullet$$
 $x=2$

■ Puntos máximos y mínimos: No tiene.

■ Intervalos de monotonía: Creciente en todo su dominio

■ Intervalos de concavidad

•
$$f_1''(x) > 0$$
 si $x < 2$

•
$$f_1''(x) < 0 \text{ si } x > 2$$

$$2. \ f_2(x) = \frac{x^2}{x^2 - 4}$$

Asíntotas

• Vertical: x = -2

• Vertical: x = 2

• Horizontal: y = 0

■ Puntos críticos

$$\bullet \ \ x = -2$$

$$\bullet \ \ x = 0$$

$$\bullet$$
 $x=2$

• Puntos máximos y mínimos: x = 0 es un máximo local.

■ Intervalos de monotonía:

• Creciente si x < 0

• Decreciente si x > 0

■ Intervalos de concavidad

• $f_2''(x) > 0$ si x < -2 ó x > 2

• $f_2''(x) < 0 \text{ si } -2 < x < 2$

3.
$$f_3(x) = \frac{2}{e^x + e^{-x}}$$

■ Asíntotas

• Horizontal: y = 0

Puntos críticos

$$\bullet \ \ x = 0$$

ullet Puntos máximos y mínimos: x=0 es un máximo local

- \blacksquare Intervalos de monotonía
 - Creciente si x < 0
 - Decreciente si x > 0
- Intervalos de concavidad.

(En este ejercicio encontrar estos intervalos es más difícil de lo que se exigirá en la prueba)

- $f_3''(x) > 0$ si x < -r ó x > r
- $f_3''(x) < 0$ si -r < x < r

Con $r = Ln(\sqrt{3+\sqrt{8}}) \approx 0.8814$ la solución positiva de la ecuación $(e^x + e^{-x})^2 = 2(e^x - e^{-x})^2$.